

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	51
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103rgt6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1. STM32F103xF and STM32F103xG performance line block diagram

T_A = -40 °C to +85 °C (suffix 6, see *Table 73*) or -40 °C to +105 °C (suffix 7, see *Table 73*), junction temperature up to 105 °C or 125 °C, respectively.

2. AF = alternate function on I/O port pin.9

Figure 2. Clock tree

1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 64 MHz

- 2. For the USB function to be available, both HSE and PLL must be enabled, with the USBCLK at 48 MHz.
- 3. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz, 28 MHz or 56 MHz.

2.3.5 Embedded SRAM

96 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.

2.3.6 FSMC (flexible static memory controller)

The FSMC is embedded in the STM32F103xF and STM32F103xG performance line family. It has four Chip Select outputs supporting the following modes: PC Card/Compact Flash, SRAM, PSRAM, NOR and NAND.

Functionality overview:

- The three FSMC interrupt lines are ORed in order to be connected to the NVIC
- Write FIFO
- Code execution from external memory except for NAND Flash and PC Card
- The targeted frequency, f_{CLK}, is HCLK/2, so external access is at 36 MHz when HCLK is at 72 MHz and external access is at 24 MHz when HCLK is at 48 MHz

2.3.7 LCD parallel interface

The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-effective graphic applications using LCD modules with embedded controllers or high-performance solutions using external controllers with dedicated acceleration.

2.3.8 Nested vectored interrupt controller (NVIC)

The STM32F103xF and STM32F103xG performance line embeds a nested vectored interrupt controller able to handle up to 60 maskable interrupt channels (not including the 16 interrupt lines of Cortex[®]-M3) and 16 priority levels.

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of *late arriving* higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

2.3.9 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 112 GPIOs can be connected to the 16 external interrupt lines.

3 Pinouts and pin descriptions

	1	2	3	4	5	6	7	8	9	10	11	12
A	PC13- TAMPER-FTC	PE3	PE2	(PE1)	PE0	PB4 JTRST	PB3 JTDO	PD6	PD7	PA15 , JTDI	PA14 JTCK	PA13 JTMS
В	, PC14-, OSC32 <u>, 1</u> N	PE4	(PE5)	PE6	PB9	PB5	(PG15)	PG12	(PD5)	(PC11)	(PC10)	PA12
С	РС15-, 09с32_ОUТ	V _{BAT}	PF0	(PF1)	PB8	PB6	PG14	(PG11)	PD4	PC12	NC	(PA11)
D	OSC_IN	V _{SS_5}	V _{DD_5}	PF2	воото	PB7	(PG13)	PG10	PD3	(PD1)	PA10	PA9
E	OSC_OUT	PF3	PF4	(PF5)	'V _{SS_3} '	Vss_11	Vss_10	PG9	PD2	PD0	PC9	PA8
F	NRST	PF7	PF6	VDD_4	V _{DD_3}	VDD_11,	YDD_10	VDD_8	V _{DD_2}	'V _{DD_9} '	PC8	PC7
G	(PF10)	PF9	PF8	V _{SS_4}	VDD_6	V _{DD_7} ;	VDD_1	'V _{SS_8} '	V _{SS_2}	'V _{SS_9} '	PG8	PC6
н	PC0	PC1	PC2	PC3	Vss_6	Vss_7	Vss_1	(PE11)	(PD11)	PG7	PG6	PG5
J	Vssa,	PÁO-WKUP	PA4	PC4	PB2/ BOOT1	PG1	(PE10)	(PE12)	(PD10)	PG4	PG3	PG2
К	V _{REF-}	PA1	PA5	PC5	(PF13)	PG0	PE9	(PE13)	PD9	(PD13)	PD14	(PD15)
L	WREF+	PA2	PA6	PB0	(PF12)	(PF15)	PE8	(PE14)	PD8	PD12	(PB14)	(PB15)
М	V _{DDA} ,	PA3	PA7	(PB1)	(PF11)	(PF14)	PE7	(PE15)	(PB10)	(PB11)	PB12	(PB13)

Figure 3. STM32F103xF/G BGA144 ballout

1. The above figure shows the package top view.

Symbol	Ratings	Value	Unit					
T _{STG}	Storage temperature range	-65 to +150	°C					
ТJ	Maximum junction temperature	150	°C					

Table 9. Thermal characteristics

5.3 Operating conditions

5.3.1 General operating conditions

Symbol	Parameter	Conditions	Min	Мах	Unit	
f _{HCLK}	Internal AHB clock frequency	-	0	72		
f _{PCLK1}	Internal APB1 clock frequency	-	0	36	MHz	
f _{PCLK2}	Internal APB2 clock frequency	-	0	72		
V _{DD}	Standard operating voltage	-	2	3.6	V	
V _{DDA} ⁽¹⁾	Analog operating voltage (ADC not used)	Must be the same potential	2	3.6	V	
	Analog operating voltage (ADC used)	as V _{DD} ⁽²⁾	2.4	3.6	v	
V _{BAT}	Backup operating voltage	-	1.8	3.6	V	
		LQFP144	-	666		
р	Power dissipation at $T_A =$ 85 °C for suffix 6 or $T_A =$ 105 °C for suffix 7 ⁽³⁾	pwer dissipation at $T_A = LQFP100$		434	m\//	
ΓD		LQFP64	-	444	11100	
		LFBGA144	-	500		
	Ambient temperature for 6	Maximum power dissipation	-40	85	°C	
т	suffix version	Low-power dissipation ⁽⁴⁾	-40	105	C	
IA	Ambient temperature for 7	Maximum power dissipation	-40	105	°C	
	suffix version	Low-power dissipation ⁽⁴⁾	-40	125		
т.	lunction tomporature reaso	6 suffix version	-40	105	*0	
TJ	Sunction temperature range	7 suffix version	-40 125		U	

Table 10. General operating conditions

1. When the ADC is used, refer to Table 62: ADC characteristics.

2. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and operation.

If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_Jmax (see *Table 6.5: Thermal characteristics on page 129*).

 In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_Jmax (see Table 6.5: Thermal characteristics on page 129).

5.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 11* are derived from tests performed under the ambient temperature condition summarized in *Table 10*.

Symbol	Parameter	Conditions	Min	Мах	Unit
t _{VDD}	V _{DD} rise time rate	_	0	¥	ue/\/
	V _{DD} fall time rate	-	20	¥	μ5/ ν

Table 11. Operating conditions at power-up / power-down

5.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 12* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PLS[2:0]=000 (rising edge)	2.1	2.18	2.26	V
		PLS[2:0]=000 (falling edge)	2	2.08	2.16	V
		PLS[2:0]=001 (rising edge)	2.19	2.28	2.37	V
		PLS[2:0]=001 (falling edge)	2.09	2.18	2.27	V
		PLS[2:0]=010 (rising edge)	2.28	2.38	2.48	V
		PLS[2:0]=010 (falling edge)	2.18	2.28	2.38	V
		PLS[2:0]=011 (rising edge)	2.38	2.48	2.58	V
V	Programmable voltage detector level selection	PLS[2:0]=011 (falling edge)	2.28	2.38	2.48	V
V _{PVD}		PLS[2:0]=100 (rising edge)	2.47	2.58	2.69	V
		PLS[2:0]=100 (falling edge)	2.37	2.48	2.59	V
		PLS[2:0]=101 (rising edge)	2.57	2.68	2.79	V
		PLS[2:0]=101 (falling edge)	2.47	2.58	2.69	V
		PLS[2:0]=110 (rising edge)	2.66	2.78	2.9	V
		PLS[2:0]=110 (falling edge)	2.56	2.68	2.8	V
		PLS[2:0]=111 (rising edge)	2.76	2.88	3	V
		PLS[2:0]=111 (falling edge)	2.66	2.78	2.9	V
V _{PVDhyst} ⁽²⁾	PVD hysteresis	-	-	100	-	mV
M	Power on/power down	Falling edge	1.8 ⁽¹⁾	1.88	1.96	V
V POR/PDR	reset threshold	Rising edge	1.84	1.92	2.0	V
V _{PDRhyst} ⁽²⁾	PDR hysteresis	-	-	40	-	mV
T _{RSTTEMPO} ⁽²⁾	Reset temporization	-	1	2.5	4.5	mS

 Table 12. Embedded reset and power control block characteristics

1. The product behavior is guaranteed by design down to the minimum $V_{\text{POR/PDR}}$ value.

2. Guaranteed by design, not tested in production.

Symbol	Baramotor	ParameterConditions f_{HCLK} Max ⁽¹⁾ $T_A = 85 \ ^{\circ}C$ $T_A =$		Conditions	ax ⁽¹⁾	Unit					
Symbol	Faranieter			T _A = 85 °C	T _A = 105 °C	Unit					
			72 MHz	68	69						
			48 MHz	51	51						
		External clock ⁽²⁾ , all	36 MHz	41	41						
		peripherals enabled	24 MHz	29	30						
		Supply current in							16 MHz	22	22.5
	Supply current in		8 MHz	12.5	14	m۸					
DD	Run mode		72 MHz	39	39	ШA					
			48 MHz	29.5	30						
		External clock ⁽²⁾ , all	36 MHz	24	24.5						
		peripherals disabled	24 MHz	17.5	19						
			16 MHz	14	15						
			8 MHz	8.5	10.5						

Table 14. Maximum current consumption in Run mode, code with data processingrunning from Flash

1. Guaranteed by characterization results, not tested in production.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Symbol	Deremeter	Conditions	Max ⁽¹⁾		Unit				
Symbol	Parameter	Conditions	HCLK	T _A = 85 °C	T _A = 105 °C	Unit			
			72 MHz	65	65.5				
			48 MHz	46.5	47				
		External clock ⁽²⁾ , all	36 MHz	37	37				
		peripherals enabled	peripherals enabled	peripherals enabled	peripherals enabled	24 MHz	26.5	27	
									16 MHz
	Supply current		8 MHz	11.5	13	m۸			
DD	in Run mode		72 MHz	34.5	36				
			48 MHz	25	26				
		External clock ⁽²⁾ , all	36 MHz	20.5	21				
		peripherals disabled	24 MHz	15	16				
			16 MHz	11	13	1			
			8 MHz	7.5	9				

Table 15. Maximum current consumption in Run mode, code with data processing running from RAM

1. Guaranteed by characterization results, not tested in production at V_{DD} max, f_{HCLK} max.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Symbol	Demonster		Value	Unit
Symbol	Fardineter	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	

 Table 30. Flash memory endurance and data retention

1. Guaranteed by characterization results, not tested in production.

2. Cycling performed over the whole temperature range.

5.3.10 FSMC characteristics

Asynchronous waveforms and timings

Figure 22 through *Figure 25* represent asynchronous waveforms and *Table 31* through *Table 35* provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- AddressSetupTime = 0
- AddressHoldTime = 1
- DataSetupTime = 1

Note: On all tables, the t_{HCLK} is the HCLK clock period.

Figure 22. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

FSMC_BusTurnAroundDuration = 0.

Note:

DocID16554 Rev 4

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	27.5	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_Nex low (x = 02)	-	0	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x = 02)	1	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	1	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	1	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x = 1625)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x = 1625)	1	-	ns
t _{d(CLKL-NWEL)}	FSMC_CLK low to FSMC_NWE low	-	1	ns
t _{d(CLKL-NWEH)}	FSMC_CLK low to FSMC_NWE high	1.5	-	ns
t _{d(CLKL-ADV)}	FSMC_CLK low to FSMC_AD[15:0] valid	-	10	ns
t _{d(CLKL-ADIV)}	FSMC_CLK low to FSMC_AD[15:0] invalid	1	-	ns
t _{d(CLKL-Data)}	FSMC_A/D[15:0] valid after FSMC_CLK low	-	6	ns
t _{d(CLKL-NBLH)}	FSMC_CLK low to FSMC_NBL high	1	-	ns
t _{su(NWAITV-CLKH)}	FSMC_NWAIT valid before FSMC_CLK high	7	-	ns
t _{h(CLKH-NWAITV)}	FSMC_NWAIT valid after FSMC_CLK high	2	-	ns

Table 37. Synchronous multiplexed F	PSRAM write	timinas ⁽¹⁾
-------------------------------------	-------------	------------------------

1. C_L = 15 pF.

Figure 31. PC Card/CompactFlash controller waveforms for common memory write access

5.3.14 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 49* are derived from tests performed under the conditions summarized in *Table 10*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
V _{IL}	Standard IO input low level voltage		-0.3	-	0.28*(V _{DD} -2 V)+0.8 V	V	
	IO FT ⁽¹⁾ input low level voltage	_	-0.3	-	0.32*(V _{DD} -2 V)+0.75 V	V	
	Standard IO input high level voltage	-	0.41*(V _{DD} -2 V)+1.3 V	-	V _{DD} +0.3	V	
V _{IH}	IO FT ⁽¹⁾ input high level	V _{DD} > 2 V	0.42*(V _{DD} -2		5.5	V	
	voltage	ge $V_{DD} \le 2 V$		-	5.2	V	
Vhvs	Standard IO Schmitt trigger voltage hysteresis ⁽²⁾	-	200	-	-	mV	
, -	IO FT Schmitt trigger voltage hysteresis ⁽²⁾		5% V _{DD} ⁽³⁾	-	-	mV	
I _{lka}	Input leakage current ⁽⁴⁾	$V_{SS} \le V_{IN} \le V_{DD}$ Standard I/Os	-	-	±1	μA	
5		V _{IN} = 5 V, I/O FT	-	-	3		
R _{PU}	Weak pull-up equivalent resistor ⁽⁵⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ	
R _{PD}	Weak pull-down equivalent resistor ⁽⁵⁾	$V_{IN} = V_{DD}$	30	40	50	kΩ	
C _{IO}	I/O pin capacitance	-	-	5	-	pF	

Table 49	. I/O	static	characteristics
----------	-------	--------	-----------------

1. FT = Five-volt tolerant. In order to sustain a voltage higher than V_{DD} +0.3 the internal pull-up/pull-down resistors must be disabled.

2. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results, not tested in production.

3. With a minimum of 100 mV.

4. Leakage could be higher than max. if negative current is injected on adjacent pins.

 Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order).

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 40* and *Figure 41* for standard I/Os, and in *Figure 42* and *Figure 43* for 5 V tolerant I/Os.

Figure 43. 5 V tolerant I/O input characteristics - TTL port

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}) except PC13, PC14 and PC15 which can sink or source up to ±3 mA. When using the GPIOs PC13 to PC15 in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 5.2*:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD} (see *Table 8*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS} (see *Table 8*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 50* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	TTL port ⁽³⁾	-	0.4	V
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	CMOS port ⁽³⁾	-	0.4	V
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	$2.7 V < V_{DD} < 3.6 V$	2.4	-	v

Tablo	50	Output	voltago	charactoris	tice
lable	50.	Output	voitage	cnaracteris	STICS

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 44* and *Table 51*, respectively.

Unless otherwise specified, the parameters given in *Table 51* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

MODEx[1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit	
10	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_L = 50 pF, V_{DD} = 2 V to 3.6 V	-	2	MHz	
	t _{f(IO)out}	Output high to low level fall time			125 ⁽³⁾	20	
	t _{r(IO)out}	Output low to high level rise time	ο[- 30 μ, v _{DD} - 2 v to 3.0 v	-	125 ⁽³⁾	ns	
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_L = 50 pF, V_{DD} = 2 V to 3.6 V	I	10	MHz	
01	t _{f(IO)out}	Output high to low level fall time	C = 50 pE V = 2 V to 3.6 V	-	25 ⁽³⁾		
	t _{r(IO)out}	Output low to high level rise time	$C_{L} = 50 \text{ pr}, V_{DD} = 2 \text{ V to 3.6 V}$		25 ⁽³⁾	115	
	F _{max(IO)out}		C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	50	MHz	
		Maximum frequency ⁽²⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	30	MHz	
			C_L = 50 pF, V_{DD} = 2 V to 2.7 V	I	20	MHz	
	t _{f(IO)out}	Output high to low level fall time	C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾		
11			C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	I	8 ⁽³⁾		
			C_L = 50 pF, V_{DD} = 2 V to 2.7 V	I	12 ⁽³⁾	ne	
			C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾	115	
	t _{r(IO)out}	Output low to high	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	I	8 ⁽³⁾		
			C_{L} = 50 pF, V_{DD} = 2 V to 2.7 V	I	12 ⁽³⁾		
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	ns	

Table 51. I/O AC characteristics⁽¹⁾

1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register.

2. The maximum frequency is defined in Figure 44.

3. Guaranteed by design, not tested in production.

Figure 49. SPI timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

- 2. Guaranteed by design, not tested in production.
- V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to Section 3: Pinouts and pin descriptions for further details.
- 4. For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in Table 62.

Equation 1: R_{AIN} max formula

$$R_{AIN} < \frac{T_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

T _s (cycles)	t _S (μs)	R _{AIN} max (kΩ)
1.5	0.11	0.4
7.5	0.54	5.9
13.5	0.96	11.4
28.5	2.04	25.2
41.5	2.96	37.2
55.5	3.96	50
71.5	5.11	NA
239.5	17.1	NA

Table 63. R_{AIN} max for $f_{ADC} = 14 \text{ MHz}^{(1)}$

1. Guaranteed by design, not tested in production.

Table 64. ADC accu	racy - limited test cond	litions ⁽¹⁾⁽²⁾	1

Symbol	Parameter	Test conditions	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error	$f_{PCLK2} = 56 \text{ MHz},$	±1.3	±2	
EO	Offset error	t_{ADC} = 14 MHz, R_{AIN} < 10 kΩ, V _{DDA} = 3 V to 3 6 V	±1	±1.5	
EG	Gain error	$T_A = 25 $ °C	±0.5	±1.5	LSB
ED	Differential linearity error	Measurements made after	±0.7	±1	
EL	Integral linearity error	V _{REF+} = V _{DDA}	±0.8	±1.5	

1. ADC DC accuracy values are measured after internal calibration.

 ADC Accuracy vs. Negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 5.3.14 does not affect the ADC accuracy.

3. Guaranteed by characterization results, not tested in production.

Table 68. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,0.8 mm pitch, package mechanical data (continued)

Symbol		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Тур	Min	Max	
eee	-	-	0.150	-	-	0.0059	
fff	-	-	0.080	-	-	0.0031	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. STATSChipPAC package dimensions.

Device marking for LFBGA144 package

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Figure 61. LFBGA144 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

6.4 LQFP64 package information

Figure 68. LFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline

1. Drawing is not in scale.

Table 71. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-

6.5.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Table 73: STM32F103xF* and *STM32F103xG* ordering information scheme.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F103xF and STM32F103xG at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 82$ °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL}= 1.3 V

P_{INTmax} = 50 mA × 3.5 V= 175 mW

P_{IOmax = 20} × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW:

P_{Dmax =} 175 + 272 = 447 mW

Thus: P_{Dmax} = 447 mW

Using the values obtained in *Table* 72 T_{Jmax} is calculated as follows:

- For LQFP100, 46 °C/W
- T_{Jmax} = 82 °C + (46 °C/W × 447 mW) = 82 °C + 20.6 °C = 102.6 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Table 73: STM32F103xF and STM32F103xG ordering information scheme*).

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 115 \text{ °C}$ (measured according to JESD51-2), $I_{DDmax} = 20 \text{ mA}, V_{DD} = 3.5 \text{ V}, \text{ maximum } 20 \text{ I/Os used at the same time in output at low level with } I_{OL} = 8 \text{ mA}, V_{OL} = 0.4 \text{ V}$ $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$ $P_{IOmax} = _{20} \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$ This gives: $P_{INTmax} = 70 \text{ mW}$ and $P_{IOmax} = 64 \text{ mW}$: $P_{Dmax} = 70 + 64 = 134 \text{ mW}$

Thus: P_{Dmax} = 134 mW

DocID16554 Rev 4

