

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, Motor Control PWM, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	112
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 21x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f103zgt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3.5 Embedded SRAM

96 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.

2.3.6 FSMC (flexible static memory controller)

The FSMC is embedded in the STM32F103xF and STM32F103xG performance line family. It has four Chip Select outputs supporting the following modes: PC Card/Compact Flash, SRAM, PSRAM, NOR and NAND.

Functionality overview:

- The three FSMC interrupt lines are ORed in order to be connected to the NVIC
- Write FIFO
- Code execution from external memory except for NAND Flash and PC Card
- The targeted frequency, f_{CLK}, is HCLK/2, so external access is at 36 MHz when HCLK is at 72 MHz and external access is at 24 MHz when HCLK is at 48 MHz

2.3.7 LCD parallel interface

The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-effective graphic applications using LCD modules with embedded controllers or high-performance solutions using external controllers with dedicated acceleration.

2.3.8 Nested vectored interrupt controller (NVIC)

The STM32F103xF and STM32F103xG performance line embeds a nested vectored interrupt controller able to handle up to 60 maskable interrupt channels (not including the 16 interrupt lines of Cortex[®]-M3) and 16 priority levels.

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of *late arriving* higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

2.3.9 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 112 GPIOs can be connected to the 16 external interrupt lines.

The DMA can be used with the main peripherals: SPI, I²C, USART, general-purpose, basic and advanced-control timers TIMx, DAC, I²S, SDIO and ADC.

2.3.17 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are forty-two 16-bit registers used to store 84 bytes of user application data when V_{DD} power is not present. They are not reset by a system or power reset, and they are not reset when the device wakes up from the Standby mode.

The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

2.3.18 Timers and watchdogs

The XL-density STM32F103xF/G performance line devices include up to two advancedcontrol timers, up to ten general-purpose timers, two basic timers, two watchdog timers and a SysTick timer.

Table 4 compares the features of the advanced-control, general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TIM1, TIM8	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	Yes
TIM2, TIM3, TIM4, TIM5	16-bit	Up, down, up/down	Any integer between Yes 4		4	No
TIM9, TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	No
TIM10, TIM11 TIM13, TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

Table 4. STM32F103xF and STM32F103xG timer feature comparison

2.3.29 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2 V < V_{DDA} < 3.6 V. The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.

2.3.30 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

2.3.31 Embedded Trace Macrocell™

The ARM[®] Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F10xxx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.

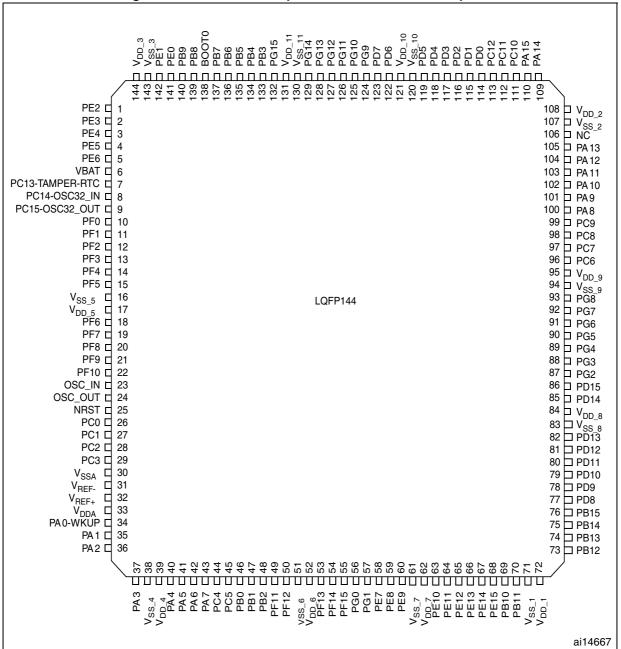
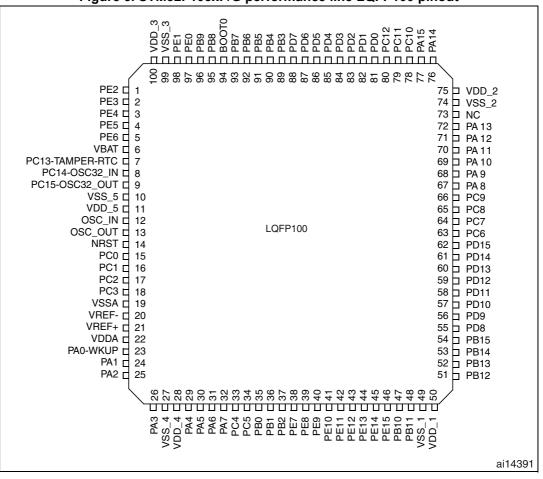



Figure 4. STM32F103xF/G performance line LQFP144 pinout

1. The above figure shows the package top view.

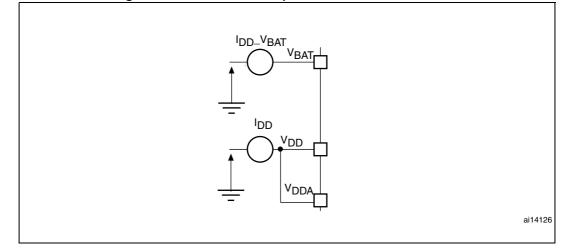


Figure 5. STM32F103xF/G performance line LQFP100 pinout

1. The above figure shows the package top view.

5.1.7 Current consumption measurement

Figure 11. Current consumption measurement scheme

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
f _{HSE_ext}	User external clock source frequency ⁽¹⁾		1	8	25	MHz		
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V _{DD}	V		
V _{HSEL}	OSC_IN input pin low level voltage	_	V_{SS}	-	$0.3V_{DD}$	v		
t _{w(HSE)} t _{w(HSE)}	OSC_IN high or low time ⁽¹⁾		5	-	-	ns		
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	20	115		
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	5	-	pF		
DuCy _(HSE)	Duty cycle	-	45	-	55	%		
١ _L	OSC_IN Input leakage current	$V_{SS}{\leq}V_{IN}{\leq}V_{DD}$	-	-	±1	μA		

Table 21. High-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

Low-speed external user clock generated from an external source

The characteristics given in *Table 22* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 10*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	v
t _{w(LSE)} t _{w(LSE)}	OSC32_IN high or low time ⁽¹⁾		450	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(LSE)	Duty cycle	-	30	-	70	%
١L	OSC32_IN Input leakage current	$V_{SS} \le V_{IN} \le V_D$	-	-	±1	μA

Table 22. Low-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

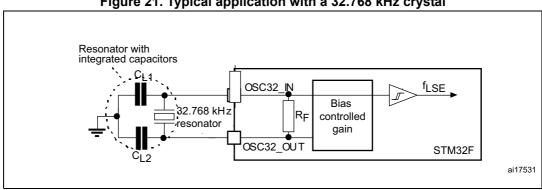


Figure 21. Typical application with a 32.768 kHz crystal

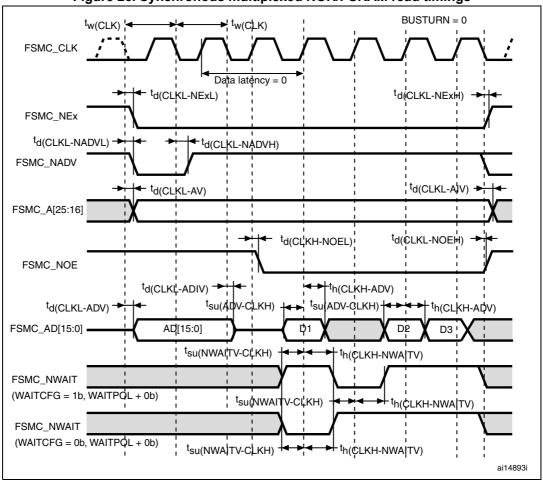
5.3.7 Internal clock source characteristics

The parameters given in Table 25 are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{HSI}	Frequency	-		-	8		MHz
DuCy _(HSI)	Duty cycle	-		45	-	55	%
		User-trimmed register ⁽²⁾	with the RCC_CR	-	-	1 ⁽³⁾	%
	Accuracy of the HSI oscillator	Factory- calibrated ⁽⁴⁾	T _A = -40 to 105 °C	-2	-	2.5	%
ACC _{HSI}			T _A = −10 to 85 °C	-1.5	-	2.2	%
			T _A = 0 to 70 °C	-1.3	-	2	%
			T _A = 25 °C	-1.1	-	1.8	%
t _{su(HSI)} ⁽⁴⁾	HSI oscillator startup time	-		1	-	2	μs
I _{DD(HSI)} ⁽⁴⁾	HSI oscillator power consumption	-		-	80	100	μA

Table 25. HSI oscillator characteristics⁽¹⁾


1. V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

Refer to application note AN2868 "STM32F10xxx internal RC oscillator (HSI) calibration" available from 2. the ST website www.st.com.

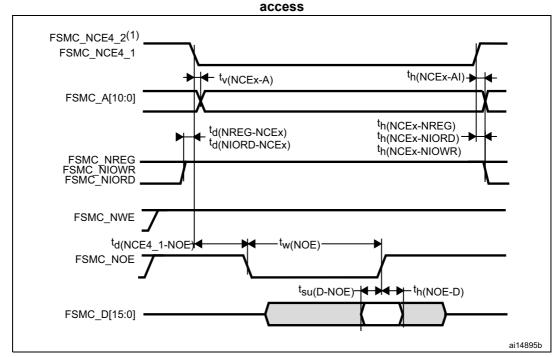
3. Guaranteed by design, not tested in production.

4. Guaranteed by characterization results, not tested in production.

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	27.6	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x = 02)	-	0.5	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x = 02)	1	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	1	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	0.5	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x = 1625)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x = 1625)	1.5	-	ns
t _{d(CLKL-NOEL)}	FSMC_CLK low to FSMC_NOE low	-	14	ns
t _{d(CLKL-NOEH)}	FSMC_CLK low to FSMC_NOE high	1	-	ns
t _{d(CLKL-ADV)}	FSMC_CLK low to FSMC_AD[15:0] valid	-	11	ns
t _{d(CLKL-ADIV)}	FSMC_CLK low to FSMC_AD[15:0] invalid	0.5	-	ns
t _{su(ADV-CLKH)}	FSMC_A/D[15:0] valid data before FSMC_CLK high	2	-	ns
t _{h(CLKH-ADV)}	FSMC_A/D[15:0] valid data after FSMC_CLK high	0	-	ns
t _{su(NWAITV-CLKH)}	FSMC_NWAIT valid before FSMC_CLK high	8	-	ns
t _{h(CLKH-NWAITV)}	FSMC_NWAIT valid after FSMC_CLK high	2	-	ns

Table 36. Synchronous multiplexed NOR/PSRAM read timings⁽¹⁾

1. C_L = 15 pF.


1. C_L = 15 pF.

PC Card/CompactFlash controller waveforms and timings

Figure 30 through *Figure 35* represent synchronous waveforms and *Table 42* provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

- COM.FSMC_SetupTime = 0x04;
- COM.FSMC_WaitSetupTime = 0x07;
- COM.FSMC_HoldSetupTime = 0x04;
- COM.FSMC_HiZSetupTime = 0x00;
- ATT.FSMC_SetupTime = 0x04;
- ATT.FSMC_WaitSetupTime = 0x07;
- ATT.FSMC_HoldSetupTime = 0x04;
- ATT.FSMC_HiZSetupTime = 0x00;
- IO.FSMC_SetupTime = 0x04;
- IO.FSMC WaitSetupTime = 0x07;
- IO.FSMC_HoldSetupTime = 0x04;
- IO.FSMC_HiZSetupTime = 0x00;
- TCLRSetupTime = 0;
- TARSetupTime = 0;

Figure 30. PC Card/CompactFlash controller waveforms for common memory read

1. FSMC_NCE4_2 remains high (inactive during 8-bit access.

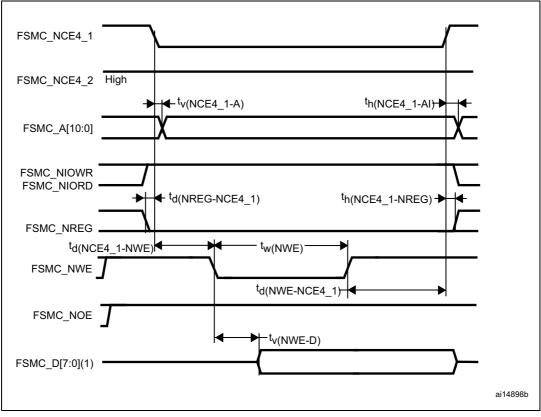
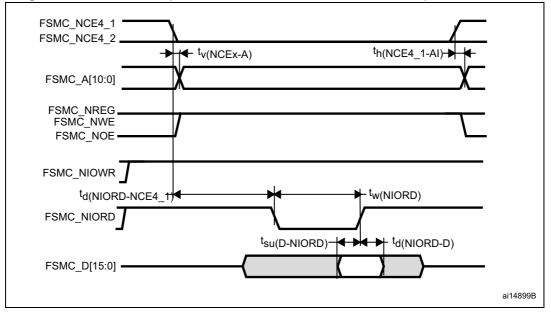



Figure 33. PC Card/CompactFlash controller waveforms for attribute memory write access

1. Only data bits 0...7 are driven (bits 8...15 remains HiZ).

Figure 34. PC Card/CompactFlash controller waveforms for I/O space read access

Symbol	Parameter	Min	Мах	Unit
tw _(NIOWR)	FSMC_NIOWR low width	8 THCLK	-	ns
tv _(NIOWR-D)	FSMC_NIOWR low to FSMC_D[15:0] valid	-	5 THCLK - 4	ns
th _(NIOWR-D)	FSMC_NIOWR high to FSMC_D[15:0] invalid	11THCLK- 7	-	ns
td _(NCE4_1-NIOWR)	FSMC_NCE4_1 low to FSMC_NIOWR valid	-	5THCLK + 1	ns
th _(NCEx-NIOWR)	FSMC_NCEx high to FSMC_NIOWR invalid	5THCLK - 2.5	-	ns
td _(NIORD-NCEx)	FSMC_NCEx low to FSMC_NIORD valid	-	5THCLK - 0.5	ns
th _(NCEx-NIORD)	FSMC_NCEx high to FSMC_NIORD) valid	5 THCLK - 0.5	-	ns
tw _(NIORD)	FSMC_NIORD low width	8THCLK	-	ns
tsu _(D-NIORD)	FSMC_D[15:0] valid before FSMC_NIORD high	28	-	ns
td _(NIORD-D)	FSMC_D[15:0] valid after FSMC_NIORD high	3	-	ns

Table 41. Switching characteristics for PC Card/CF read and write cycles in I/O space

NAND controller waveforms and timings

Figure 36 through *Figure 39* represent synchronous waveforms and *Table 43* provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

- COM.FSMC_SetupTime = 0x00;
- COM.FSMC_WaitSetupTime = 0x02;
- COM.FSMC_HoldSetupTime = 0x01;
- COM.FSMC_HiZSetupTime = 0x00;
- ATT.FSMC_SetupTime = 0x00;
- ATT.FSMC_WaitSetupTime = 0x02;
- ATT.FSMC_HoldSetupTime = 0x01;
- ATT.FSMC_HiZSetupTime = 0x00;
- Bank = FSMC_Bank_NAND;
- MemoryDataWidth = FSMC_MemoryDataWidth_16b;
- ECC = FSMC_ECC_Enable;
- ECCPageSize = FSMC_ECCPageSize_512Bytes;
- TCLRSetupTime = 0;
- TARSetupTime = 0;

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 44* and *Table 51*, respectively.

Unless otherwise specified, the parameters given in *Table 51* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

MODEx[1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_{L} = 50 pF, V_{DD} = 2 V to 3.6 V	-	2	MHz
10	t _{f(IO)out}	Output high to low level fall time	C ₁ = 50 pF, V _{DD} = 2 V to 3.6 V	-	125 ⁽³⁾	ns
	t _{r(IO)out}	Output low to high level rise time	CL - 30 μι, νDD - 2 ν 10 3.0 ν	-	125 ⁽³⁾	115
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_{L} = 50 pF, V_{DD} = 2 V to 3.6 V	-	10	MHz
01	t _{f(IO)out}	Output high to low level fall time	C = 50 pE V = 2 V to 3.6 V	-	25 ⁽³⁾	nc
	t _{r(IO)out}	Output low to high level rise time	$C_{L} = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$		25 ⁽³⁾	ns
			C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	50	MHz
	F _{max(IO)out}	Maximum frequency ⁽²⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	30	MHz
			C_L = 50 pF, V_{DD} = 2 V to 2.7 V	-	20	MHz
			C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾	
11	t _{f(IO)out}	Output high to low level fall time	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	8 ⁽³⁾	
			C_L = 50 pF, V_{DD} = 2 V to 2.7 V	-	12 ⁽³⁾	ns
			C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾	115
	t _{r(IO)out}	Output low to high level rise time	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	8 ⁽³⁾	
			C_L = 50 pF, V_{DD} = 2 V to 2.7 V	-	12 ⁽³⁾	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	ns

Table 51. I/O AC characteristics⁽¹⁾

1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register.

2. The maximum frequency is defined in Figure 44.

3. Guaranteed by design, not tested in production.

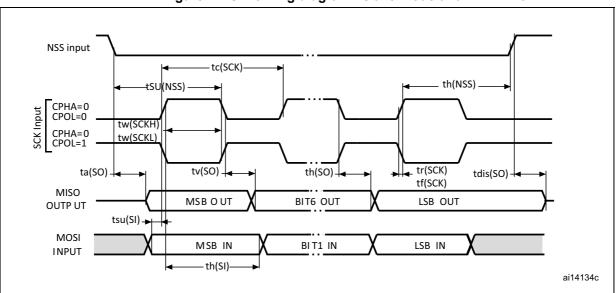
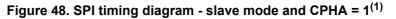
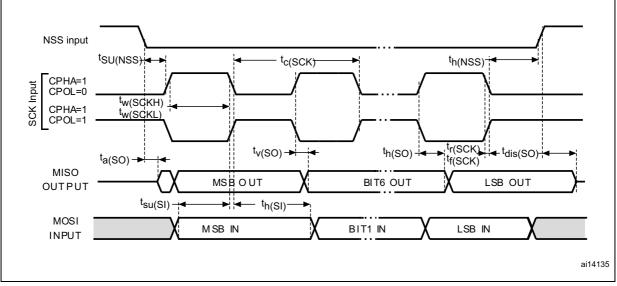




Figure 47. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$.

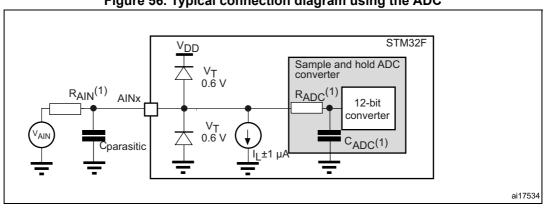
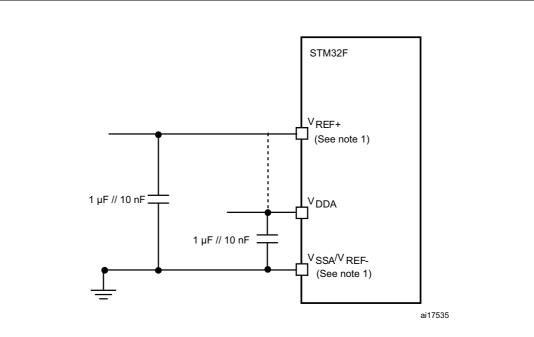


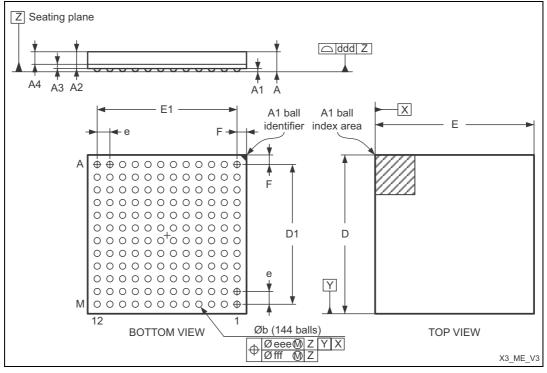
Figure 56. Typical connection diagram using the ADC


Refer to Table 62 for the values of RAIN, RADC and CADC. 1.

 $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high $C_{parasitic}$ value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 57 or Figure 58, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.



1. V_{REF+} and V_{REF-} inputs are available only on 100-pin packages.

6.1 LFBGA144 package information

Figure 60. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package outline

1. Drawing is not to scale.

Table 68. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,
0.8 mm pitch, package mechanical data

Symbol		millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Тур	Min	Max		
A ⁽²⁾	-	-	1.700			0.0669		
A1	0.210	-	-	0.0083				
A2	-	1.060	-		0.0417			
A3		0.026			0.0010			
A4	-	0.800	-	-	0.0315	-		
b	0.350	0.400	0.450	0.0138	0.0157	0.0177		
D	9.850	10.000	10.150	0.3878	0.3937	0.3996		
D1	-	8.800	-	-	0.3465	-		
E	9.850	10.000	10.150	0.3878	0.3937	0.3996		
E1	-	8.800	-	-	0.3465	-		
е	-	0.800	-	-	0.0315	-		
F	-	0.600	-	-	0.0236	-		
ddd	-	-	0.100	-	-	0.0039		

Table 68. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,0.8 mm pitch, package mechanical data (continued)

Symbol	millimeters					
Symbol	Min	Тур	Мах	Тур	Min	Мах
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. STATSChipPAC package dimensions.

Device marking for LFBGA144 package

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

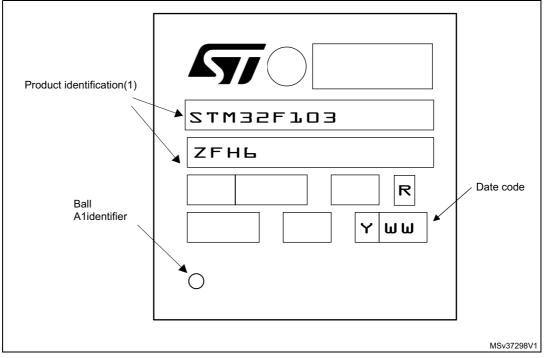


Figure 61. LFBGA144 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

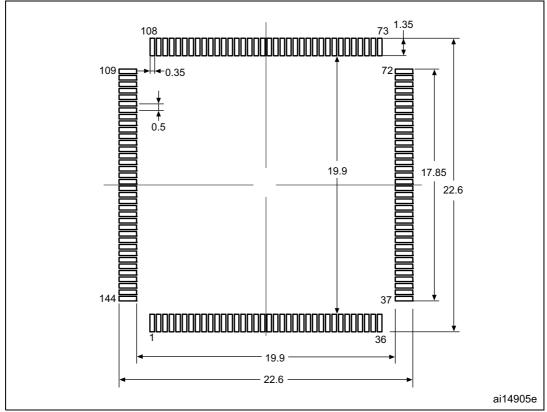


Figure 63. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

6.4 LQFP64 package information

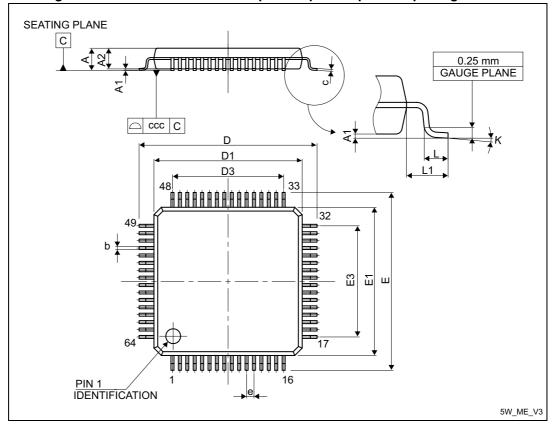


Figure 68. LFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline

1. Drawing is not in scale.

Table 71. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data

Cumula al		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	-	12.000	-	-	0.4724	-	
D1	-	10.000	-	-	0.3937	-	
D3	-	7.500	-	-	0.2953	-	
E	-	12.000	-	-	0.4724	-	
E1	-	10.000	-	-	0.3937	-	

