

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	51
Program Memory Size	768KB (768K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103rft6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F103xF and STM32F103xG XL-density performance line microcontrollers. For more details on the whole STMicroelectronics STM32F103xF/G family, please refer to *Section 2.2: Full compatibility throughout the family*.

The XL-density STM32F103xF/G datasheet should be read in conjunction with the STM32F10xxx reference manual.

For information on programming, erasing and protection of the internal Flash memory please refer to the *STM32F10xxx* Flash programming manual. The reference and Flash programming manuals are both available from the STMicroelectronics website *www.st.com*.

For information on the Cortex[®]-M3 core please refer to the Cortex[®]-M3 Technical Reference Manual, available from the *www.arm.com* website at the following address: *http://infocenter.arm.com*.

Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.

Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0.
- Programmable clock source

2.3.19 I²C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes.

They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

2.3.20 Universal synchronous/asynchronous receiver transmitters (USARTs)

The STM32F103xF and STM32F103xG performance line embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4 and UART5).

These five interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability.

The USART1 interface is able to communicate at speeds of up to 4.5 Mbit/s. The other available interfaces communicate at up to 2.25 Mbit/s.

USART1, USART2 and USART3 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller except for UART5.

Figure 4. STM32F103xF/G performance line LQFP144 pinout

1. The above figure shows the package top view.

Figure 5. STM32F103xF/G performance line LQFP100 pinout

1. The above figure shows the package top view.

	Pir	าร			-			Alternate function	ns ⁽⁴⁾
LFBGA144	LQFP64	LQFP100	LQFP144	Pin name	Type ⁽¹⁾	I / O level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
A9	-	88	123	PD7	I/O	FT	PD7	FSMC_NE1 / FSMC_NCE2	USART2_CK
E8	-	-	124	PG9	I/O	FT	PG9	FSMC_NE2 / FSMC_NCE3	-
D8	-	-	125	PG10	I/O	FT	PG10	FSMC_NCE4_1 / FSMC_NE3	-
C8	-	I	126	PG11	I/O	FT	PG11	FSMC_NCE4_2	-
B8	-	I	127	PG12	I/O	FT	PG12	FSMC_NE4	-
D7	-	I	128	PG13	I/O	FT	PG13	FSMC_A24	-
C7	-	-	129	PG14	I/O	FT	PG14	FSMC_A25	-
E6	-	-	130	V _{SS_11}	S		V _{SS_11}	-	-
F6	-	-	131	V _{DD_11}	S		V _{DD_11}	-	-
B7	-	-	132	PG15	I/O	FT	PG15	-	-
A7	55	89	133	PB3	I/O	FT	JTDO	SPI3_SCK / I2S3_CK/	PB3/TRACESWO TIM2_CH2 / SPI1_SCK
A6	56	90	134	PB4	I/O	FT	NJTRST	SPI3_MISO	PB4/ TIM3_CH1 SPI1_MISO
B6	57	91	135	PB5	I/O		PB5	I2C1_SMBA / SPI3_MOSI / I2S3_SD	TIM3_CH2 / SPI1_MOSI
C6	58	92	136	PB6	I/O	FT	PB6	I2C1_SCL ⁽⁸⁾ / TIM4_CH1 ⁽⁸⁾	USART1_TX
D6	59	93	137	PB7	I/O	FT	PB7	l2C1_SDA ⁽⁸⁾ / FSMC_NADV / TIM4_CH2 ⁽⁸⁾	USART1_RX
D5	60	94	138	BOOT0	Ι		BOOT0	-	-
C5	61	95	139	PB8	I/O	FT	PB8	TIM4_CH3 ⁽⁸⁾ / SDIO_D4 / TIM10_CH1	I2C1_SCL/ CAN_RX
B5	62	96	140	PB9	I/O	FT	PB9	TIM4_CH4 ⁽⁸⁾ / SDIO_D5 / TIM11_CH1	I2C1_SDA / CAN_TX
A5	-	97	141	PE0	I/O	FT	PE0	TIM4_ETR / FSMC_NBL0	-
A4	-	98	142	PE1	I/O	FT	PE1	FSMC_NBL1	-
E5	63	99	143	V _{SS_3}	S		V _{SS_3}	-	-
F5	64	100	144	V _{DD_3}	S		V _{DD_3}	-	-

Table 5. STM32F103xF and STM32F103xG pin definitions (continued)

1. I = input, O = output, S = supply.

2. FT = 5 V tolerant.

3. Function availability depends on the chosen device.

DocID16554 Rev 4

Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals enabled

Low-speed internal (LSI) RC oscillator

Table 26. LS	l oscillator	characteristics	(1)
--------------	--------------	-----------------	----	---

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽²⁾	Frequency	30	40	60	kHz
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	85	μs
I _{DD(LSI)} ⁽³⁾	(3) LSI oscillator power consumption		0.65	1.2	μA

1. V_{DD} = 3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by characterization results, not tested in production.

3. Guaranteed by design, not tested in production.

Wakeup time from low-power mode

The wakeup times given in *Table 27* is measured on a wakeup phase with a 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

- Stop or Standby mode: the clock source is the RC oscillator
- Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Symbol Parameter		Тур	Unit
t _{WUSLEEP} ⁽¹⁾	1.8	μs	
t(1)	Wakeup from Stop mode (regulator in run mode)	3.6	116
'WUSTOP` '	Wakeup from Stop mode (regulator in low-power mode)	5.4	μο
t _{WUSTDBY} ⁽¹⁾	Wakeup from Standby mode	50	μs

Table 27. Low-power mode wakeup timings

1. The wakeup times are measured from the wakeup event to the point in which the user application code reads the first instruction.

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	3t _{HCLK} + 0.5	3t _{HCLK} + 1.5	ns
t _{v(NWE_NE)}	FSMC_NEx low to FSMC_NWE low	t _{HCLK} + 0.5	t _{HCLK} + 1.5	ns
t _{w(NWE)}	FSMC_NWE low time	t _{HCLK} – 0.5	t _{HCLK} + 1	ns
t _{h(NE_NWE)}	FSMC_NWE high to FSMC_NE high hold time	t _{HCLK} – 0.5	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	0	ns
t _{h(A_NWE)}	Address hold time after FSMC_NWE high	t _{HCLK}	-	ns
$t_{v(BL_NE)}$	FSMC_NEx low to FSMC_BL valid	-	1.5	ns
t _{h(BL_NWE)}	FSMC_BL hold time after FSMC_NWE high	t _{HCLK} – 1.5	-	ns
t _{v(Data_NE)}	FSMC_NEx low to Data valid	-	t _{HCLK}	ns
t _{h(Data_NWE)}	Data hold time after FSMC_NWE high	t _{HCLK}	-	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	_	0	ns
t _{w(NADV)}	FSMC_NADV low time	-	t _{HCLK} + 1.5	ns

Table 32. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings⁽¹⁾

1. C_L = 15 pF.

Table 33. Asynchronous	multiplexed read	timings
------------------------	------------------	---------

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time 7t _{HCLK} + 0.5 7		7t _{HCLK} + 2	
t _{v(NOE_NE)}	FSMC_NEx low to FSMC_NOE low	3t _{HCLK} + 0.5	3t _{HCLK} + 1.5	
t _{w(NOE)}	FSMC_NOE low time	4t _{HCLK} – 1	4t _{HCLK} + 1	
t _{h(NE_NOE)}	FSMC_NOE high to FSMC_NE high hold time	0.5	-	
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	0	
t _{v(NADV_NE)}	t _{v(NADV_NE)} FSMC_NEx low to FSMC_NADV low		1	
t _{w(NADV)}	w(NADV) FSMC_NADV low time		t _{HCLK} + 2	
t _{h(AD_NADV)}	FSMC_AD (address) valid hold time after FSMC NADV high		-	ns
t _{h(A_NOE)}	Address hold time after FSMC_NOE high		-	
t _{h(BL_NOE)}	(BL_NOE) FSMC_BL time after FSMC_NOE high		-	
t _{v(BL_NE)}	BL_NE) FSMC_NEx low to FSMC_BL valid		0	
t _{su(Data_NE)}	su(Data_NE) Data to FSMC_NEx high setup time		-	
t _{su(Data_NOE)}	su(Data_NOE) Data to FSMC_NOE high setup time		-	
t _{h(Data_NE)}	Data hold time after FSMC_NEx high	0	-	
t _{h(Data_NOE)}	Data hold time after FSMC_NOE high	0	-	

Figure 24. Asynchronous multiplexed PSRAM/NOR read waveforms

Table 34. Asynchronous multiplexed PSRAM/NOR read timings ''
--

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FSMC_NE low time 7t _{HCLK} + 0.5 7t _{HCLK} + 2		ns	
t _{v(NOE_NE)}	E_NE) FSMC_NEx low to FSMC_NOE low 3t _{HCLK} + 0.5 3t		3t _{HCLK} + 1.5	ns
t _{w(NOE)}	FSMC_NOE low time	4t _{HCLK} – 1	4t _{HCLK} + 1	ns
t _{h(NE_NOE)}	NOE) FSMC_NOE high to FSMC_NE high hold time 0.5 -		ns	
t _{v(A_NE)}	A_NE) FSMC_NEx low to FSMC_A valid		0	ns
t _{v(NADV_NE)}	(NADV_NE) FSMC_NEx low to FSMC_NADV low		1	ns
t _{w(NADV)}	FSMC_NADV low time	t _{HCLK} + 0.5	t _{HCLK} + 2	ns
t _{h(AD_NADV)}	AD_NADV) FSMC_AD (address) valid hold time after FSMC_NADV high		-	ns
t _{h(A_NOE)}	Address hold time after FSMC_NOE high t _{HCLK} -2 -		-	ns
t _{h(BL_NOE)}	FSMC_BL hold time after FSMC_NOE high	0.5	-	ns
t _{v(BL_NE)}	v(BL_NE) FSMC_NEx low to FSMC_BL valid		0	ns
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	4t _{HCLK} - 0.5	-	ns
t _{su(Data_NOE)}	Data to FSMC_NOE high setup time	4t _{HCLK} - 1	-	ns

Figure 33. PC Card/CompactFlash controller waveforms for attribute memory write access

1. Only data bits 0...7 are driven (bits 8...15 remains HiZ).

Figure 34. PC Card/CompactFlash controller waveforms for I/O space read access

5.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 44*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP144, T _A = +25 °C, f _{HCLK} = 72 MHz conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3$ V, LQFP144, T _A = +25 °C, f _{HCLK} = 72 MHz conforms to IEC 61000-4-4	4A

Table 44. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

		1 416 1		
	Symbol	Parameter	Conditions	Class
	LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

Table 47. Electrical sensitivities

5.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation).

The test results are given in Table 48

		Functional s			
Symbol	Description	Negative injection	Positive injection	Unit	
I _{INJ}	Injected current on OSC_IN32, OSC_OUT32, PA4, PA5, PC13	-0	+0	mA	
	Injected current on all FT pins	-5	+0		
	Injected current on any other pin	-5	+5		

Table 48. I/O current injection susceptibility

5.3.17 Communications interfaces

I²C interface characteristics

The STM32F103xF, STM32F103xD and STM32F103xGSTM32F103xF and STM32F103xG performance line $\rm I^2C$ interface meets the requirements of the standard $\rm I^2C$ communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 54*. Refer also to *Section 5.3.14*: I/O port *characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standard mode I ² C ⁽¹⁾⁽²⁾		Fast mode I ² C ⁽¹⁾⁽²⁾		Unit
		Min	Max	Min	Max	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	110
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	-	3450 ⁽³⁾	-	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300	
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs
Cb	Capacitive load for each bus line	-	400	-	400	pF
t _{SP}	Pulse width of the spikes that are suppressed by the analog filter for standard and fast mode	0	50 ⁽⁴⁾	0	50 ⁽⁴⁾	μs

Table 54. I²C characteristics

1. Guaranteed by design, not tested in production.

 f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve the fast mode I²C frequencies and it must be a multiple of 10 MHz in order to reach the I2C fast mode maximum clock speed of 400 kHz.

3. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region on the falling edge of SCL.

4. The minimum width of the spikes filtered by the analog filter is above $t_{\mbox{\scriptsize SP}}(\mbox{max}).$

- 1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$
- 2. Rs: Series protection resistors.
- 3. Rp: Pull-up resistors.
- 4. VDD_I2C : I2C bus supply

f (kHz)	I2C_CCR value		
	R_P = 4.7 k Ω		
400	0x801E		
300	0x8028		
200	0x803C		
100	0x00B4		
50	0x0168		
20	0x0384		

Table 55. SCL frequency (f_{PCLK1}= 36 MHz.,V_{DD I2C} = 3.3 V)⁽¹⁾⁽²⁾

1. R_P = External pull-up resistance, f_{SCL} = I²C speed.

For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application.

Symbol	Parameter	Conditions		Max. ⁽¹⁾	Unit			
Input leve	Input levels							
V _{DD}	USB operating voltage ⁽²⁾	-	3.0 ⁽³⁾	3.6	V			
V _{DI} ⁽⁴⁾	Differential input sensitivity	I(USB_DP, USB_DM)	0.2	-				
V _{CM} ⁽⁴⁾	Differential common mode range	Includes V _{DI} range	0.8	2.5	V			
V _{SE} ⁽⁴⁾	Single ended receiver threshold		1.3	2.0				
Output levels								
V _{OL}	Static output level low	${\sf R}_{\sf L}$ of 1.5 k Ω to 3.6 ${\sf V}^{(5)}$	-	0.3	V			
V _{OH}	Static output level high	${\sf R}_{\sf L}$ of 15 k Ω to ${\sf V}_{\sf SS}{}^{(5)}$	2.8	3.6				

Table 60. USB DC electrical characteristics

1. All the voltages are measured from the local ground potential.

2. To be compliant with the USB 2.0 full-speed electrical specification, the USB_DP (D+) pin should be pulled up with a 1.5 k Ω resistor to a 3.0-to-3.6 V voltage range.

3. The STM32F103xF/G USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V V_{DD} voltage range.

4. Guaranteed by characterization results, not tested in production.

5. $\ensuremath{\,R_L}$ is the load connected on the USB drivers

Driver characteristics ⁽¹⁾						
Symbol	Parameter	Conditions	Min	Max	Unit	
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns	
t _f	Fall Time ⁽²⁾	C _L = 50 pF	4	20	ns	
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%	
V _{CRS}	Output signal crossover voltage	-	1.3	2.0	V	

Table 61. USB: full-speed electrical characteristics

1. Guaranteed by design, not tested in production.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

5.3.18 CAN (controller area network) interface

Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

5.3.19 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 62* are preliminary values derived from tests performed under ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 10*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDA}	Power supply	-	2.4	-	3.6	V
V _{REF+}	Positive reference voltage	-	2.4	-	V _{DDA}	V
I _{VREF}	Current on the V _{REF} input pin	-	-	160	220 ⁽¹⁾	μA
f _{ADC}	ADC clock frequency	-	0.6	-	14	MHz
f _S ⁽²⁾	Sampling rate	-	0.05	-	1	MHz
f (2)	External trigger frequency	f _{ADC} = 14 MHz	-	-	823	kHz
'TRIG`		-	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	V
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> and <i>Table 63</i> for details	-	-	50	кΩ
R _{ADC} ⁽²⁾	Sampling switch resistance	-	-	-	1	кΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	-	8	pF
1 (2)	Calibration time	f _{ADC} = 14 MHz	5.9		μs	
'CAL`´		-	83			1/f _{ADC}
+ (2)	Injection trigger conversion latency	f _{ADC} = 14 MHz	-	-	0.214	μs
"Iat"		-	-	-	3 ⁽⁴⁾	1/f _{ADC}
t. (2)	Regular trigger conversion latency	f _{ADC} = 14 MHz	-	-	0.143	μs
'latr'		-	-	-	2 ⁽⁴⁾	1/f _{ADC}
+ (2)	Sampling time	f _{ADC} = 14 MHz	0.107	-	17.1	μs
^I S ^{'-'}		-	1.5	-	239.5	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time	-	0	0	1	μs
	Total conversion time	f _{ADC} = 14 MHz	1		18	μs
t _{CONV} ⁽²⁾	(including sampling time)	-	14 to 252 (t _S for sampling +12.5 for successive approximation)		1/f _{ADC}	

1. Guaranteed by characterization results, not tested in production.

Figure 63. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Device marking for LQFP144 package

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 64. LQFP144 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

