

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	51
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103rgt7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	STM32F103xF and STM32F103xG performance line block diagram.	12
Figure 2.	Clock tree	13
Figure 3.	STM32F103xF/G BGA144 ballout	25
Figure 4.	STM32F103xF/G performance line LQFP144 pinout	
Figure 5.	STM32F103xF/G performance line LQFP100 pinout	
Figure 6.	STM32F103xF/G performance line LQFP64 pinout	28
Figure 7.	Memory map.	
Figure 8.	Pin loading conditions.	
Figure 9.	Pin input voltage	
Figure 10.	Power supply scheme.	
Figure 11.	Current consumption measurement scheme	
Figure 12.	Typical current consumption in Run mode versus frequency (at 3.6 V) -	
0	code with data processing running from RAM, peripherals enabled	48
Figure 13.	Typical current consumption in Run mode versus frequency (at 3.6 V)-	-
- gai e i ei	code with data processing running from RAM, peripherals disabled	48
Figure 14.	Typical current consumption on V_{BAT} with RTC on vs. temperature at different V_{BAT}	
i iguro i ii	values	50
Figure 15.	Typical current consumption in Stop mode with regulator in run mode	00
rigare re.	versus temperature at different V_{DD} values	51
Figure 16.	Typical current consumption in Stop mode with regulator in low-power	01
rigure ro.	mode versus temperature at different V _{DD} values	52
Figure 17.	Typical current consumption in Standby mode versus temperature at	52
riguie i7.	different V _{DD} values	52
Figure 18.	High-speed external clock source AC timing diagram	
Figure 19.	Low-speed external clock source AC timing diagram	
Figure 19.	Typical application with an 8 MHz crystal.	
Figure 20.	Typical application with a 32.768 kHz crystal	
Figure 21.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	
Figure 23.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	
Figure 24.	Asynchronous multiplexed PSRAM/NOR read waveforms.	
Figure 25.	Asynchronous multiplexed PSRAM/NOR write waveforms	
Figure 26.	Synchronous multiplexed NOR/PSRAM read timings	
Figure 27.	Synchronous multiplexed PSRAM write timings.	
Figure 28.	Synchronous non-multiplexed NOR/PSRAM read timings	
Figure 29.	Synchronous non-multiplexed PSRAM write timings	
Figure 30.	PC Card/CompactFlash controller waveforms for common memory read access	
Figure 31.	PC Card/CompactFlash controller waveforms for common memory write access	80
Figure 32.	PC Card/CompactFlash controller waveforms for attribute memory read	. .
	access	81
Figure 33.	PC Card/CompactFlash controller waveforms for attribute memory write	
	access	
Figure 34.	PC Card/CompactFlash controller waveforms for I/O space read access	
Figure 35.	PC Card/CompactFlash controller waveforms for I/O space write access	
Figure 36.	NAND controller waveforms for read access	
Figure 37.	NAND controller waveforms for write access	
Figure 38.	NAND controller waveforms for common memory read access	
Figure 39.	NAND controller waveforms for common memory write access	
Figure 40.	Standard I/O input characteristics - CMOS port	92

2.3.10 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).

Several prescalers allow the configuration of the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz. The maximum allowed frequency of the low speed APB domain is 36 MHz. See *Figure 2* for details on the clock tree.

2.3.11 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from user Flash: you have an option to boot from any of two memory banks. By default, boot from Flash memory bank 1 is selected. You can choose to boot from Flash memory bank 2 by setting a bit in the option bytes.
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1.

2.3.12 Power supply schemes

- V_{DD} = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 2.0 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC or DAC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAT} = 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to Figure 10: Power supply scheme.

2.3.13 Power supply supervisor

The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to *Table 12: Embedded reset and power control block characteristics* for the values of $V_{POR/PDR}$ and V_{PVD} .

2.3.21 Serial peripheral interface (SPI)

Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

All SPIs can be served by the DMA controller.

2.3.22 Inter-integrated sound (I²S)

Two standard I²S interfaces (multiplexed with SPI2 and SPI3) are available, that can be operated in master or slave mode. These interfaces can be configured to operate with 16/32 bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to 48 kHz are supported. When either or both of the I²S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

2.3.23 SDIO

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit. The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with SD Memory Card Specifications Version 2.0.

The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

In addition to SD/SDIO/MMC, this interface is also fully compliant with the CE-ATA digital protocol Rev1.1.

2.3.24 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

2.3.25 Universal serial bus (USB)

The STM32F103xF and STM32F103xG performance line embed a USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator).

2.3.26 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-capable.

DocID16554 Rev 4

	Pir	าร						Alternate function	-
LFBGA144	LQFP64	LQFP100	LQFP144	Pin name	Type ⁽¹⁾	I / O level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
E11	40	66	99	PC9	I/O	FT	PC9	TIM8_CH4 / SDIO_D1	TIM3_CH4
E12	41	67	100	PA8	I/O	FT	PA8	USART1_CK / TIM1_CH1 ⁽⁷⁾ / MCO	-
D12	42	68	101	PA9	I/O	FT	PA9	USART1_TX ⁽⁷⁾ / TIM1_CH2 ⁽⁷⁾	-
D11	43	69	102	PA10	I/O	FT	PA10	USART1_RX ⁽⁷⁾ / TIM1_CH3 ⁽⁷⁾	-
C12	44	70	103	PA11	I/O	FT	PA11	USART1_CTS / USB_DM / CAN_RX ⁽⁷⁾ / TIM1_CH4 ⁽⁷⁾	-
B12	45	71	104	PA12	I/O	FT	PA12	USART1_RTS / USB_DP / CAN_TX ⁽⁷⁾ / TIM1_ETR ⁽⁷⁾	-
A12	46	72	105	PA13	I/O	FT	JTMS- SWDIO	-	PA13
C11	-	73	106				Nc	t connected	
G9	47	74	107	V _{SS_2}	s		V _{SS_2}	-	-
F9	48	75	108	V _{DD_2}	S		V _{DD_2}	-	-
A11	49	76	109	PA14	I/O	FT	JTCK- SWCLK	-	PA14
A10	50	77	110	PA15	I/O	FT	JTDI	SPI3_NSS / 12S3_WS	TIM2_CH1_ETR PA15/ SPI1_NSS
B11	51	78	111	PC10	I/O	FT	PC10	UART4_TX / SDIO_D2	USART3_TX
B10	52	79	112	PC11	I/O	FT	PC11	UART4_RX / SDIO_D3	USART3_RX
C10	53	80	113	PC12	I/O	FT	PC12	UART5_TX / SDIO_CK	USART3_CK
E10	-	81	114	PD0	I/O	FT	PD0	FSMC_D2 ⁽⁹⁾	CAN_RX
D10	-	82	115	PD1	I/O	FT	PD1	FSMC_D3 ⁽⁹⁾	CAN_TX
E9	54	83	116	PD2	I/O	FT	PD2	TIM3_ETR / UART5_RX / SDIO_CMD	-
D9	-	84	117	PD3	I/O	FT	PD3	FSMC_CLK	USART2_CTS
C9	-	85	118	PD4	I/O	FT	PD4	FSMC_NOE	USART2_RTS
B9	-	86	119	PD5	I/O	FT	PD5	FSMC_NWE	USART2_TX
E7	-	-	120	V _{SS_10}	S		V _{SS_10}	-	-
F7	-	-	121	V _{DD_10}	S		$V_{DD_{10}}$	-	-
A8	-	87	122	PD6	I/O	FT	PD6	FSMC_NWAIT	USART2_RX

Table 5. STM32F103xF and STM32F103xG pin definitions (continued)

Table 5. STM32F103xF and Pins						and	u 311WI32F1U	,	
	Ри	าร			Alternate functions			15(*)	
LFBGA144	LQFP64	LQFP100	LQFP144	Pin name	Type ⁽¹⁾	I / O level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
A9	-	88	123	PD7	I/O	FT	PD7	FSMC_NE1 / FSMC_NCE2	USART2_CK
E8	-	-	124	PG9	I/O	FT	PG9	FSMC_NE2 / FSMC_NCE3	-
D8	-	-	125	PG10	I/O	FT	PG10	FSMC_NCE4_1 / FSMC_NE3	-
C8	-	-	126	PG11	I/O	FT	PG11	FSMC_NCE4_2	-
B8	-	-	127	PG12	I/O	FT	PG12	FSMC_NE4	-
D7	-	-	128	PG13	I/O	FT	PG13	FSMC_A24	-
C7	-	-	129	PG14	I/O	FT	PG14	FSMC_A25	-
E6	-	-	130	V _{SS_11}	S		V _{SS_11}	-	-
F6	-	-	131	V _{DD_11}	S		V _{DD_11}	-	-
B7	-	-	132	PG15	I/O	FT	PG15	-	-
A7	55	89	133	PB3	I/O	FT	JTDO	SPI3_SCK / I2S3_CK/	PB3/TRACESWO TIM2_CH2 / SPI1_SCK
A6	56	90	134	PB4	I/O	FT	NJTRST	SPI3_MISO	PB4/ TIM3_CH1 SPI1_MISO
B6	57	91	135	PB5	I/O		PB5	I2C1_SMBA / SPI3_MOSI / I2S3_SD	TIM3_CH2 / SPI1_MOSI
C6	58	92	136	PB6	I/O	FT	PB6	I2C1_SCL ⁽⁸⁾ / TIM4_CH1 ⁽⁸⁾	USART1_TX
D6	59	93	137	PB7	I/O	FT	PB7	I2C1_SDA ⁽⁸⁾ / FSMC_NADV / TIM4_CH2 ⁽⁸⁾	USART1_RX
D5	60	94	138	BOOT0	Ι		BOOT0	-	-
C5	61	95	139	PB8	I/O	FT	PB8	TIM4_CH3 ⁽⁸⁾ / SDIO_D4 / TIM10_CH1	I2C1_SCL/ CAN_RX
B5	62	96	140	PB9	I/O	FT	PB9	TIM4_CH4 ⁽⁸⁾ / SDIO_D5 / TIM11_CH1	I2C1_SDA / CAN_TX
A5	-	97	141	PE0	I/O	FT	PE0	TIM4_ETR / FSMC_NBL0	-
A4	-	98	142	PE1	I/O	FT	PE1	FSMC_NBL1	-
E5	63	99	143	V _{SS_3}	S		V _{SS_3}	-	-
F5	64	100	144	V _{DD_3}	S		V _{DD_3}	-	-

Table 5. STM32F103xF and STM32F103xG pin definitions (continued)

1. I = input, O = output, S = supply.

2. FT = 5 V tolerant.

3. Function availability depends on the chosen device.

FSMC FSMC pin definition							
Pins			NOR/PSRAM/			LQFP100 ⁽¹⁾	
	CF	CF/IDE	SRAM	NOR/PSRAM Mux	NAND 16 bit		
PE2	-	-	A23	A23	-	Yes	
PE3	-	-	A19	A19	-	Yes	
PE4	-	-	A20	A20	-	Yes	
PE5	-	-	A21	A21	-	Yes	
PE6	-	-	A22	A22	-	Yes	
PF0	A0	A0	A0	-	-	-	
PF1	A1	A1	A1	-	-	-	
PF2	A2	A2	A2	-	-	-	
PF3	A3	-	A3	-	-	-	
PF4	A4	-	A4	-	-	-	
PF5	A5	-	A5	-	-	-	
PF6	NIORD	NIORD		-	-	-	
PF7	NREG	NREG		-	-	-	
PF8	NIOWR	NIOWR		-	-	-	
PF9	CD	CD		-	-	-	
PF10	INTR	INTR		-	-	-	
PF11	NIOS16	NIOS16		-	-	-	
PF12	A6	-	A6	-	-	-	
PF13	A7	-	A7	-	-	-	
PF14	A8	-	A8	-	-	-	
PF15	A9	-	A9	-	-	-	
PG0	A10	-	A10	-	-	-	
PG1	-	-	A11	-	-	-	
PE7	D4	D4	D4	DA4	D4	Yes	
PE8	D5	D5	D5	DA5	D5	Yes	
PE9	D6	D6	D6	DA6	D6	Yes	
PE10	D7	D7	D7	DA7	D7	Yes	
PE11	D8	D8	D8	DA8	D8	Yes	
PE12	D9	D9	D9	DA9	D9	Yes	
PE13	D10	D10	D10	DA10	D10	Yes	
PE14	D11	D11	D11	DA11	D11	Yes	
PE15	D12	D12	D12	DA12	D12	Yes	
PD8	D13	D13	D13	DA13	D13	Yes	

Table 6. FSMC pin definition

5.3.4 Embedded reference voltage

The parameters given in *Table 13* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
V	Internal reference voltage	–40 °C < T _A < +105 °C	1.16	1.20	1.26	V		
V _{REFINT}	Internal reference voltage	–40 °C < T _A < +85 °C	1.16	1.20	1.24	V		
T _{S_vrefint} ⁽¹⁾	ADC sampling time when reading the internal reference voltage	-	-	5.1	17.1 ⁽²⁾	μs		
V _{RERINT} ⁽²⁾	Internal reference voltage spread over the temperature range	V _{DD} = 3 V ±10 mV	-	-	10	mV		
T _{Coeff} ⁽²⁾	Temperature coefficient	-	-	-	100	ppm/°C		

Table 13. Embedded internal reference voltage

1. Shortest sampling time can be determined in the application by multiple iterations.

2. Guaranteed by design, not tested in production.

5.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 11: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code.

Maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above)
- Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled f_{PCLK1} = f_{HCLK}/2, f_{PCLK2} = f_{HCLK}

The parameters given in *Table 14*, *Table 15* and *Table 16* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Symbol	Parameter	Conditions		Ма	ıx ⁽¹⁾	Unit
Symbol	Parameter	Conditions	f _{HCLK}	T _A = 85 °C	T _A = 105 °C	Omt
			72 MHz	47.5	48.5	
			48 MHz	34	35	
		External clock ⁽²⁾ , all	36 MHz	27.5	27.5	
		peripherals enabled	24 MHz	20	20.5	
			16 MHz 15		16	
	Supply current		8 MHz	9	11	m (
IDD	in Sleep mode		72 MHz	9.5	11.2	mA
			48 MHz	7.7	9.5	
		External clock ⁽²⁾ , all	36 MHz	6.9	8.5	
		peripherals disabled	24 MHz	Hz 5.9 7.8		
			16 MHz	5.4	7.2	-
			8 MHz	4.7	6.4	

Table 16. Maximum current consumption in Sleep mode, code running from Flash or RAM

1. Guaranteed by characterization results, not tested in production at V_{DD} max, f_{HCLK} max with peripherals enabled.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

				Туј	o ⁽¹⁾	
Symbol	Parameter	Conditions	f _{HCLK}	All peripherals enabled ⁽²⁾	All peripherals disabled	Unit
			72 MHz	32.5	7	
			48 MHz	23	5	
			36 MHz	17.7	4	
			24 MHz	12.2	3.1	
			16 MHz	8.4	2.3	
		External clock ⁽³⁾	8 MHz	4.6	1.5	
			4 MHz	3	1.3	
			2 MHz	2.15	1.25	
			1 MHz	1.7	1.2	
			500 kHz	1.5	1.15	1
	Supply current in		125 kHz	1.35	1.15	mA
I _{DD}	Sleep mode		64 MHz	28.7	5.7	IIIA
			48 MHz	22	4.4	
			36 MHz	17	3.35	
			24 MHz	11.6	2.3	
		Running on high speed internal RC	16 MHz	7.7	1.6	1
		(HSI), AHB prescaler	8 MHz	3.9	0.8	
		used to reduce the frequency	4 MHz	2.3	0.7	
			2 MHz	1.5	0.6	
			1 MHz	1.1	0.5	
			500 kHz	0.9	0.5	
			125 kHz	0.7	0.5	

Table 19. Typical current consumption in Sleep mode, code running from Flash or RAM

1. Typical values are measures at T_A = 25 °C, V_{DD} = 3.3 V.

2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

3. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

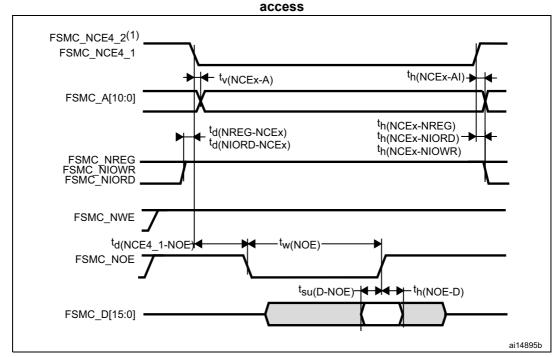
Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	3t _{HCLK} + 0.5	3t _{HCLK} + 1.5	ns
t _{v(NWE_NE)}	FSMC_NEx low to FSMC_NWE low	t _{HCLK} + 0.5	t _{HCLK} + 1.5	ns
t _{w(NWE)}	FSMC_NWE low time	t _{HCLK} – 0.5	t _{HCLK} + 1	ns
t _{h(NE_NWE)}	FSMC_NWE high to FSMC_NE high hold time	t _{HCLK} – 0.5	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	0	ns
t _{h(A_NWE)}	Address hold time after FSMC_NWE high	t _{HCLK}	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	1.5	ns
t _{h(BL_NWE)}	FSMC_BL hold time after FSMC_NWE high	t _{HCLK} – 1.5	-	ns
t _{v(Data_NE)}	FSMC_NEx low to Data valid	-	t _{HCLK}	ns
t _{h(Data_NWE)}	Data hold time after FSMC_NWE high	t _{HCLK}	-	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	-	0	ns
t _{w(NADV)} FSMC_NADV low time		-	t _{HCLK} + 1.5	ns

Table 32. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings⁽¹⁾

1. C_L = 15 pF.

Table 33. Asynchronous mu	Itiplexed read timings
---------------------------	------------------------

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	7t _{HCLK} + 0.5	7t _{HCLK} + 2	
t _{v(NOE_NE)}	FSMC_NEx low to FSMC_NOE low	3t _{HCLK} + 0.5	3t _{HCLK} + 1.5	
t _{w(NOE)}	FSMC_NOE low time	4t _{HCLK} – 1	4t _{HCLK} + 1	
t _{h(NE_NOE)}	FSMC_NOE high to FSMC_NE high hold time	0.5	-	
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	0	
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	0	1	
t _{w(NADV)}	FSMC_NADV low time	t _{HCLK} + 0.5	t _{HCLK} + 2	
t _{h(AD_NADV)}	FSMC_AD (address) valid hold time after FSMC NADV high	t _{HCLK}	-	ns
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	t _{HCLK} – 2	-	
t _{h(BL_NOE)}	FSMC_BL time after FSMC_NOE high	0.5	-	
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	0	
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	4t _{HCLK} – 0.5	-	
t _{su(Data_NOE)}	t _{su(Data_NOE)} Data to FSMC_NOE high setup time		-	
t _{h(Data_NE)}			-	
t _{h(Data_NOE)}	Data hold time after FSMC_NOE high	0	-	


1. C_L = 15 pF.

PC Card/CompactFlash controller waveforms and timings

Figure 30 through *Figure 35* represent synchronous waveforms and *Table 42* provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

- COM.FSMC_SetupTime = 0x04;
- COM.FSMC_WaitSetupTime = 0x07;
- COM.FSMC_HoldSetupTime = 0x04;
- COM.FSMC_HiZSetupTime = 0x00;
- ATT.FSMC_SetupTime = 0x04;
- ATT.FSMC_WaitSetupTime = 0x07;
- ATT.FSMC_HoldSetupTime = 0x04;
- ATT.FSMC_HiZSetupTime = 0x00;
- IO.FSMC_SetupTime = 0x04;
- IO.FSMC WaitSetupTime = 0x07;
- IO.FSMC_HoldSetupTime = 0x04;
- IO.FSMC_HiZSetupTime = 0x00;
- TCLRSetupTime = 0;
- TARSetupTime = 0;

Figure 30. PC Card/CompactFlash controller waveforms for common memory read

1. FSMC_NCE4_2 remains high (inactive during 8-bit access.

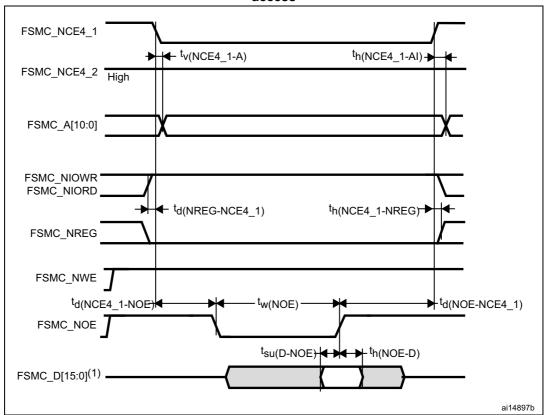


Figure 32. PC Card/CompactFlash controller waveforms for attribute memory read access

1. Only data bits 0...7 are read (bits 8...15 are disregarded).

Symbol Parameter		Conditions	Class					
LU	Static latch-up class	$T_A = +105 \ ^{\circ}C$ conforming to JESD78A	II level A					

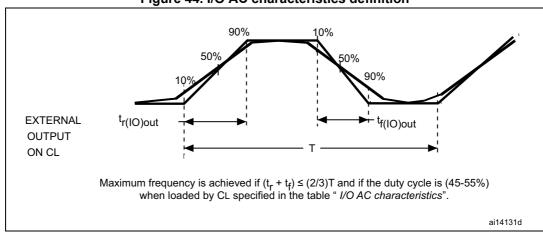
Table 47. Electrical sensitivities

5.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.


The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation).

The test results are given in Table 48

		Functional s			
Symbol	Description	Negative injection	Positive injection	Unit	
	Injected current on OSC_IN32, OSC_OUT32, PA4, PA5, PC13	-0	+0		
I _{INJ}	Injected current on all FT pins	-5	+0	mA	
	Injected current on any other pin	-5	+5		

Table 48. I/O current injection susceptibility

Figure 44. I/O AC characteristics definition

5.3.15 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 49*).

Unless otherwise specified, the parameters given in *Table 52* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Symbol	Parameter Conditions M		Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage	-	-0.5	-	0.8	v
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage	- 2 - V _I		V _{DD} +0.5	v	
V _{hys(NRST)}	IRST Schmitt trigger voltage 200		-	mV		
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	k pull-up equivalent resistor ⁽²⁾ $V_{IN} = V_{SS}$		40	50	kΩ
V _{F(NRST)} ⁽¹⁾	NRST Input filtered pulse -		-	-	100	ns
V _{NF(NRST)} ⁽¹⁾	NRST Input not filtered pulse	-	300	-	-	ns

Table 52. NRST pin characteristics

1. Guaranteed by design, not tested in production.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

5.3.17 Communications interfaces

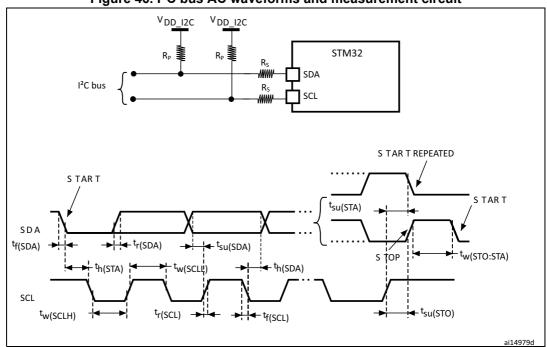
I²C interface characteristics

The STM32F103xF, STM32F103xD and STM32F103xGSTM32F103xF and STM32F103xG performance line $\rm I^2C$ interface meets the requirements of the standard $\rm I^2C$ communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 54*. Refer also to *Section 5.3.14*: I/O port *characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standard mode I ² C ⁽¹⁾⁽²⁾		Fast mode	Unit		
		Min	Max	Min	Мах		
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	110	
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs	
t _{su(SDA)}	SDA setup time	250	-	100	-		
t _{h(SDA)}	SDA data hold time	-	3450 ⁽³⁾	-	900 ⁽³⁾		
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns	
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300		
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-		
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs	
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs	
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs	
Cb	Capacitive load for each bus line	-	400	-	400	pF	
t _{SP}	Pulse width of the spikes that are suppressed by the analog filter for standard and fast mode	0	50 ⁽⁴⁾	0	50 ⁽⁴⁾	μs	

Table 54. I²C characteristics


1. Guaranteed by design, not tested in production.

 f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve the fast mode I²C frequencies and it must be a multiple of 10 MHz in order to reach the I2C fast mode maximum clock speed of 400 kHz.

3. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region on the falling edge of SCL.

4. The minimum width of the spikes filtered by the analog filter is above $t_{\mbox{\scriptsize SP}}(\mbox{max}).$

- 1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD.}$
- 2. Rs: Series protection resistors.
- 3. Rp: Pull-up resistors.
- 4. VDD_I2C : I2C bus supply

f _{SCL} (kHz)	I2C_CCR value		
	R_P = 4.7 k Ω		
400	0x801E		
300	0x8028		
200	0x803C		
100	0x00B4		
50	0x0168		
20	0x0384		

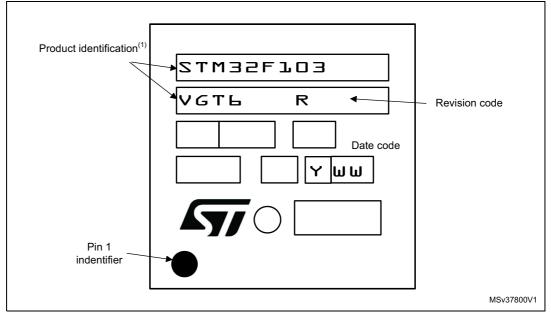
Table 55. SCL frequency (f_{PCLK1}= 36 MHz.,V_{DD I2C} = 3.3 V)⁽¹⁾⁽²⁾

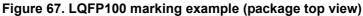
1. R_P = External pull-up resistance, f_{SCL} = I²C speed.

For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application.

Symbol	Parameter	Conditions	Min	Мах	Unit	
DuCy(SCK)	I2S slave input clock duty cycle	Slave mode		30	70	%
f _{CK}	I2S clock frequencyMaster mode (data: 16 bits, Audio frequency = 48 kHz)			1.522	1.525	MHz
1/t _{c(CK)}		Slave mode		0	6.5	111112
t _{r(CK)} t _{f(CK)}	I ² S clock rise and fall time	Capacitive load C _L = {	50 pF	-	8	
t _{v(WS)} ⁽¹⁾	WS valid time	Master mode		3	-	
t _{h(WS)} ⁽¹⁾	WS hold time	Master mode	I2S2	2	-	-
ʰ(WS)		Master mode	I2S3	0	-	
t _{su(WS)} ⁽¹⁾	WS setup time	Slave mode		4	-	
t _{h(WS)} ⁽¹⁾	WS hold time	Slave mode		0	-	
t _{w(CKH)} ⁽¹⁾	CK high and low time	Master f _{PCLK} = 16 MHz, audio frequency = 48 kHz		312.5	-	
t _{w(CKL)} ⁽¹⁾	CK high and low line			345	-	
	Data input setup time	Master receiver	I2S2	2	-	
t _{su(SD_MR)} ⁽¹⁾			I2S3	6.5	-	ns
$t_{su(SD_SR)}^{(1)}$	Data input setup time	Slave receiver		1.5	-	
t _{h(SD_MR)} ⁽¹⁾⁽²⁾	Data input hold time	Master receiver		0	-	
t _{h(SD_SR)} (1)(2)	Data input noid time	Slave receiver		0.5	-	
t _{v(SD_ST)} (1)(2)	Data output valid time	Slave transmitter (after enable edge)		-	18	
t _{h(SD_ST)} ⁽¹⁾	Data output hold time	Slave transmitter (after enable edge)		11	-	
t _{v(SD_MT)} (1)(2)	Data output valid time	Master transmitter (after enable edge)		-	3	
t _{h(SD_MT)} ⁽¹⁾	Data output hold time	Master transmitter (after enable edge)		0	-]

Table 57. I²S characteristics


1. Guaranteed by design and/or characterization results, not tested in production.


2. Depends on $f_{PCLK}.$ For example, if f_{PCLK} =8 MHz, then T_{PCLK} = 1/f_{PLCLK} =125 ns.

Device marking for LQFP100 package

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Date	Revision	Changes		
15-May-2015	4	Added document status on first page. Replace DAC1_OUT/DAC2_OUT by DAC_OUT1/DAC_OUT2, and updated TIM5 in <i>Figure 1: STM32F103xF and STM32F103xG</i> <i>performance line block diagram on page 12.</i> Replaced USBDP/USBDM by USB_DP/USB_DM in the whole document. Updated notes related to electrical values guaranteed by characterization results. Updated <i>Table 20: Peripheral current consumption.</i> Updated <i>Table 36: Synchronous multiplexed NOR/PSRAM read</i> <i>timings</i> to <i>Table 39: Synchronous non-multiplexed PSRAM write</i> <i>timings</i> to <i>Table 39: Synchronous non-multiplexed PSRAM write</i> <i>timings</i> to <i>Table 39: Synchronous non-multiplexed PSRAM read</i> <i>timings</i> on <i>page 73</i> and <i>Figure 26:</i> <i>Synchronous multiplexed NOR/PSRAM read timings on</i> <i>page 77</i> and <i>Figure 35: PC Card/CompactFlash controller</i> waveforms <i>for I/O space write access on page 83.</i> Updated CDM class in <i>Table 46: ESD absolute maximum ratings.</i> Updated Figure 49: <i>SPI timing diagram - master mode</i> ⁽¹⁾ on <i>page 96</i> and <i>Figure 49: SPI timing diagram - master mode</i> ⁽¹⁾ on <i>page 96.</i> Modified note 3 in <i>Table 56: SPI characteristics.</i> <i>Section : I2C interface characteristics:</i> Updated introduction, updated <i>Table 54: I²C characteristics and Figure 46: I²C bus AC waveforms and</i> <i>measurement circuit on page 99.</i> Modified note 2 in <i>Table 64: ADC accuracy - limited test conditions,</i> <i>Figure 55: ADC accuracy characteristics on page 110</i> and <i>Figure 56:</i> <i>Typical connection diagram using the ADC on page 111.</i> Updated <i>Figure 57: Power supply and reference decoupling</i> (V _{<i>REF+</i>} not <i>connected to V_{DDA}) on page 111 and Figure 58: Power supply and</i> <i>reference decoupling</i> (V _{<i>REF+</i>} connected to V _{DDA}) on page 112. Updated Section 6.1: <i>LFBGA144 package information</i> and added <i>Section : Device marking for LFBGA144 package.</i> Updated Section 6.3: <i>LQFP144 package information</i> and added <i>Section : Device marking for LGFP100 package.</i> Updated Section 6.4: <i>LQFP64 package information</i> and added <i>Section : Device marking for LQFP144 packag</i>		

Table 74. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID16554 Rev 4

