

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	896
Number of Logic Elements/Cells	8064
Total RAM Bits	368640
Number of I/O	195
Number of Gates	400000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FTBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xa3s400a-4ftg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. The XA3S700A and XA3S1400A have two additional DCMs on both the left and right sides as indicated by the dashed lines.

Configuration

XA Spartan-3A FPGAs are programmed by loading configuration data into robust, reprogrammable, static CMOS configuration latches (CCLs) that collectively control all functional elements and routing resources. The FPGA's configuration data is stored externally in a SPI serial Flash or some other non-volatile medium, either on or off the board. After applying power, the configuration data is written to the FPGA using any of five different modes:

- Serial Peripheral Interface (SPI) from an industry-standard SPI serial Flash
- Byte Peripheral Interface (BPI) Up from an industry-standard x8 or x8/x16 parallel NOR Flash
- Slave Serial, typically downloaded from a processor
- Slave Parallel, typically downloaded from a processor
- Boundary Scan (JTAG), typically downloaded from a processor or system tester

Additionally, each XA Spartan-3A FPGA contains a unique, factory-programmed Device DNA identifier useful for tracking purposes, anti-cloning designs, or IP protection.

I/O Capabilities

The XA Spartan-3A FPGA SelectIO interface supports many popular single-ended and differential standards. Table 2 shows the number of user I/Os as well as the number of differential I/O pairs available for each device/package combination. Some of the user I/Os are unidirectional input-only pins as indicated in Table 2.

XA Spartan-3A FPGAs support the following single-ended standards:

- 3.3V low-voltage TTL (LVTTL)
- Low-voltage CMOS (LVCMOS) at 3.3V, 2.5V, 1.8V, 1.5V, or 1.2V
- 3.3V PCI at 33 MHz
- HSTL I, II, and III at 1.5V and 1.8V, commonly used in memory applications
- SSTL I and II at 1.8V, 2.5V, and 3.3V, commonly used for memory applications

XA Spartan-3A FPGAs support the following differential standards:

- LVDS, mini-LVDS, RSDS, and PPDS I/O at 2.5V or 3.3V
- Bus LVDS I/O at 2.5V
- TMDS I/O at 3.3V
- Differential HSTL and SSTL I/O
- LVPECL inputs at 2.5V or 3.3V

Table 2: Available User I/Os and Differential I/O Pairs

Device	FTC	G256	FGC	G400	FGG484	
Device	User	Differential	User	Differential	User	Differential
XA3S200A	195 (35)	90 (50)	-	-	-	-
XA3S400A	195 (35)	90 (50)	311 (63)	142 (78)	-	-
XA3S700A	-	-	311 (63)	142 (78)	372 (84)	165 (93)
XA3S1400A	-	_	-	-	375 (87)	165 (93)

Notes:

1. The number shown in **bold** indicates the maximum number of I/O and input-only pins. The number shown in (italics) indicates the number of input-only pins. The differential input-only pin count includes both differential pairs on input-only pins and differential pairs on I/O pins within I/O banks that are restricted to differential inputs.

Production Status

Table 3 indicates the production status of each XA Spartan-3A FPGA by temperature range and speed grade. The table also lists the earliest speed file version required for creating a production configuration bitstream. Later versions are also supported.

Table 3: XA Spartan-3A FPGA Family Production Status (Production Speed File)

	Temperature Range	I-Grade	Q-Grade
	Speed Grade	Standard (-4)	Standard (-4)
er	XA3S200A	Production (v1.41)	Production (v1.41)
gun	XA3S400A	Production (v1.41)	Production (v1.41)
z t	XA3S700A	Production (v1.41)	Production (v1.41)
Pai	XA3S1400A	Production (v1.41)	Production (v1.41)

Package Marking

Figure 2 shows the top marking for Spartan-3A FPGAs in BGA packages. The markings for the BGA packages are nearly identical to those for the quad-flat packages, except that the marking is rotated with respect to the ball A1 indicator.

Figure 2: XA Spartan-3A FPGA BGA Package Marking Example

Ordering Information

XA Spartan-3A FPGAs are available in Pb-free packaging only for all device/package combinations.

Pb-Free Packaging

Figure 3: Ordering Information

Device	Speed Grade		Package Type / Number of Pins		•	Temperature Range (T _J)
XA3S200A	-4	Standard Performance	FTG256	256-ball Fine-Pitch Thin Ball Grid Array (FTBGA)	I	I-Grade (-40°C to 100°C)
XA3S400A			FGG400	400-ball Fine-Pitch Ball Grid Array (FBGA)	Q	Q-Grade (–40°C to 125°C)
XA3S700A			FGG484	484-ball Fine-Pitch Ball Grid Array (FBGA)		
XA3S1400A				·		

Notes:

1. The XA Spartan-3A FPGA product line is available in -4 Speed Grade only.

DC Electrical Characteristics

All parameter limits are representative of worst-case supply voltage and junction temperature conditions. Unless otherwise noted, the published parameter values apply to all XA Spartan-3A devices, and AC and DC characteristics are specified using the same numbers for both I-Grade and Q-Grade.

Absolute Maximum Ratings

Stresses beyond those listed under Table 4: Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions is not implied. Exposure to absolute maximum conditions for extended periods of time adversely affects device reliability.

Symbol	Description	Conditions	Min	Max	Units
V _{CCINT}	Internal supply voltage	-0.5	1.32	V	
V _{CCAUX}	Auxiliary supply voltage	-0.5	3.75	V	
V _{CCO}	Output driver supply voltage		-0.5	3.75	V
V _{REF}	Input reference voltage	-0.5	V _{CCO} +0.5	V	
Volt V _{IN} Volt	Voltage applied to all User I/O pins and dual-purpose pins	Driver in a high-impedance state	-0.95	4.6	V
	Voltage applied to all Dedicated pins	-0.5	4.6	V	
I _{IK}	Input clamp current per I/O pin	$-0.5V < V_{IN} < (V_{CCO} + 0.5V)^{(1)}$	-	±100	mA
		Human body model	-	±2000	V
V_{ESD}	Electrostatic Discharge Voltage	Charged device model	-	±500	V
		Machine model	-	±200	V
TJ	Junction temperature		-	125	°C
T _{STG}	Storage temperature		-65	150	°C

Table 4: Absolute Maximum Ratings

Notes:

1. Upper clamp applies only when using PCI IOSTANDARDs.

2. For soldering guidelines, see UG112: Device Packaging and Thermal Characteristics and XAPP427: Implementation and Solder Reflow Guidelines for Pb-Free Packages.

Single-Ended I/O Standards

Table 11: Recommended Operating Conditions for User I/Os Using Single-Ended Standards

IOSTANDARD	Vc	_{CO} for Driver	's ⁽²⁾	V _{REF}			V _{IL}	V _{IH}
Attribute	Min (V)	Nom (V)	Max (V)	Min (V) Nom (V) Max (V)			Max (V)	Min (V)
LVTTL	3.0	3.3	3.6				0.8	2.0
LVCMOS33 ⁽⁴⁾	3.0	3.3	3.6				0.8	2.0
LVCMOS25 ^(4,5)	2.3	2.5	2.7				0.7	1.7
LVCMOS18	1.65	1.8	1.95	V _R the	_{IEF} is not usec ese I/O standa	l for ards	0.4	0.8
LVCMOS15	1.4	1.5	1.6				0.4	0.8
LVCMOS12	1.1	1.2	1.3				0.4	0.7
PCI33_3 ⁽⁶⁾	3.0	3.3	3.6				0.3 • V _{CCO}	0.5 • V _{CCO}
HSTL_I	1.4	1.5	1.6	0.68 0.75 0.9		V _{REF} – 0.1	V _{REF} + 0.1	
HSTL_III	1.4	1.5	1.6	-	0.9	-	V _{REF} – 0.1	V _{REF} + 0.1
HSTL_I_18	1.7	1.8	1.9	0.8	0.9	1.1	V _{REF} – 0.1	V _{REF} + 0.1
HSTL_II_18	1.7	1.8	1.9	-	0.9	-	V _{REF} – 0.1	V _{REF} + 0.1
HSTL_III_18	1.7	1.8	1.9	-	1.1	-	V _{REF} – 0.1	V _{REF} + 0.1
SSTL18_I	1.7	1.8	1.9	0.833	0.900	0.969	V _{REF} – 0.125	V _{REF} + 0.125
SSTL18_II	1.7	1.8	1.9	0.833	0.900	0.969	V _{REF} – 0.125	V _{REF} + 0.125
SSTL2_I	2.3	2.5	2.7	1.15	1.25	1.38	V _{REF} – 0.150	V _{REF} + 0.150
SSTL2_II	2.3	2.5	2.7	1.15	1.25	1.38	V _{REF} – 0.150	V _{REF} + 0.150
SSTL3_I	3.0	3.3	3.6	1.3	1.5	1.7	$V_{REF} - 0.2$	V _{REF} + 0.2
SSTL3_II	3.0	3.3	3.6	1.3	1.5	1.7	V _{REF} – 0.2	V _{REF} + 0.2

Notes:

Descriptions of the symbols used in this table are as follows: 1.

 V_{CCO} – the supply voltage for output drivers V_{REF} – the reference voltage for setting the input switching threshold

V_{IL} - the input voltage that indicates a Low logic level

VIH - the input voltage that indicates a High logic level

In general, the V_{CCO} rails supply only output drivers, not input circuits. The exceptions are for LVCMOS25 inputs when V_{CCAUX} = 3.3V range 2. and for PCI I/O standards.

For device operation, the maximum signal voltage (V_{IH} max) can be as high as V_{IN} max. See Table 8. З.

There is approximately 100 mV of hysteresis on inputs using LVCMOS33 and LVCMOS25 I/O standards. 4.

- All Dedicated pins (PROG_B, DONE, SUSPEND, TCK, TDI, TDO, and TMS) draw power from the V_{CCAUX} rail and use the LVCMOS25 or LVCMOS33 standard depending on V_{CCAUX} . The Dual-Purpose configuration pins use the LVCMOS25 standard before the User mode. When using these pins as part of a standard 2.5V configuration interface, apply 2.5V to the V_{CCO} lines of Banks 0, 1, and 2 at power-on as 5. well as throughout configuration.
- 6. For information on PCI IP solutions, see http://www.xilinx.com/products/design_resources/conn_central/protocols/pci_pcix.htm. The PCI IOSTANDARD is not supported on input-only pins. The PCIX IOSTANDARD is available and has equivalent characteristics, but no PCI-X IP is supported.

		Test Co	onditions	Logic Level Characteristics		
IOSTANDARD	Attribute	l _{OL} (mA)	l _{OH} (mA)	V _{OL} Max (V)	V _{OH} Min (V)	
LVTTL ⁽³⁾	2	2	-2	0.4	2.4	
	4	4	-4			
	6	6	-6			
	8	8	-8			
	12	12	-12			
	16	16	-16			
	24	24 ⁽⁶⁾	-24			
LVCMOS33 ⁽³⁾	2	2	-2	0.4	V _{CCO} – 0.4	
	4	4	-4			
	6	6	-6			
	8	8	-8			
	12	12	-12			
	16	16	-16 ⁽⁶⁾			
	24 ⁽⁴⁾	24	-24 ⁽⁶⁾			
LVCMOS25 ⁽³⁾	2	2	-2	0.4	V _{CCO} – 0.4	
	4	4	-4			
	6	6	-6			
	8	8	-8			
	12	12	-12			
	16 ⁽⁴⁾	16	-16 ⁽⁶⁾			
	24 ⁽⁴⁾	24 ⁽⁶⁾	-24 ⁽⁶⁾			
LVCMOS18 ⁽³⁾	2	2	-2	0.4	V _{CCO} – 0.4	
	4	4	-4			
	6	6	6 ⁽⁶⁾			
	8	8	-8			
	12 ⁽⁴⁾	12	-12 ⁽⁶⁾			
	16 ⁽⁴⁾	16	-16			
LVCMOS15 ⁽³⁾	2	2	-2	0.4	V _{CCO} – 0.4	
	4	4	-4			
	6	6	-6			
	8 ⁽⁴⁾	8	-8			
	12 ⁽⁴⁾	12	-12			
LVCMOS12 ⁽³⁾	2	2	-2	0.4	V _{CCO} – 0.4	
	4 ⁽⁴⁾	4	-4			
	6 ⁽⁴⁾	6	-6			
PCI33_3 ⁽⁵⁾		1.5	-0.5	10% V _{CCO}	90% V _{CCO}	

Table 12: DC Characteristics of User I/Os Using Single-Ended Standards

Table 12: DC Characteristics of User I/Os Using Single-Ended Standards (Cont'd)

	Test Co	onditions	Logic Level Characteristics		
	I _{OL} (mA)	I _{OH} (mA)	V _{OL} Max (V)	V _{OH} Min (V)	
HSTL_I ⁽⁴⁾	8	-8	0.4	V _{CCO} – 0.4	
HSTL_III ⁽⁴⁾	24 ⁽⁷⁾	-8	0.4	V _{CCO} – 0.4	
HSTL_I_18	8	-8	0.4	V _{CCO} – 0.4	
HSTL_II_18 ⁽⁴⁾	16	-16 ⁽⁷⁾	0.4	V _{CCO} – 0.4	
HSTL_III_18	24 ⁽⁷⁾	-8	0.4	V _{CCO} – 0.4	
SSTL18_I	6.7	-6.7	V _{TT} – 0.475	V _{TT} + 0.475	
SSTL18_II ⁽⁴⁾	13.4	-13.4	V _{TT} – 0.475	V _{TT} + 0.475	
SSTL2_I	8.1	-8.1	V _{TT} – 0.61	V _{TT} + 0.61	
SSTL2_II ⁽⁴⁾	16.2	-16.2	V _{TT} – 0.80	V _{TT} + 0.80	
SSTL3_I	8	-8	V _{TT} – 0.6	V _{TT} + 0.6	
SSTL3_II	16	-16	V _{TT} – 0.8	V _{TT} + 0.8	

Notes:

1. The numbers in this table are based on the conditions set forth in Table 8 and Table 11.

2. Descriptions of the symbols used in this table are as follows:

 I_{OL} — the output current condition under which V_{OL} is tested I_{OH} — the output current condition under which V_{OH} is tested V_{OL} — the output voltage that indicates a Low logic level

 $\begin{array}{l} V_{OH} & - \mbox{ the output voltage that indicates a High logic level} \\ V_{IL} & - \mbox{ the input voltage that indicates a Low logic level} \\ V_{IH} & - \mbox{ the input voltage that indicates a High logic level} \end{array}$

 V_{CCO} — the supply voltage for output drivers V_{REF} — the reference voltage for setting the input switching threshold V_{TT} — the voltage applied to a resistor termination

З. For the LVCMOS and LVTTL standards: the same V_{OL} and V_{OH} limits apply for both the Fast and Slow slew attributes.

These higher-drive output standards are supported only on FPGA banks 1 and 3. Inputs are unrestricted. See the chapter "Using I/O 4. Resources" in UG331

Tested according to the relevant PCI specifications. For information on PCI IP solutions, see 5. http://www.xilinx.com/products/design_resources/conn_central/protocols/pci_pcix.htm. The PCI IOSTANDARD is not supported on input-only pins. The PCIX IOSTANDARD is available and has equivalent characteristics, but no PCI-X IP is supported.

- 6. DE-RATE by 20% for T_J above 100°C
- DE-RATE by 5% for T₁ above 100°C 7.

Differential I/O Standards

Differential Input Pairs

Figure 4: Differential Input Voltages

	Vcc	o for Drive	rs ⁽¹⁾	V _{ID}			V _{ICM} ⁽²⁾		
	Min (V)	Nom (V)	Max (V)	Min (mV)	Nom (mV)	Max (mV)	Min (V)	Nom (V)	Max (V)
LVDS_25 ⁽³⁾	2.25	2.5	2.75	100	350	600	0.3	1.25	2.35
LVDS_33 ⁽³⁾	3.0	3.3	3.6	100	350	600	0.3	1.25	2.35
BLVDS_25 ⁽⁴⁾	2.25	2.5	2.75	100	300	-	0.3	1.3	2.35
MINI_LVDS_25 ⁽³⁾	2.25	2.5	2.75	200	-	600	0.3	1.2	1.95
MINI_LVDS_33 ⁽³⁾	3.0	3.3	3.6	200	-	600	0.3	1.2	1.95
LVPECL_25 ⁽⁵⁾		Inputs Only		100	800	1000	0.3	1.2	1.95
LVPECL_33 ⁽⁵⁾		Inputs Only		100	800	1000	0.3	1.2	2.8 ⁽⁶⁾
RSDS_25 ⁽³⁾	2.25	2.5	2.75	100	200	_	0.3	1.2	1.5
RSDS_33 ⁽³⁾	3.0	3.3	3.6	100	200	-	0.3	1.2	1.5
TMDS_33 ^(3,4,7)	3.14	3.3	3.47	150	-	1200	2.7	-	3.23
PPDS_25 ⁽³⁾	2.25	2.5	2.75	100	-	400	0.2	-	2.3
PPDS_33 ⁽³⁾	3.0	3.3	3.6	100	-	400	0.2	-	2.3
DIFF_HSTL_I_18	1.7	1.8	1.9	100	-	_	0.8	-	1.1
DIFF_HSTL_II_18 ⁽⁸⁾	1.7	1.8	1.9	100	-	-	0.8	-	1.1
DIFF_HSTL_III_18	1.7	1.8	1.9	100	-	-	0.8	-	1.1
DIFF_HSTL_I	1.4	1.5	1.6	100	-	_	0.68		0.9
DIFF_HSTL_III	1.4	1.5	1.6	100	-	_	_	0.9	_
DIFF_SSTL18_I	1.7	1.8	1.9	100	-	_	0.7	-	1.1
DIFF_SSTL18_II ⁽⁸⁾	1.7	1.8	1.9	100	-	-	0.7	-	1.1
DIFF_SSTL2_I	2.3	2.5	2.7	100	-	_	1.0	-	1.5
DIFF_SSTL2_II ⁽⁸⁾	2.3	2.5	2.7	100	-	-	1.0	-	1.5
DIFF_SSTL3_I	3.0	3.3	3.6	100	-	-	1.1	-	1.9
DIFF_SSTL3_II	3.0	3.3	3.6	100	-	-	1.1	-	1.9

Table 13: Recommended Operating Conditions for User I/Os Using Differential Signal Standards

Notes:

1. The V_{CCO} rails supply only differential output drivers, not input circuits.

2. V_{ICM} must be less than V_{CCAUX}.

 These true differential output standards are supported only on FPGA banks 0 and 2. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331.

4. See External Termination Requirements for Differential I/O, page 16.

- 5. LVPECL is supported on inputs only, not outputs. LVPECL_33 requires V_{CCAUX}=3.3V ± 10%.
- 6. LVPECL_33 maximum V_{ICM} = the lower of 2.8V or V_{CCAUX} (V_{ID} / 2)
- 7. Requires V_{CCAUX} = 3.3V ± 10% for inputs. (V_{CCAUX} 300 mV) \leq V_{ICM} \leq (V_{CCAUX} 37 mV)

 These higher-drive output standards are supported only on FPGA banks 1 and 3. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331.

 V_{REF} inputs are used for the DIFF_SSTL and DIFF_HSTL standards. The V_{REF} settings are the same as for the single-ended versions in Table 11. Other differential standards do not use V_{REF}

Differential Output Pairs

Figure 5: Differential Output Voltages

Table	14: DC	Characteristics	of User	I/Os Using	Differential	Signal	Standards
-------	--------	-----------------	---------	------------	--------------	--------	-----------

	V _{OD}				V _{OCM}		V _{OH}	V _{OL}
IOSTANDARD Allindule	Min (mV)	Typ (mV)	Max (mV)	Min (V)	Typ (V)	Max (V)	Min (V)	Max (V)
LVDS_25	247	350	454	1.125	-	1.375	-	-
LVDS_33	247	350	454	1.125	-	1.375	-	-
BLVDS_25	240	350	460	-	1.30	-	-	-
MINI_LVDS_25	300	-	600	1.0	-	1.4	-	-
MINI_LVDS_33	300	-	600	1.0	-	1.4	-	-
RSDS_25	100	-	400	1.0	-	1.4	-	-
RSDS_33	100	-	400	1.0	-	1.4	-	-
TMDS_33	400	-	800	V _{CCO} - 0.405	-	V _{CCO} - 0.190	-	-
PPDS_25	100	-	400	0.5	0.8	1.4	-	-
PPDS_33	100	-	400	0.5	0.8	1.4	-	-
DIFF_HSTL_I_18	-	-	-	-	-	-	$V_{CCO} - 0.4$	0.4
DIFF_HSTL_II_18	-	-	-	_	-	_	$V_{CCO} - 0.4$	0.4
DIFF_HSTL_III_18	-	-	-	_	-	_	$V_{CCO} - 0.4$	0.4
DIFF_HSTL_I	-	-	-	_	-	_	$V_{CCO} - 0.4$	0.4
DIFF_HSTL_III	-	-	-	_	-	_	$V_{CCO} - 0.4$	0.4
DIFF_SSTL18_I	-	-	-	_	-	_	V _{TT} + 0.475	V _{TT} – 0.475
DIFF_SSTL18_II	-	-	-	_	-	_	V _{TT} + 0.475	V _{TT} – 0.475
DIFF_SSTL2_I	-	-	-	_	-	_	V _{TT} + 0.61	V _{TT} – 0.61
DIFF_SSTL2_II	-	-	-	-	-	_	V _{TT} + 0.81	V _{TT} – 0.81
DIFF_SSTL3_I	-	-	-	_	_	_	V _{TT} + 0.6	V _{TT} – 0.6
DIFF_SSTL3_II	-	-	-	_	_	_	V _{TT} + 0.8	V _{TT} – 0.8

Notes:

1. The numbers in this table are based on the conditions set forth in Table 8 and Table 13.

2. See External Termination Requirements for Differential I/O, page 16.

3. Output voltage measurements for all differential standards are made with a termination resistor (R_T) of 100Ω across the N and P pins of the differential signal pair.

 At any given time, no more than two of the following differential output standards can be assigned to an I/O bank: LVDS_25, RSDS_25, MINI_LVDS_25, PPDS_25 when V_{CCO}=2.5V, or LVDS_33, RSDS_33, MINI_LVDS_33, TMDS_33, PPDS_33 when V_{CCO} = 3.3V

External Termination Requirements for Differential I/O

LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards

BLVDS_25 I/O Standard

Figure 7: External Termination Resistors for BLVDS_25 I/O Standard

TMDS_33 I/O Standard

Figure 8: External Input Resistors Required for TMDS_33 I/O Standard

Pin-to-Pin Setup and Hold Times

Table 19: Pin-to-Pin Setup and Hold Times for the IOB Input Path (System Synchronous)

Symbol	Description	Conditions	Davias	Speed Grade: -4	Unito
Symbol	Description	Conditions	Device	Min	Units
Setup Times					
T _{PSDCM}	When writing to the Input Flip-Flop (IFF), the	LVCMOS25 ⁽²⁾ ,	XA3S200A	2.84	ns
	to the active transition at a Global Clock pin.	$\frac{\text{IFD}_\text{DELAY}_\text{VALUE} = 0}{\text{with DCM}^{(4)}}$	XA3S400A	2.68	ns
	The DCM is in use. No Input Delay is		XA3S700A	2.57	ns
	programmed.		XA3S1400A	2.17	ns
T _{PSFD}	When writing to IFF, the time from the setup	LVCMOS25 ⁽²⁾ , IFD_DELAY_VALUE = 5, without DCM	XA3S200A	2.76	ns
c a u	at the Global Clock pin. The DCM is not in use. The Input Delay is programmed.		XA3S400A	2.60	ns
			XA3S700A	2.63	ns
			XA3S1400A	2.41	ns
Hold Times					
T _{PHDCM}	When writing to IFF, the time from the active	LVCMOS25 ⁽³⁾ ,	XA3S200A	-0.52	ns
	when data must be held at the Input pin. The	IFD_DELAY_VALUE = 0, with DCM ⁽⁴⁾	XA3S400A	-0.29	ns
	DCM is in use. No Input Delay is		XA3S700A	-0.12	ns
	programmed.		XA3S1400A	0.00	ns
T _{PHFD}	When writing to IFF, the time from the active	LVCMOS25 ⁽³⁾ ,	XA3S200A	-0.56	ns
	transition at the Global Clock pin to the point when data must be held at the Input pin. The DCM is not in use. The Input Delay is	IFD_DELAY_VALUE = 5, without DCM	XA3S400A	-0.42	ns
			XA3S700A	-0.75	ns
			XA3S1400A	-0.69	ns

Notes:

- 1. The numbers in this table are tested using the methodology presented in Table 26 and are based on the operating conditions set forth in Table 8 and Table 11.
- 2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, subtract the appropriate adjustment from Table 22. If this is true of the data Input, add the appropriate Input adjustment from the same table.
- 3. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, add the appropriate Input adjustment from Table 22. If this is true of the data Input, subtract the appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data before the clock's active edge.
- 4. DCM output jitter is included in all measurements.

Input Setup and Hold Times

Table 20: Setup and Hold Times for the IOB Input Path

Symbol	Description	Oraditions	IFD_	Davias	Speed Grade: -4				
	Description	Conditions	VALUE	Device	Min	Units			
Setup Times									
T _{IOPICK}	Time from the setup of data at the	LVCMOS25 ⁽²⁾	0	XA3S200A	1.81	ns			
	the ICLK input of the Input			XA3S400A	1.51	ns			
	Flip-Flop (IFF). No Input Delay is programmed.			XA3S700A	1.51	ns			
				XA3S1400A	1.74	ns			

Input Timing Adjustments

Table 22: Input Timing Adjustments by IOSTANDARD

Convert Input Time from I.VCMOS25 to the Following Signal Standard (IOSTANDARD)	Add the Adjustment Below	Unite	
Convert input Time from EVCMO325 to the Following Signal Standard (IOSTANDARD)	Speed Grade: -4	Units	
Single-Ended Standards			
LVTTL	0.62	ns	
LVCMOS33	0.54	ns	
LVCMOS25	0	ns	
LVCMOS18	0.83	ns	
LVCMOS15	0.60	ns	
LVCMOS12	0.31	ns	
PCI33_3	0.45	ns	
HSTL_I	0.72	ns	
HSTL_III	0.85	ns	
HSTL_I_18	0.69	ns	
HSTL_II_18	0.83	ns	
HSTL_III_18	0.79	ns	
SSTL18_I	0.71	ns	
SSTL18_II	0.71	ns	
SSTL2_I	0.71	ns	
SSTL2_II	0.71	ns	
SSTL3_I	0.78	ns	
SSTL3_II	0.78	ns	
Differential Standards			
LVDS_25	0.79	ns	
LVDS_33	0.79	ns	
BLVDS_25	0.79	ns	
MINI_LVDS_25	0.84	ns	
MINI_LVDS_33	0.84	ns	
LVPECL_25	0.80	ns	
LVPECL_33	0.80	ns	
RSDS_25	0.83	ns	
RSDS_33	0.83	ns	
TMDS_33	0.80	ns	
PPDS_25	0.81	ns	
PPDS_33	0.81	ns	
DIFF_HSTL_I_18	0.80	ns	
DIFF_HSTL_II_18	0.98	ns	
DIFF_HSTL_III_18	1.05	ns	
DIFF_HSTL_I	0.77	ns	
DIFF_HSTL_III	1.05	ns	
DIFF_SSTL18_I	0.76	ns	
DIFF_SSTL18_II	0.76	ns	
DIFF_SSTL2_I	0.77	ns	
DIFF_SSTL2_II	0.77	ns	
DIFF_SSTL3_I	1.06	ns	
DIFF_SSTL3_II	1.06	ns	

Notes:

1. The numbers in this table are tested using the methodology presented in Table 26 and are based on the operating conditions set forth in Table 8, Table 11, and Table 13.

2. These adjustments are used to convert input path times originally specified for the LVCMOS25 standard to times that correspond to other signal standards.

Table 26: Test Methods for Timing Measurement at I/Os

Signal Standard	Inputs			Out	Inputs and Outputs	
(IOSTANDARD)	V _{REF} (V)	V _L (V)	V _H (V)	R_T (Ω)	V _T (V)	V _M (V)
Single-Ended	!					
LVTTL	_	0	3.3	1M	0	1.4
LVCMOS33	_	0	3.3	1M	0	1.65
LVCMOS25	-	0	2.5	1M	0	1.25
LVCMOS18	-	0	1.8	1M	0	0.9
LVCMOS15	_	0	1.5	1M	0	0.75
LVCMOS12	-	0	1.2	1M	0	0.6
PCI33_3 Rising	-	Note 3	Note 3	25	0	0.94
Falling	-			25	3.3	2.03
HSTL_I	0.75	V _{REF} – 0.5	V _{REF} + 0.5	50	0.75	V _{REF}
HSTL_III	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	1.5	V _{REF}
HSTL_I_18	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
HSTL_II_18	0.9	V _{REF} – 0.5	V _{REF} + 0.5	25	0.9	V _{REF}
HSTL_III_18	1.1	V _{REF} – 0.5	V _{REF} + 0.5	50	1.8	V _{REF}
SSTL18_I	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
SSTL18_II	0.9	V _{REF} – 0.5	V _{REF} + 0.5	25	0.9	V _{REF}
SSTL2_I	1.25	V _{REF} – 0.75	V _{REF} + 0.75	50	1.25	V _{REF}
SSTL2_II	1.25	V _{REF} – 0.75	V _{REF} + 0.75	25	1.25	V _{REF}
SSTL3_I	1.5	V _{REF} – 0.75	V _{REF} + 0.75	50	1.5	V _{REF}
SSTL3_II	1.5	V _{REF} – 0.75	V _{REF} + 0.75	25	1.5	V _{REF}
Differential						
LVDS_25	-	V _{ICM} – 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}
LVDS_33	-	V _{ICM} – 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}
BLVDS_25	-	V _{ICM} – 0.125	V _{ICM} + 0.125	1M	0	V _{ICM}
MINI_LVDS_25	-	V _{ICM} – 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}
MINI_LVDS_33	-	V _{ICM} - 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}
LVPECL_25	-	V _{ICM} - 0.3	V _{ICM} + 0.3	N/A	N/A	V _{ICM}
LVPECL_33	-	V _{ICM} - 0.3	V _{ICM} + 0.3	N/A	N/A	V _{ICM}
RSDS_25	-	V _{ICM} - 0.1	V _{ICM} + 0.1	50	1.2	V _{ICM}
RSDS_33	-	V _{ICM} - 0.1	V _{ICM} + 0.1	50	1.2	V _{ICM}
TMDS_33	-	V _{ICM} - 0.1	V _{ICM} + 0.1	50	3.3	V _{ICM}
PPDS_25	-	V _{ICM} - 0.1	V _{ICM} + 0.1	50	0.8	V _{ICM}
PPDS_33	-	V _{ICM} - 0.1	V _{ICM} + 0.1	50	0.8	V _{ICM}
DIFF_HSTL_I	0.75	V _{REF} – 0.5	V _{REF} + 0.5	50	0.75	V _{REF}
DIFF_HSTL_III	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	1.5	V _{REF}
DIFF_HSTL_I_18	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
DIFF_HSTL_II_18	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
DIFF_HSTL_III_18	1.1	V _{REF} – 0.5	V _{REF} + 0.5	50	1.8	V _{REF}
DIFF_SSTL18_I	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}

Simultaneously Switching Output Guidelines

This section provides guidelines for the recommended maximum allowable number of Simultaneous Switching Outputs (SSOs). These guidelines describe the maximum number of user I/O pins of a given output signal standard that should simultaneously switch in the same direction, while maintaining a safe level of switching noise. Meeting these guidelines for the stated test conditions ensures that the FPGA operates free from the adverse effects of ground and power bounce.

Ground or power bounce occurs when a large number of outputs simultaneously switch in the same direction. The output drive transistors all conduct current to a common voltage rail. Low-to-High transitions conduct to the V_{CCO} rail; High-to-Low transitions conduct to the GND rail. The resulting cumulative current transient induces a voltage difference across the inductance that exists between the die pad and the power supply or ground return. The inductance is associated with bonding wires, the package lead frame, and any other signal routing inside the package. Other variables contribute to SSO noise levels, including stray inductance on the PCB as well as capacitive loading at receivers. Any SSO-induced voltage consequently affects internal switching noise margins and ultimately signal quality.

Table 27 and Table 28 provide the essential SSO guidelines. For each device/package combination, Table 27 provides the number of equivalent V_{CCO} /GND pairs. For each output signal standard and drive strength, Table 28 recommends the maximum number of SSOs, switching in the same direction, allowed per V_{CCO} /GND pair within an I/O bank. The guidelines in Table 28 are categorized by package style, slew rate, and output drive current. Furthermore, the number of SSOs is specified by I/O bank. Generally, the left and right I/O banks (Banks 1 and 3) support higher output drive current.

Multiply the appropriate numbers from Table 27 and Table 28 to calculate the maximum number of SSOs allowed within an I/O bank. Exceeding these SSO guidelines might result in increased power or ground bounce, degraded signal integrity, or increased system jitter.

SSO_{MAX}/IO Bank = Table 27 x Table 28

The recommended maximum SSO values assumes that the FPGA is soldered on the printed circuit board and that the board uses sound design practices. The SSO values do not apply for FPGAs mounted in sockets, due to the lead inductance introduced by the socket.

Ball grid array packages are recommended for applications with a large number of simultaneously switching outputs.

Dovico	Package Style (Pb-free)						
Device	FTG256	FGG400	FGG484				
XA3S200A	4	-	-				
XA3S400A	4	5	-				
XA3S700A	-	5	5				
XA3S1400A	-	-	6				

Table 27: Equivalent V_{CCO}/GND Pairs per Bank

Signal Standard (IOSTANDADD)		Package Type: FTG256, FGG400, FGG484			
Signal Stand			Top, Bottom (Banks 0,2)	Left, Right (Banks 1,3)	
Single-Ended Standards					
LVTTL	Slow	2	60	60	
		4	41	41	
		6	29	29	
		8	22	22	
		12	13	13	
		16	11	11	
		24	9	9	
	Fast	2	10	10	
		4	6	6	
		6	5	5	
		8	3	3	
		12	3	3	
		16	3	3	
		24	2	2	
	QuietIO	2	80	80	
		4	48	48	
		6	36	36	
		8	27	27	
		12	16	16	
		16	13	13	
		24	12	12	
LVCMOS33	Slow	2	76	76	
		4	46	46	
		6	27	27	
		8	20	20	
		12	13	13	
		16	10	10	
		24	-	9	
	Fast	2	10	10	
		4	8	8	
		6	5	5	
		8	4	4	
		12	4	4	
		16	2	2	
		24	-	2	
	QuietIO	2	76	76	
		4	46	46	
		6	32	32	
		8	26	26	
		12	18	18	
		16	14	14	
		24	-	10	

Table 28: Recommended Number of Simultaneously Switching Outputs per V_{CCO}/GND Pair (V_{CCAUX}=3.3V)

Configurable Logic Block (CLB) Timing

Table 29: CLB (SLICEM) Timing

Symbol	Description		Grade: -4	4		
Symbol			Max	Units		
Clock-to-Output Tim	les					
Т _{СКО}	When reading from the FFX (FFY) Flip-Flop, the time from the active transition at the CLK input to data appearing at the XQ (YQ) output	-	0.68	ns		
Setup Times						
T _{AS}	Time from the setup of data at the F or G input to the active transition at the CLK input of the CLB $% \left({{\rm{T}}_{\rm{T}}} \right)$	0.36	-	ns		
T _{DICK}	Time from the setup of data at the BX or BY input to the active transition at the CLK input of the CLB $% \left({{\rm{T}}_{\rm{T}}} \right)$	1.88	-	ns		
Hold Times						
T _{AH}	Time from the active transition at the CLK input to the point where data is last held at the ${\sf F}$ or ${\sf G}$ input	0	-	ns		
T _{CKDI}	Time from the active transition at the CLK input to the point where data is last held at the BX or BY input	0	-	ns		
Clock Timing						
т _{сн}	The High pulse width of the CLB's CLK signal	0.75	-	ns		
T _{CL}	The Low pulse width of the CLK signal	0.75	-	ns		
F _{TOG}	Toggle frequency (for export control)	0	667	MHz		
Propagation Times	Propagation Times					
T _{ILO}	The time it takes for data to travel from the CLB's F (G) input to the X (Y) output	-	0.71	ns		
Set/Reset Pulse Wid	lth					
T _{RPW_CLB}	The minimum allowable pulse width, High or Low, to the CLB's SR input	1.61	-	ns		

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8.

Symbol	Description		Speed Grade: -4				
Symbol			Max	Units			
Clock-to-Output Tim	nes						
Т _{SHCKO}	Time from the active edge at the CLK input to data appearing on the distributed RAM output	-	2.01	ns			
Setup Times			1				
T _{DS}	Setup time of data at the BX or BY input before the active transition at the CLK input of the distributed RAM	-0.02	-	ns			
T _{AS}	Setup time of the F/G address inputs before the active transition at the CLK input of the distributed RAM	0.36	-	ns			
T _{WS}	Setup time of the write enable input before the active transition at the CLK input of the distributed RAM	0.59	-	ns			
Hold Times			1				
T _{DH}	Hold time of the BX and BY data inputs after the active transition at the CLK input of the distributed RAM	0.13	-	ns			
T _{AH,} T _{WH}	Hold time of the F/G address inputs or the write enable input after the active transition at the CLK input of the distributed RAM	0.01	-	ns			
Clock Pulse Width	Clock Pulse Width						
T _{WPH} , T _{WPL}	Minimum High or Low pulse width at CLK input	1.01	-	ns			

Table 30: CLB Distributed RAM Switching Characteristics

Table 31: CLB Shift Register Switching Characteristics

Symbol	Description		Speed Grade: -4			
Symbol			Max	Units		
Clock-to-Output Tin	nes					
T _{REG}	Time from the active edge at the CLK input to data appearing on the shift register output	-	4.82	ns		
Setup Times						
T _{SRLDS}	Setup time of data at the BX or BY input before the active transition at the CLK input of the shift register	0.18	-	ns		
Hold Times	Hold Times					
T _{SRLDH}	Hold time of the BX or BY data input after the active transition at the CLK input of the shift register	0.16	-	ns		
Clock Pulse Width	Clock Pulse Width					
T _{WPH} , T _{WPL}	Minimum High or Low pulse width at CLK input	1.01	-	ns		

Suspend Mode Timing

Table 43: Suspend Mode Timing Parameters

Symbol	Description	Min	Тур	Max	Units			
Entering Suspend Me	Intering Suspend Mode							
T _{SUSPENDHIGH_AWAKE}	Rising edge of SUSPEND pin to falling edge of AWAKE pin without glitch filter (<i>suspend_filter:No</i>)	_	7	_	ns			
T _{SUSPENDFILTER}	Adjustment to SUSPEND pin rising edge parameters when glitch filter enabled (<i>suspend_filter:Yes</i>)	+160	+300	+600	ns			
T _{SUSPEND_GTS}	Rising edge of SUSPEND pin until FPGA output pins drive their defined SUSPEND constraint behavior	_	10	_	ns			
T _{SUSPEND_GWE}	Rising edge of SUSPEND pin to write-protect lock on all writable clocked elements	_	<5	_	ns			
T _{SUSPEND_DISABLE}	Rising edge of the SUSPEND pin to FPGA input pins and interconnect disabled	_	340	Ι	ns			
Exiting Suspend Mod	de							
T _{SUSPENDLOW_AWAKE}	Falling edge of the SUSPEND pin to rising edge of the AWAKE pin. Does not include DCM lock time.	-	4 to 108	-	μs			
T _{SUSPEND_ENABLE}	Falling edge of the SUSPEND pin to FPGA input pins and interconnect re-enabled	_	3.7 to 109	-	μs			
T _{AWAKE_GWE1}	Rising edge of the AWAKE pin until write-protect lock released on all writable clocked elements, using <i>sw_clk:InternalClock</i> and <i>sw_gwe_cycle:1</i> .	_	67	_	ns			
T _{AWAKE_GWE512}	Rising edge of the AWAKE pin until write-protect lock released on all writable clocked elements, using <i>sw_clk:InternalClock</i> and <i>sw_gwe_cycle:512</i> .	_	14	-	μs			
T _{AWAKE_GTS1}	Rising edge of the AWAKE pin until outputs return to the behavior described in the FPGA application, using <i>sw_clk:InternalClock</i> and <i>sw_gts_cycle:1</i> .	_	57	-	ns			
T _{AWAKE_GTS512}	Rising edge of the AWAKE pin until outputs return to the behavior described in the FPGA application, using <i>sw_clk:InternalClock</i> and <i>sw_gts_cycle:512</i> .	-	14	_	μs			

Notes:

1. These parameters based on characterization.

2. For information on using the Spartan-3A Suspend feature, see XAPP480: Using Suspend Mode in Spartan-3 Generation FPGAs.

Symbol	Description	Requirement	Units
T _{CCS}	SPI serial Flash PROM chip-select time	$T_{CCS} \leq T_{MCCL1} - T_{CCO}$	ns
T _{DSU}	SPI serial Flash PROM data input setup time	$T_{DSU} \leq T_{MCCL1} - T_{CCO}$	ns
T _{DH}	SPI serial Flash PROM data input hold time	T _{DH} ≤ T _{MCCH1}	ns
Τ _V	SPI serial Flash PROM data clock-to-output time	T _V ≤ T _{MCCLn} −T _{DCC}	ns
f _C or f _R	Maximum SPI serial Flash PROM clock frequency (also depends on specific read command used)	$f_C \ge \frac{1}{T_{CCLKn(min)}}$	MHz

Table 52: Configuration Timing Requirements for Attached SPI Serial Flash

Notes:

1. These requirements are for successful FPGA configuration in SPI mode, where the FPGA generates the CCLK signal. The post-configuration timing can be different to support the specific needs of the application loaded into the FPGA.

2. Subtract additional printed circuit board routing delay as required by the application.

IEEE 1149.1/1532 JTAG Test Access Port Timing

Table	55:	Timina	for	the	JTAG	Test	Access	Port
rubio	00.				01/10		/.00000	

Symbol	Description			Speed Grade: -4		
Symbol		Description	Min	Max	Units	
Clock-to-	Output Times					
T _{TCKTDO}	The time from the falling transition on t	he TCK pin to data appearing at the TDO pin	1.0	11.0	ns	
Setup Tin	nes					
T _{TDITCK}	The time from the setup of data at the	All devices and functions except those shown below	7.0	-	ns	
	TCK pin	Boundary scan commands (INTEST, EXTEST, SAMPLE) on XA3S700A and XA3S1400A FPGAs	11.0			
T _{TMSTCK}	The time from the setup of a logic leve	7.0	-	ns		
Hold Tim	es					
T _{TCKTDI}	The time from the rising transition at	All functions except those shown below	0	-	ns	
	last held at the TDI pin	Configuration commands (CFG_IN, ISC_PROGRAM)	2.0			
T _{TCKTMS}	The time from the rising transition at the TCK pin to the point when a logic level is last held at the TMS pin		0	-	ns	
Clock Tin	ning					
т _{ссн}	The High pulse width at the TCK pin	All functions except ISC_DNA command	5	-	ns	
T _{CCL}	The Low pulse width at the TCK pin		5	-	ns	
T _{CCHDNA}	The High pulse width at the TCK pin	During ISC_DNA command	10	10,000	ns	
T _{CCLDNA}	The Low pulse width at the TCK pin		10	10,000	ns	
F _{TCK}	Frequency of the TCK signal	All operations on XA3S200A and XA3S400A FPGAs and for BYPASS or HIGHZ instructions on all FPGAs	0	33	MHz	
		All operations on XA3S700A and XA3S1400A FPGAs, except for BYPASS or HIGHZ instructions	1	20		

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8.