

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	112
Program Memory Size	768KB (768K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 21x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LFBGA
Supplier Device Package	144-LFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103zfh6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Intro	oduction	
2	Dese	cription	
	2.1	Device	overview
	2.2	Full co	mpatibility throughout the family
	2.3	Overvie	ew
		2.3.1	ARM [®] Cortex [®] -M3 core with embedded Flash and SRAM
		2.3.2	Memory protection unit
		2.3.3	Embedded Flash memory
		2.3.4	CRC (cyclic redundancy check) calculation unit
		2.3.5	Embedded SRAM
		2.3.6	FSMC (flexible static memory controller)
		2.3.7	LCD parallel interface
		2.3.8	Nested vectored interrupt controller (NVIC)
		2.3.9	External interrupt/event controller (EXTI)
		2.3.10	Clocks and startup
		2.3.11	Boot modes
		2.3.12	Power supply schemes
		2.3.13	Power supply supervisor
		2.3.14	Voltage regulator
		2.3.15	Low-power modes
		2.3.16	DMA
		2.3.17	RTC (real-time clock) and backup registers
		2.3.18	Timers and watchdogs
		2.3.19	I ² C bus
		2.3.20	Universal synchronous/asynchronous receiver transmitters (USARTs) . 21
		2.3.21	Serial peripheral interface (SPI) 22
		2.3.22	Inter-integrated sound (I ² S)
		2.3.23	SDIO
		2.3.24	Controller area network (CAN)
		2.3.25	Universal serial bus (USB) 22
		2.3.26	GPIOs (general-purpose inputs/outputs)
		2.3.27	ADC (analog to digital converter)
		2.3.28	DAC (digital-to-analog converter)

DocID16554 Rev 4

Figure 41.	Standard I/O input characteristics - TTL port	
Figure 42.	5 V tolerant I/O input characteristics - CMOS port	
Figure 43.	5 V tolerant I/O input characteristics - TTL port93	3
Figure 44.	I/O AC characteristics definition	6
Figure 45.	Recommended NRST pin protection	
Figure 46.	I ² C bus AC waveforms and measurement circuit	9
Figure 47.	SPI timing diagram - slave mode and CPHA = 0 10	
Figure 48.	SPI timing diagram - slave mode and CPHA = $1^{(1)}$	1
Figure 49.	SPI timing diagram - master mode ⁽¹⁾ 102	2
Figure 50.	I ² S slave timing diagram (Philips protocol) ⁽¹⁾ 104	4
Figure 51.	I ² S master timing diagram (Philips protocol) ⁽¹⁾ 104	4
Figure 52.	SDIO high-speed mode	5
Figure 53.	SD default mode	5
Figure 54.	USB timings: definition of data signal rise and fall time	7
Figure 55.	ADC accuracy characteristics	0
Figure 56.	Typical connection diagram using the ADC	1
Figure 57.	Power supply and reference decoupling (V _{REF+} not connected to V _{DDA})	
Figure 58.	Power supply and reference decoupling (V _{REF+} connected to V _{DDA})	2
Figure 59.	12-bit buffered /non-buffered DAC	
Figure 60.	LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,	
	0.8 mm pitch, package outline	7
Figure 61.	LFBGA144 marking example (package top view)	8
Figure 62.	LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline	9
Figure 63.	LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package	
	recommended footprint	1
Figure 64.	LQFP144 marking example (package top view)122	2
Figure 65.	LFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline	3
Figure 66.	LQFP100 recommended footprint	4
Figure 67.	LQFP100 marking example (package top view)12	5
Figure 68.	LFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline	6
Figure 69.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint	
Figure 70.	LQFP64 marking example (package top view)128	
Figure 71.	LQFP100 P _D max vs. T _A	1

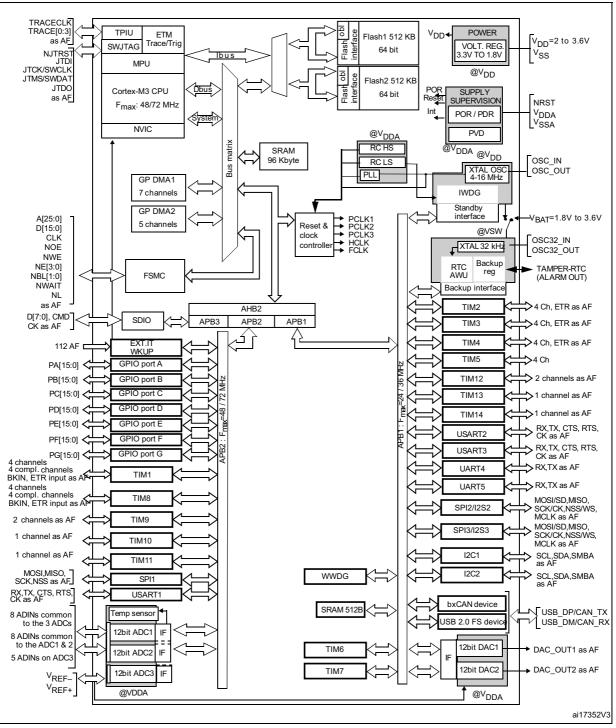


Figure 1. STM32F103xF and STM32F103xG performance line block diagram

T_A = -40 °C to +85 °C (suffix 6, see *Table 73*) or -40 °C to +105 °C (suffix 7, see *Table 73*), junction temperature up to 105 °C or 125 °C, respectively.

2. AF = alternate function on I/O port pin.9

2.3.10 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).

Several prescalers allow the configuration of the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz. The maximum allowed frequency of the low speed APB domain is 36 MHz. See *Figure 2* for details on the clock tree.

2.3.11 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from user Flash: you have an option to boot from any of two memory banks. By default, boot from Flash memory bank 1 is selected. You can choose to boot from Flash memory bank 2 by setting a bit in the option bytes.
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1.

2.3.12 Power supply schemes

- V_{DD} = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 2.0 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC or DAC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAT} = 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to Figure 10: Power supply scheme.

2.3.13 Power supply supervisor

The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to *Table 12: Embedded reset and power control block characteristics* for the values of $V_{POR/PDR}$ and V_{PVD} .

The DMA can be used with the main peripherals: SPI, I²C, USART, general-purpose, basic and advanced-control timers TIMx, DAC, I²S, SDIO and ADC.

2.3.17 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are forty-two 16-bit registers used to store 84 bytes of user application data when V_{DD} power is not present. They are not reset by a system or power reset, and they are not reset when the device wakes up from the Standby mode.

The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

2.3.18 Timers and watchdogs

The XL-density STM32F103xF/G performance line devices include up to two advancedcontrol timers, up to ten general-purpose timers, two basic timers, two watchdog timers and a SysTick timer.

Table 4 compares the features of the advanced-control, general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TIM1, TIM8	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	Yes
TIM2, TIM3, TIM4, TIM5	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TIM9, TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	No
TIM10, TIM11 TIM13, TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

Table 4. STM32F103xF and STM32F103xG timer feature comparison

- 4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).
- PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).
- 6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.
- 7. For the LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 and LQFP144/BGA144 packages, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to Alternate function I/O and debug configuration section in the STM32F10xxx reference manual.
- This alternate function can be remapped by software to some other port pins (if available on the used package). For more
 details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual,
 available from the STMicroelectronics website: www.st.com.
- 9. For devices delivered in LQFP64 packages, the FSMC function is not available.

5.1.6 Power supply scheme

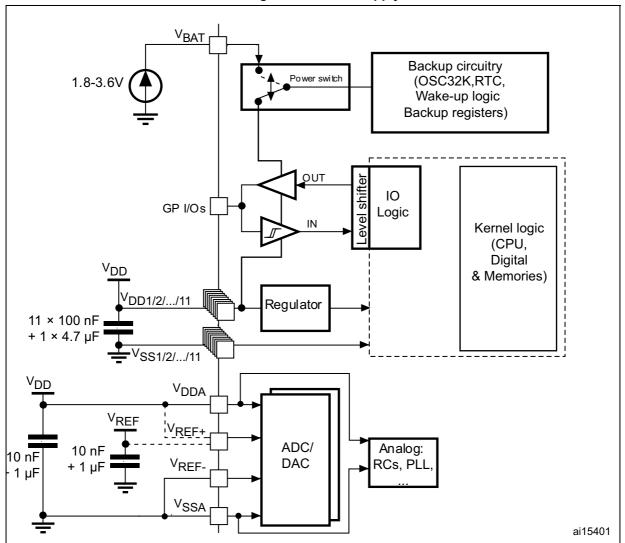


Figure 10. Power supply scheme

Caution: In Figure 10, the 4.7 µF capacitor must be connected to V_{DD3}.

Symbol	Parameter	Conditions	£	Ма	Unit	
Symbol	Falailletei	Conditions	fhclk	T _A = 85 °C	T _A = 105 °C	Onit
			72 MHz	68	69	
			48 MHz	51	51	
		External clock ⁽²⁾ , all	36 MHz	41	41	
		peripherals enabled	24 MHz	29	30	-
			16 MHz	22	22.5	
	Supply current in		8 MHz	12.5	14	mA
IDD	Run mode		72 MHz	39	39	IIIA
			48 MHz	29.5	30	
		External clock ⁽²⁾ , all	36 MHz	24	24.5	-
		peripherals disabled	24 MHz	17.5	19	
			16 MHz	14	15	
			8 MHz	8.5	10.5	

Table 14. Maximum current consumption in Run mode, code with data processingrunning from Flash

1. Guaranteed by characterization results, not tested in production.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Symbol	Parameter	Conditions	£	Ма	Unit	
Symbol	Farameter	Conditions	f _{HCLK}	T _A = 85 °C	T _A = 105 °C	Unit
			72 MHz	65	65.5	
			48 MHz	46.5	47	
		External clock ⁽²⁾ , all	36 MHz	37	37	
, Supply		peripherals enabled	24 MHz	26.5	27	
			16 MHz	19	20	
	Supply current		8 MHz	11.5	13	mA
IDD	in Run mode	External clock ⁽²⁾ , all peripherals disabled	72 MHz	34.5	36	mA
			48 MHz	25	26	
			36 MHz	20.5	21	
			24 MHz	15	16	
			16 MHz	11	13	1
			8 MHz	7.5	9	1

Table 15. Maximum current consumption in Run mode, code with data processing running from RAM

1. Guaranteed by characterization results, not tested in production at V_{DD} max, f_{HCLK} max.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

				Туј	Тур ⁽¹⁾						
Symbol	Parameter	Conditions	Conditions f _{HCLK}		ons f _{HCLK} All peripherals All peripherals disabled			Unit			
			72 MHz	32.5	7						
			48 MHz	23	5						
			36 MHz	17.7	4						
			24 MHz	12.2	3.1						
			16 MHz	8.4	2.3						
		External clock ⁽³⁾	8 MHz	4.6	1.5						
			4 MHz	3	1.3						
			2 MHz	2.15	1.25						
								1 MHz	1.7	1.2	
			500 kHz 1.5	1.15							
	Supply current in		125 kHz	1.35	1.15	mA					
I _{DD}	Sleep mode	Running on high speed internal RC	64 MHz	28.7	5.7	IIIA					
			48 MHz	22	4.4						
			36 MHz	17	3.35						
			24 MHz	11.6	2.3						
			16 MHz	7.7	1.6						
		(HSI), AHB prescaler	8 MHz	3.9	0.8						
		used to reduce the frequency	4 MHz	2.3	0.7						
			2 MHz	1.5	0.6						
			1 MHz	1.1	0.5						
			500 kHz	0.9	0.5						
			125 kHz	0.7	0.5						

Table 19. Typical current consumption in Sleep mode, code running from Flash or RAM

1. Typical values are measures at T_A = 25 °C, V_{DD} = 3.3 V.

2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

3. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 23*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Parameter Conditions		Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	16	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
С	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 Ω	-	30	-	pF
i ₂	HSE driving current	V _{DD} = 3.3 V, V _{IN} = V _{SS} with 30 pF load	-	-	1	mA
9 _m	Oscillator transconductance	Startup	25	-	-	mA/V
$t_{SU(HSE)}^{(4)}$	Startup time	V_{DD} is stabilized	-	2	-	ms

Table 23. HSE 4-16 MHz oscillator chara	cteristics ⁽¹⁾⁽²⁾
---	------------------------------

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by characterization results, not tested in production.

3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.

4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 20*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.

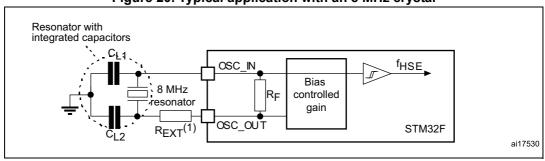
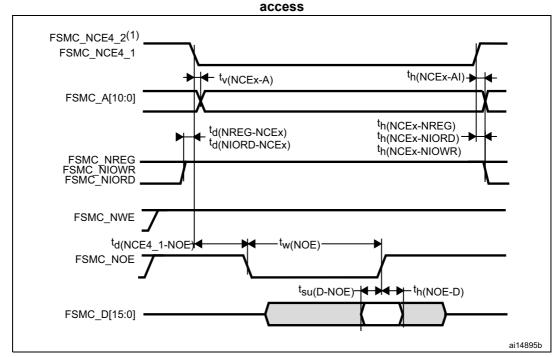


Figure 20. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.


1. C_L = 15 pF.

PC Card/CompactFlash controller waveforms and timings

Figure 30 through *Figure 35* represent synchronous waveforms and *Table 42* provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

- COM.FSMC_SetupTime = 0x04;
- COM.FSMC_WaitSetupTime = 0x07;
- COM.FSMC_HoldSetupTime = 0x04;
- COM.FSMC_HiZSetupTime = 0x00;
- ATT.FSMC_SetupTime = 0x04;
- ATT.FSMC_WaitSetupTime = 0x07;
- ATT.FSMC_HoldSetupTime = 0x04;
- ATT.FSMC_HiZSetupTime = 0x00;
- IO.FSMC_SetupTime = 0x04;
- IO.FSMC WaitSetupTime = 0x07;
- IO.FSMC_HoldSetupTime = 0x04;
- IO.FSMC_HiZSetupTime = 0x00;
- TCLRSetupTime = 0;
- TARSetupTime = 0;

Figure 30. PC Card/CompactFlash controller waveforms for common memory read

1. FSMC_NCE4_2 remains high (inactive during 8-bit access.

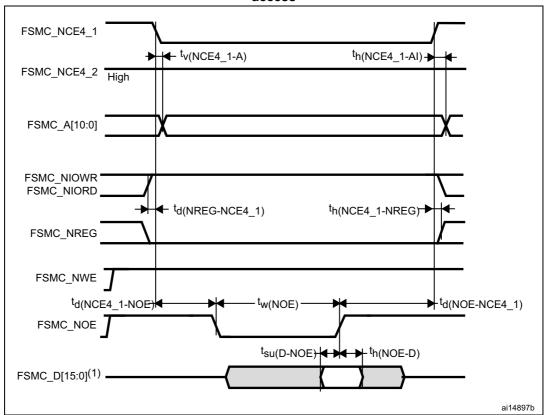


Figure 32. PC Card/CompactFlash controller waveforms for attribute memory read access

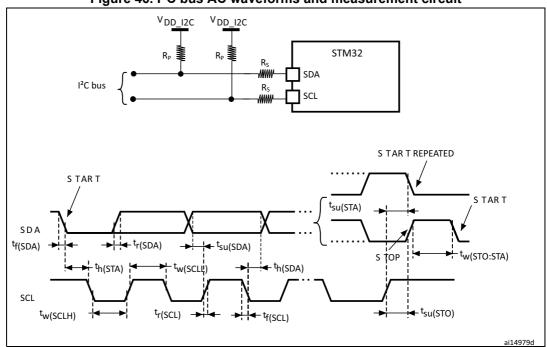
1. Only data bits 0...7 are read (bits 8...15 are disregarded).

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 44* and *Table 51*, respectively.

Unless otherwise specified, the parameters given in *Table 51* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

MODEx[1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_{L} = 50 pF, V_{DD} = 2 V to 3.6 V	-	2	MHz
10	t _{f(IO)out}	Output high to low level fall time	C ₁ = 50 pF, V _{DD} = 2 V to 3.6 V	-	125 ⁽³⁾	ns
	t _{r(IO)out}	Output low to high level rise time	CL - 30 μι, νDD - 2 ν 10 3.0 ν	-	125 ⁽³⁾	115
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_{L} = 50 pF, V_{DD} = 2 V to 3.6 V	-	10	MHz
01	t _{f(IO)out}	Output high to low level fall time	C ₁ = 50 pF, V _{DD} = 2 V to 3.6 V	-	25 ⁽³⁾	nc
	t _{r(IO)out}	Output low to high level rise time	$V_{\rm L} = 50 \text{pr}, v_{\rm DD} = 2 \text{v} 10 3.0 \text{v}$		25 ⁽³⁾	ns
		Maximum frequency ⁽²⁾	C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	50	MHz
	F _{max(IO)out}		C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	30	MHz
			C_{L} = 50 pF, V_{DD} = 2 V to 2.7 V		20	MHz
			C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾	
11	t _{f(IO)out}	Output high to low level fall time	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	8 ⁽³⁾	
			C_L = 50 pF, V_{DD} = 2 V to 2.7 V	-	12 ⁽³⁾	ns
			C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾	115
	t _{r(IO)out}	Output low to high level rise time	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	8 ⁽³⁾	
			C_{L} = 50 pF, V_{DD} = 2 V to 2.7 V		12 ⁽³⁾	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	ns


Table 51. I/O AC characteristics⁽¹⁾

1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register.

2. The maximum frequency is defined in Figure 44.

3. Guaranteed by design, not tested in production.

- 1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$
- 2. Rs: Series protection resistors.
- 3. Rp: Pull-up resistors.
- 4. VDD_I2C : I2C bus supply

f _{SCL} (kHz)	I2C_CCR value
	R_P = 4.7 k Ω
400	0x801E
300	0x8028
200	0x803C
100	0x00B4
50	0x0168
20	0x0384

Table 55. SCL frequency (f_{PCLK1}= 36 MHz.,V_{DD I2C} = 3.3 V)⁽¹⁾⁽²⁾

1. R_P = External pull-up resistance, f_{SCL} = I²C speed.

For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application.

5.3.20 DAC electrical specifications

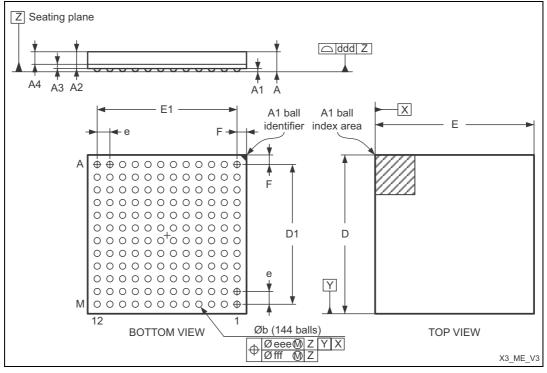
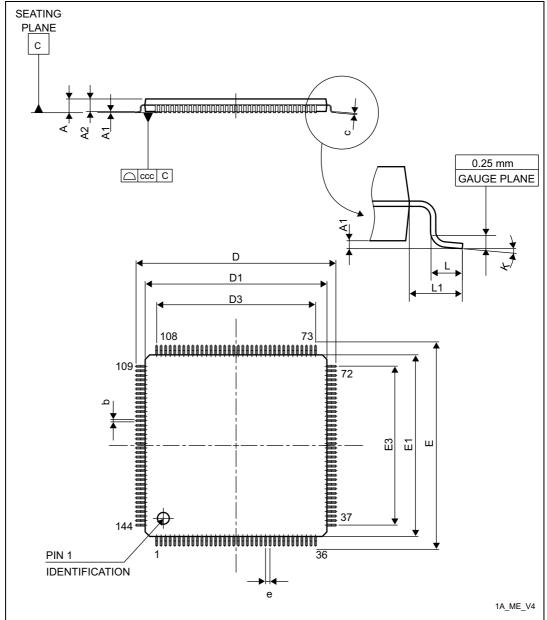

Symbol	Parameter	Min	Тур	Мах	Unit	Comments
V _{DDA}	Analog supply voltage	2.4	-	3.6	V	
V _{REF+}	Reference supply voltage	2.4	-	3.6	V	V _{REF+} must always be below V _{DDA}
V _{SSA}	Ground	0	-	0	V	
р (1)	Resistive load vs. V _{SSA} with buffer ON	5	-	-	kΩ	
R _{LOAD} ⁽¹⁾	Resistive load vs. V _{DDA} with buffer ON	15	-	-	kΩ	
R _O ⁽¹⁾	Impedance output with buffer OFF	-	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 $M\Omega$
C _{LOAD} ⁽¹⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	v	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at V _{REF+} = 3.6 V
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} – 0.2	V	and (0x155) and (0xEAB) at $V_{REF+} = 3.0 \text{ V}$ 2.4 V
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5		mV	It gives the maximum output
DAC_ ⁽¹⁾ OU T max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF	-		V _{REF+} – 10 mV	V	excursion of the DAC.
I _{DDVREF+}	DAC DC current consumption in quiescent mode (Standby mode)	-		380		With no load, worst code (0x0E4) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
	DAC DC current	-		380	μA	With no load, middle code (0x800) on the inputs
I _{DDA}	consumption in quiescent mode ⁽²⁾	-		480	μA	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
DNL ⁽³⁾	Differential non linearity Difference between two	-		±0.5	LSB	Given for the DAC in 10-bit configuration
	consecutive code-1LSB)	-		±3	LSB	Given for the DAC in 12-bit configuration

Table 66. DAC characteristics

6.1 LFBGA144 package information

Figure 60. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package outline

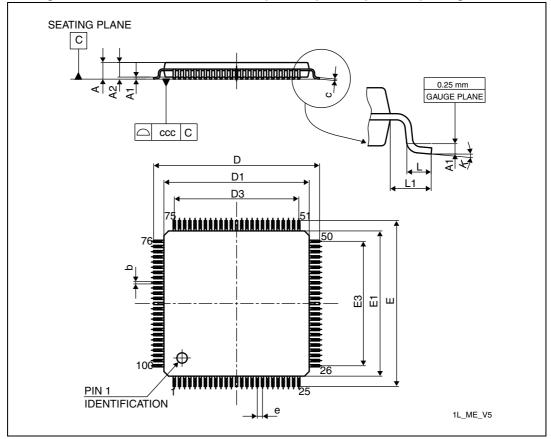
1. Drawing is not to scale.


Table 68. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,
0.8 mm pitch, package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Тур	Min	Max
A ⁽²⁾	-	-	1.700			0.0669
A1	0.210	-	-	0.0083		
A2	-	1.060	-		0.0417	
A3		0.026			0.0010	
A4	-	0.800	-	-	0.0315	-
b	0.350	0.400	0.450	0.0138	0.0157	0.0177
D	9.850	10.000	10.150	0.3878	0.3937	0.3996
D1	-	8.800	-	-	0.3465	-
E	9.850	10.000	10.150	0.3878	0.3937	0.3996
E1	-	8.800	-	-	0.3465	-
е	-	0.800	-	-	0.0315	-
F	-	0.600	-	-	0.0236	-
ddd	-	-	0.100	-	-	0.0039

6.2 LQFP144 package information

Figure 62. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline



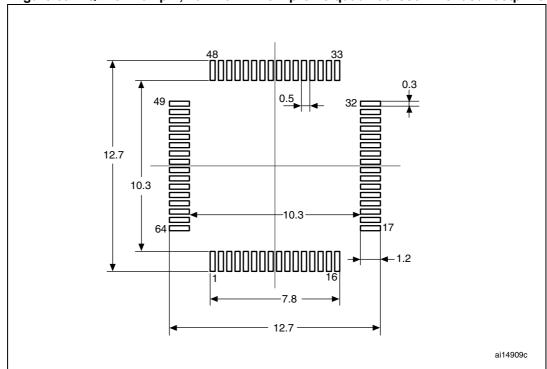
1. Drawing is not to scale.

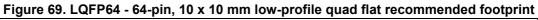
6.3 LQFP100 package information

Figure 65. LFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline

1. Drawing is not to scale.

Table 70. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package
mechanical data


Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
Е	15.800	16.000	16.200	0.6220	0.6299	0.6378
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-



Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
θ	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
ссс	-	-	0.080	-	-	0.0031

Table 71. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are in millimeters.

