

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	51
Program Memory Size	768KB (768K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103rft6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3.10 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).

Several prescalers allow the configuration of the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz. The maximum allowed frequency of the low speed APB domain is 36 MHz. See *Figure 2* for details on the clock tree.

2.3.11 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from user Flash: you have an option to boot from any of two memory banks. By default, boot from Flash memory bank 1 is selected. You can choose to boot from Flash memory bank 2 by setting a bit in the option bytes.
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1.

2.3.12 Power supply schemes

- V_{DD} = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 2.0 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC or DAC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAT} = 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to Figure 10: Power supply scheme.

2.3.13 Power supply supervisor

The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to *Table 12: Embedded reset and power control block characteristics* for the values of $V_{POR/PDR}$ and V_{PVD} .

The DMA can be used with the main peripherals: SPI, I²C, USART, general-purpose, basic and advanced-control timers TIMx, DAC, I²S, SDIO and ADC.

2.3.17 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are forty-two 16-bit registers used to store 84 bytes of user application data when V_{DD} power is not present. They are not reset by a system or power reset, and they are not reset when the device wakes up from the Standby mode.

The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

2.3.18 Timers and watchdogs

The XL-density STM32F103xF/G performance line devices include up to two advancedcontrol timers, up to ten general-purpose timers, two basic timers, two watchdog timers and a SysTick timer.

Table 4 compares the features of the advanced-control, general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TIM1, TIM8	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	Yes
TIM2, TIM3, TIM4, TIM5	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TIM9, TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	No
TIM10, TIM11 TIM13, TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

Table 4. STM32F103xF and STM32F103xG timer feature comparison

	FSMC					
Pins	CF	CF/IDE	NOR/PSRAM/ SRAM	NOR/PSRAM Mux	NAND 16 bit	LQFP100 ⁽¹⁾
PD9	D14	D14	D14	DA14	D14	Yes
PD10	D15	D15	D15	DA15	D15	Yes
PD11	-	-	A16	A16	CLE	Yes
PD12	-	-	A17	A17	ALE	Yes
PD13	-	-	A18	A18		Yes
PD14	D0	D0	D0	DA0	D0	Yes
PD15	D1	D1	D1	DA1	D1	Yes
PG2	-	-	A12	-	-	-
PG3	-	-	A13	-	-	-
PG4	-	-	A14	-	-	-
PG5	-	-	A15	-	-	-
PG6	-	-	-	-	INT2	-
PG7	-	-	-	-	INT3	-
PD0	D2	D2	D2	DA2	D2	Yes
PD1	D3	D3	D3	DA3	D3	Yes
PD3	-	-	CLK	CLK	-	Yes
PD4	NOE	NOE	NOE	NOE	NOE	Yes
PD5	NWE	NWE	NWE	NWE	NWE	Yes
PD6	NWAIT	NWAIT	NWAIT	NWAIT	NWAIT	Yes
PD7	-	-	NE1	NE1	NCE2	Yes
PG9	-	-	NE2	NE2	NCE3	-
PG10	NCE4_1	NCE4_1	NE3	NE3	-	-
PG11	NCE4_2	NCE4_2	-	-	-	-
PG12	-	-	NE4	NE4	-	-
PG13	-	-	A24	A24	-	-
PG14	-	-	A25	A25	-	-
PB7	-	-	NADV	NADV	-	Yes
PE0	-	-	NBL0	NBL0	-	Yes
PE1	-	-	NBL1	NBL1	-	Yes

Table 6. FSMC pin definition (continued)

1. Ports F and G are not available in devices delivered in 100-pin packages.

5.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 11* are derived from tests performed under the ambient temperature condition summarized in *Table 10*.

Symbol	Parameter	Conditions	Min	Мах	Unit	
t	V _{DD} rise time rate	_	0	¥	ue/\/	
t _{VDD}	V _{DD} fall time rate	-	20	¥	μ5/ V	

Table 11. Operating conditions at power-up / power-down

5.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 12* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PLS[2:0]=000 (rising edge)	2.1	2.18	2.26	V
		PLS[2:0]=000 (falling edge)	2	2.08	2.16	V
		PLS[2:0]=001 (rising edge)	2.19	2.28	2.37	V
		PLS[2:0]=001 (falling edge)	2.09	2.18	2.27	V
V _{PVD}		PLS[2:0]=010 (rising edge)	2.28	2.38	2.48	V
		PLS[2:0]=010 (falling edge)	2.18	2.28	2.38	V
		PLS[2:0]=011 (rising edge)	2.38	2.48	2.58	V
	Programmable voltage	PLS[2:0]=011 (falling edge)	2.28	2.38	2.48	V
	White Parameter Condutions With Typ Wax VPVD PLS[2:0]=000 (rising edge) 2.1 2.18 2.26 PLS[2:0]=000 (falling edge) 2 2.08 2.16 PLS[2:0]=001 (rising edge) 2.09 2.18 2.27 PLS[2:0]=001 (rising edge) 2.09 2.18 2.28 2.37 PLS[2:0]=010 (rising edge) 2.28 2.38 2.48 2.26 2.38 2.48 PLS[2:0]=010 (rising edge) 2.28 2.38 2.48 2.58 2.38 2.48 PLS[2:0]=010 (rising edge) 2.38 2.48 2.58 2.58 2.58 PLS[2:0]=010 (rising edge) 2.38 2.48 2.58 2.58 2.58 PLS[2:0]=101 (rising edge) 2.47 2.58 2.69 2.56 2.68 2.79 PLS[2:0]=100 (rising edge) 2.57 2.68 2.79 2.51 2.56 2.68 2.79 PLS[2:0]=101 (rising edge) 2.66 2.78 2.9 2.51 2.55 2.56	PLS[2:0]=100 (rising edge)	2.47	2.58	2.69	V
		PLS[2:0]=100 (falling edge)	2.37	2.48	2.59	V
		V				
F F F F	PLS[2:0]=101 (falling edge)	2.47	2.58	2.69	V	
		PLS[2:0]=110 (rising edge)	2.66	2.78	2.9	V
		PLS[2:0]=110 (falling edge)	2.56	2.68	2.8	V
		PLS[2:0]=111 (rising edge)	2.76	2.88	3	V
		PLS[2:0]=111 (falling edge)	2.66	2.78	2.9	V
V _{PVDhyst} ⁽²⁾	PVD hysteresis	-	-	100	-	mV
M	Power on/power down	Falling edge	1.8 ⁽¹⁾	1.88	1.96	V
V POR/PDR	reset threshold	Rising edge	1.84	Typ Max I 2.18 2.26 1 2.08 2.16 1 2.28 2.37 1 2.18 2.27 1 2.38 2.48 1 2.38 2.48 1 2.38 2.48 1 2.38 2.48 1 2.48 2.58 1 2.58 2.69 1 2.68 2.79 1 2.68 2.9 1 2.78 2.9 1 2.78 2.9 1 1.00 - 1 1.92 2.0 1 1.92 2.0 1 40 - 2 2.55 4.5 1	V	
V _{PDRhyst} ⁽²⁾	PDR hysteresis	-	-	40	-	mV
T _{RSTTEMPO} ⁽²⁾	Reset temporization	-	1	2.5	4.5	mS

 Table 12. Embedded reset and power control block characteristics

1. The product behavior is guaranteed by design down to the minimum $V_{\text{POR/PDR}}$ value.

2. Guaranteed by design, not tested in production.

Symbol	Baramotor	Conditions	£	Max ⁽¹⁾		Unit
Gymbol	Faranieter	Conditions	HCLK	T _A = 85 °C	T _A = 105 °C	Unit
			72 MHz	68	69	
I _{DD}			48 MHz	51	51	
		External clock ⁽²⁾ , all	36 MHz	41	41	
	Supply current in Run mode	peripherals enabled	24 MHz	29	30	
			16 MHz	22	22.5	
			8 MHz	12.5	14	m۸
		External clock ⁽²⁾ , all	72 MHz	39	39	- IIIA - -
			48 MHz	29.5	30	
			36 MHz	24	24.5	
		peripherals disabled	24 MHz	17.5	19	
			16 MHz	14	15	
			8 MHz	8.5	10.5	

Table 14. Maximum current consumption in Run mode, code with data processingrunning from Flash

1. Guaranteed by characterization results, not tested in production.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Symbol	Deremeter	Conditions	4	Ма	11	
Symbol	Parameter	Conditions	HCLK	Max ⁽¹⁾ U f_{HCLK} $T_A = 85 ^{\circ}C$ $T_A = 105 ^{\circ}C$ U MHz 65 65.5 0 MHz 46.5 47 0 MHz 26.5 27 0 MHz 19 20 0 MHz 34.5 36 0 MHz 25 26 0 MHz 15 16 0	Unit	
			72 MHz	65	65.5	
I _{DD} Supply current in Run mode		48 MHz	46.5	47		
		External clock ⁽²⁾ , all	36 MHz	37	37	
		peripherals enabled	24 MHz	26.5	27	
	Supply current		16 MHz	19	20	
			8 MHz	11.5	13	m۸
	in Run mode	External clock ⁽²⁾ , all	72 MHz	34.5	36	mA
			48 MHz	25	26	
			36 MHz	20.5	21	
		peripherals disabled	24 MHz	15	16	-
			16 MHz	11	13	
			8 MHz	7.5	9	

Table 15. Maximum current consumption in Run mode, code with data processing running from RAM

1. Guaranteed by characterization results, not tested in production at V_{DD} max, f_{HCLK} max.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

5.3.8 PLL characteristics

The parameters given in *Table 28* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Symbol	Doromotor		Value		Unit
Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit
f	PLL input clock ⁽²⁾	1	8.0	25	MHz
PLL_IN	PLL input clock duty cycle	40	-	60	%
f _{PLL_OUT}	PLL multiplier output clock	16	-	72	MHz
t _{LOCK}	PLL lock time	-	-	200	μs
Jitter	Cycle-to-cycle jitter	_	_	300	ps

|--|

1. Guaranteed by characterization results, not tested in production.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f_{PLL_OUT} .

5.3.9 Memory characteristics

Flash memory

The characteristics are given at T_A = -40 to 105 °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	T _A = -40 to +105 °C	40	52.5	70	μs
t _{ERASE}	Page (2 KB) erase time	T _A = -40 to +105 °C	20	-	40	ms
t _{ME}	Mass erase time	T _A = -40 to +105 °C	20	-	40	ms
		Read mode f _{HCLK} = 72 MHz with 2 wait states, V _{DD} = 3.3 V	-	-	28	mA
I _{DD}	Supply current	Write mode f _{HCLK} = 72 MHz, V _{DD} = 3.3 V	-	-	7	mA
		Erase mode f _{HCLK} = 72 MHz, V _{DD} = 3.3 V	-	-	5	mA
		Power-down mode / Halt, V _{DD} = 3.0 to 3.6 V	-	-	50	μA
V _{prog}	Programming voltage	-	2	-	3.6	V

Table 29. Flash memory characteristics

1. Guaranteed by design, not tested in production.

Figure 24. Asynchronous multiplexed PSRAM/NOR read waveforms

Table 34. Asynchronous multiplexed PSRAM/NOR read timings ''
--

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FSMC_NE low time	7t _{HCLK} + 0.5	7t _{HCLK} + 2	ns
t _{v(NOE_NE)}	FSMC_NEx low to FSMC_NOE low	3t _{HCLK} + 0.5	3t _{HCLK} + 1.5	ns
t _{w(NOE)}	FSMC_NOE low time	4t _{HCLK} – 1	4t _{HCLK} + 1	ns
t _{h(NE_NOE)}	FSMC_NOE high to FSMC_NE high hold time	0.5	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	0	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	0	1	ns
t _{w(NADV)}	FSMC_NADV low time	t _{HCLK} + 0.5	t _{HCLK} + 2	ns
t _{h(AD_NADV)}	FSMC_AD (address) valid hold time after FSMC_NADV high	t _{HCLK}	-	ns
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	t _{HCLK} -2	-	ns
t _{h(BL_NOE)}	FSMC_BL hold time after FSMC_NOE high	0.5	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	0	ns
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	4t _{HCLK} - 0.5	-	ns
t _{su(Data_NOE)}	Data to FSMC_NOE high setup time	4t _{HCLK} - 1	-	ns

Figure 32. PC Card/CompactFlash controller waveforms for attribute memory read access

1. Only data bits 0...7 are read (bits 8...15 are disregarded).

Figure 35. PC Card/CompactFlash controller waveforms for I/O space write access

Table 40. Switching characteristics for PC Card/CF read and write cycles in attribute/common space

Symbol	Parameter	Min	Мах	Unit
t _{v(NCEx-A)}	FSMC_NCEx low to FSMC_Ay valid	-	0	
t _{h(NCEx-AI)}	FSMC_NCEx high to FSMC_Ax invalid	0	-	
t _{d(NREG-NCEx)}	FSMC_NCEx low to FSMC_NREG valid	-	2	
t _{h(NCEx-NREG)}	FSMC_NCEx high to FSMC_NREG invalid	t _{HCLK} + 4	-	
t _{d(NCEx_NWE)}	FSMC_NCEx low to FSMC_NWE low	-	5t _{HCLK} + 1	
t _{d(NCEx_NOE)}	FSMC_NCEx low to FSMC_NOE low	-	5t _{HCLK} + 1	
t _{w(NOE)}	FSMC_NOE low width	8t _{HCLK} - 0.5	8t _{HCLK} + 1	
t _{d(NOE-NCEx}	FSMC_NOE high to FSMC_NCEx high	5t _{HCLK} - 0.5	-	20
t _{su(D-NOE)}	FSMC_D[15:0] valid data before FSMC_NOE high	32	-	115
t _{h(NOE-D)}	FSMC_NOE high to FSMC_D[15:0] invalid	t _{HCLK}	-	
t _{w(NWE)}	FSMC_NWE low width	8t _{HCLK} – 1	8t _{HCLK} + 4	
t _{d(NWE_NCEx)}	FSMC_NWE high to FSMC_NCEx high	5t _{HCLK} + 1.5	-	
t _{d(NCEx-NWE)}	FSMC_NCEx low to FSMC_NWE low	-	5t _{HCLK} + 1	
t _{v(NWE-D)}	FSMC_NWE low to FSMC_D[15:0] valid	-	0	
t _{h(NWE-D)}	FSMC_NWE high to FSMC_D[15:0] invalid	11t _{HCLK}	-	
t _{d(D-NWE)}	FSMC_D[15:0] valid before FSMC_NWE high	13t _{HCLK} + 2.5	-	

Symbol	Parameter	Min	Мах	Unit
t _{w(NWE)}	FSMC_NWE low width	3t _{HCLK}	3t _{HCLK}	ns
t _{v(NWE-D)}	FSMC_NWE low to FSMC_D[15:0] valid	-	0	ns
t _{h(NWE-D)}	FSMC_NWE high to FSMC_D[15:0] invalid	2t _{HCLK} + 2	-	ns
t _{d(ALE-NWE)}	FSMC_ALE valid before FSMC_NWE low	-	3t _{HCLK} + 1.5	ns
t _{h(NWE-ALE)}	FSMC_NWE high to FSMC_ALE invalid	3t _{HCLK} + 8	-	ns
t _{d(ALE-NOE)}	FSMC_ALE valid before FSMC_NOE low	-	2t _{HCLK}	ns
t _{h(NOE-ALE)}	FSMC_NWE high to FSMC_ALE invalid	2t _{HCLK}	-	ns

Table 43.	Switching	characteristics	for NAND	Flash write	cycles ⁽¹⁾

1. C_L = 15 pF.

Figure 40. Standard I/O input characteristics - CMOS port

Figure 42. 5 V tolerant I/O input characteristics - CMOS port

DocID16554 Rev 4

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 44* and *Table 51*, respectively.

Unless otherwise specified, the parameters given in *Table 51* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

MODEx[1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions		Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_L = 50 pF, V_{DD} = 2 V to 3.6 V	-	2	MHz
10	t _{f(IO)out}	Output high to low level fall time		-	125 ⁽³⁾	ne
	t _{r(IO)out}	Output low to high level rise time	$C_{L} = 50 \text{ pr}, \text{ v}_{DD} = 2 \text{ v} \text{ to } 3.0 \text{ v} =$		125 ⁽³⁾	115
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_{L} = 50 pF, V_{DD} = 2 V to 3.6 V	I	10	MHz
01	t _{f(IO)out}	Output high to low level fall time	C = 50 pE V = 2 V to 3.6 V	-	25 ⁽³⁾	20
	t _{r(IO)out}	Output low to high level rise time	$C_{L} = 50 \text{ pr}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$		25 ⁽³⁾	115
	F _{max(IO)out}	Maximum frequency ⁽²⁾	C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	50	MHz
			C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	30	MHz
			C_L = 50 pF, V_{DD} = 2 V to 2.7 V	I	20	MHz
	t _{f(IO)out}	Output high to low level fall time	C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾	
11			C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	I	8 ⁽³⁾	
			C_L = 50 pF, V_{DD} = 2 V to 2.7 V	I	12 ⁽³⁾	ne
			C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾	113
	t _{r(IO)out}	Output low to high level rise time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	I	8 ⁽³⁾	
			C_{L} = 50 pF, V_{DD} = 2 V to 2.7 V	I	12 ⁽³⁾	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	ns

Table 51. I/O AC characteristics⁽¹⁾

1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register.

2. The maximum frequency is defined in Figure 44.

3. Guaranteed by design, not tested in production.

Figure 45. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 52. Otherwise the reset will not be taken into account by the device.

5.3.16 TIM timer characteristics

The parameters given in Table 53 are guaranteed by design.

Refer to *Section 5.3.14: I/O port characteristics* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit
	Timer resolution time	-	1	-	t _{TIMxCLK}
res(TIM)		f _{TIMxCLK} = 72 MHz	13.9	-	ns
f	Timer external clock	-	0	f _{TIMxCLK} /2	MHz
^I EXT	frequency on CH1 to CH4	f _{TIMxCLK} = 72 MHz	0	36	MHz
Res _{TIM}	Timer resolution	-	-	16	bit
	16-bit counter clock period	-	1	65536	t _{TIMxCLK}
t _{COUNTER}	selected	f _{TIMxCLK} = 72 MHz	0.0139	910	μs
t _{MAX_COUNT}	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}
		f _{TIMxCLK} = 72 MHz	-	59.6	S

Table 53. TIMx⁽¹⁾ characteristics

1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers.

Figure 58. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

1. $V_{\mathsf{REF+}}$ and $V_{\mathsf{REF-}}$ inputs are available only on 100-pin packages.

Figure 59. 12-bit buffered /non-buffered DAC

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

5.3.21 Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25 °C	1.34	1.43	1.52	V
t _{START} ⁽²⁾	Startup time	4	-	10	μs
T _{S_temp} ⁽³⁾⁽²⁾	ADC sampling time when reading the temperature	_	_	17.1	μs

1. Guaranteed on characterization results, not tested in production.

2. Guaranteed by design, not tested in production.

3. Shortest sampling time can be determined in the application by multiple iterations.

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Device marking for LQFP144 package

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 64. LQFP144 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
θ	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
ccc	-	-	0.080	-	-	0.0031

Table 71. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are in millimeters.

Date	Revision	Changes
		Asynchronous waveforms and timings: added notes about t _{HCLK} clock period and FSMC_BusTurnAroundDuration; updated conditions, modified Table 31: Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings, Table 32: Asynchronous non- multiplexed SRAM/PSRAM/NOR write timings, Table 34: Asynchronous multiplexed PSRAM/NOR read timings, and Table 35: Asynchronous multiplexed PSRAM/NOR write timings; added Table 33: Asynchronous multiplexed read timings.
		Synchronous waveforms and timings: updated Figure 27: Synchronous multiplexed PSRAM write timings; updated Table 36: Synchronous multiplexed NOR/PSRAM read timings, Table 37: Synchronous multiplexed PSRAM write timings, Table 38: Synchronous non- multiplexed NOR/PSRAM read timings, and Table 39: Synchronous non-multiplexed PSRAM write timings.
18-Jan-2012	3	PC Card/CompactFlash controller waveforms and timings: updated Figure 35: PC Card/CompactFlash controller waveforms for I/O space write access; split switching characteristics into Table 40: Switching characteristics for PC Card/CF read and write cycles in attribute/common space and Table 41: Switching characteristics for PC Card/CF read and write cycles in I/O space, modified values, and removed footnote concerning preliminary values.
		NAND controller waveforms and timings: updated conditions, split switching characteristics into Table 42: Switching characteristics for NAND Flash read cycles and Table 43: Switching characteristics for NAND Flash write cycles, and values modified.
		Section 5.3.14: I/O port characteristics: updated footnote1 of Table 49: I/O static characteristics; updated Output driving current.
		<i>Table 50: Output voltage characteristics</i> : swapped "TTL and "CMOS" ports in the conditions column.
		Table 54: I ² C characteristics: updated footnote 2.
		Updated Table 58: SD / MMC characteristics.
		Table 62: ADC characteristics: updated footnote 1.
		Table 64: ADC accuracy - limited test conditions: updated footnote 3.
		Table 67: TS characteristics: updated footnote 1.

Table 74. Document revision history

15-May-2015	4	Added document status on first page. Replace DAC1_OUT/DAC2_OUT by DAC_OUT1/DAC_OUT2, and updated TIM5 in <i>Figure 1: STM32F103xF and STM32F103xG</i> performance line block diagram on page 12. Replaced USBDP/USBDM by USB_DP/USB_DM in the whole document. Updated notes related to electrical values guaranteed by characterization results. Updated <i>Table 20: Peripheral current consumption</i> . Updated <i>Table 30: Synchronous multiplexed NOR/PSRAM read</i> timings to <i>Table 39: Synchronous non-multiplexed PSRAM write</i> timings to <i>Table 39: Synchronous non-multiplexed PSRAM write</i> timings to <i>Table 39: Synchronous non-multiplexed PSRAM read</i> <i>timings</i> to <i>Table 39: Synchronous non-multiplexed NOR/PSRAM read</i> <i>timings</i> to <i>Table 39: Synchronous non-multiplexed NOR/PSRAM read</i> <i>timings</i> to <i>Table 39: Synchronous non-multiplexed NOR/PSRAM</i> read timings on page 77 and Figure 35: PC Card/CompactFlash controller waveforms for I/O space write access on page 83. Updated CDM class in <i>Table 46: ESD absolute maximum ratings</i> . Updated <i>Figure 44: I/O AC characteristics definition on page 96</i> and <i>Figure 45: Recommended NRST pin protection on page 97</i> . Updated <i>Figure 49: SPI timing diagram - master mode</i> ⁽¹⁾ on page 96. Modified note 3 in <i>Table 56: SPI characteristics</i> . Section : 12C interface characteristics: Updated introduction, updated <i>Table 54: I²C characteristics and Figure 46: I²C bus AC</i> waveforms and measurement circuit on page 99. Modified note 2 in <i>Table 64: ADC accuracy - limited test conditions</i> , <i>Figure 55: ADC accuracy characteristics on page 110</i> and <i>Figure 56:</i> <i>Typical connection diagram using the ADC on page 111</i> . Updated <i>Figure 57: Power supply and reference decoupling (V_{REF+} not connected to V_{DDA}) on page 111 and <i>Figure 58: Power supply and</i> <i>reference decoupling (V_{REF+} connected to V_{DDA}) on page 112.</i> Updated Section 6.1: LFBGA144 package information and added Section : Device marking for LQFP144 package. Updated Section 6.2: LQFP140 package information and added Se</i>

Table 74. Document revision history

