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Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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General Overview
The Spartan-II family of FPGAs have a regular, flexible, 
programmable architecture of Configurable Logic Blocks 
(CLBs), surrounded by a perimeter of programmable 
Input/Output Blocks (IOBs). There are four Delay-Locked 
Loops (DLLs), one at each corner of the die. Two columns 
of block RAM lie on opposite sides of the die, between the 
CLBs and the IOB columns. These functional elements are 
interconnected by a powerful hierarchy of versatile routing 
channels (see Figure 1).

Spartan-II FPGAs are customized by loading configuration 
data into internal static memory cells. Unlimited 
reprogramming cycles are possible with this approach. 
Stored values in these cells determine logic functions and 
interconnections implemented in the FPGA. Configuration 
data can be read from an external serial PROM (master 

serial mode), or written into the FPGA in slave serial, slave 
parallel, or Boundary Scan modes.

Spartan-II FPGAs are typically used in high-volume 
applications where the versatility of a fast programmable 
solution adds benefits. Spartan-II FPGAs are ideal for 
shortening product development cycles while offering a 
cost-effective solution for high volume production. 

Spartan-II FPGAs achieve high-performance, low-cost 
operation through advanced architecture and 
semiconductor technology. Spartan-II devices provide 
system clock rates up to 200 MHz. In addition to the 
conventional benefits of high-volume programmable logic 
solutions, Spartan-II FPGAs also offer on-chip synchronous 
single-port and dual-port RAM (block and distributed form), 
DLL clock drivers, programmable set and reset on all 
flip-flops, fast carry logic, and many other features. 

Figure 1:  Basic Spartan-II Family FPGA Block Diagram
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Similarly, the F6 multiplexer combines the outputs of all four 
function generators in the CLB by selecting one of the 
F5-multiplexer outputs. This permits the implementation of 
any 6-input function, an 8:1 multiplexer, or selected 
functions of up to 19 inputs.

Each CLB has four direct feedthrough paths, one per LC. 
These paths provide extra data input lines or additional 
local routing that does not consume logic resources. 

Arithmetic Logic

Dedicated carry logic provides capability for high-speed 
arithmetic functions. The Spartan-II FPGA CLB supports 
two separate carry chains, one per slice. The height of the 
carry chains is two bits per CLB.

The arithmetic logic includes an XOR gate that allows a 
1-bit full adder to be implemented within an LC. In addition, 
a dedicated AND gate improves the efficiency of multiplier 
implementation.

The dedicated carry path can also be used to cascade 
function generators for implementing wide logic functions.

BUFTs 

Each Spartan-II FPGA CLB contains two 3-state drivers 
(BUFTs) that can drive on-chip busses. See "Dedicated 
Routing," page 12. Each Spartan-II FPGA BUFT has an 
independent 3-state control pin and an independent input 
pin. 

Block RAM

Spartan-II FPGAs incorporate several large block RAM 
memories. These complement the distributed RAM 
Look-Up Tables (LUTs) that provide shallow memory 
structures implemented in CLBs.

Block RAM memory blocks are organized in columns. All 
Spartan-II devices contain two such columns, one along 
each vertical edge. These columns extend the full height of 
the chip. Each memory block is four CLBs high, and 
consequently, a Spartan-II device eight CLBs high will 
contain two memory blocks per column, and a total of four 
blocks. 

Each block RAM cell, as illustrated in Figure 5, is a fully 
synchronous dual-ported 4096-bit RAM with independent 
control signals for each port. The data widths of the two 
ports can be configured independently, providing built-in 
bus-width conversion.

Table 6 shows the depth and width aspect ratios for the 
block RAM.

The Spartan-II FPGA block RAM also includes dedicated 
routing to provide an efficient interface with both CLBs and 
other block RAMs.

Programmable Routing Matrix

It is the longest delay path that limits the speed of any 
worst-case design. Consequently, the Spartan-II routing 
architecture and its place-and-route software were defined 
in a single optimization process. This joint optimization 
minimizes long-path delays, and consequently, yields the 
best system performance.

The joint optimization also reduces design compilation 
times because the architecture is software-friendly. Design 
cycles are correspondingly reduced due to shorter design 
iteration times.

Table  5:  Spartan-II Block RAM Amounts

Spartan-II 
Device # of Blocks

Total Block RAM 
Bits

XC2S15 4 16K

XC2S30 6 24K

XC2S50 8 32K

XC2S100 10 40K

XC2S150 12 48K

XC2S200 14 56K

Figure 5:  Dual-Port Block RAM

Table  6:  Block RAM Port Aspect Ratios

Width Depth ADDR Bus Data Bus

1 4096 ADDR<11:0> DATA<0>

2 2048 ADDR<10:0> DATA<1:0>

4 1024 ADDR<9:0> DATA<3:0>

8 512 ADDR<8:0> DATA<7:0>

16 256 ADDR<7:0> DATA<15:0>
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Master Serial Mode

In Master Serial mode, the CCLK output of the FPGA drives 
a Xilinx PROM which feeds a serial stream of configuration 
data to the FPGA’s DIN input. Figure 15 shows a Master 
Serial FPGA configuring a Slave Serial FPGA from a 
PROM. A Spartan-II device in Master Serial mode should 
be connected as shown for the device on the left side. 
Master Serial mode is selected by a <00x> on the mode 
pins (M0, M1, M2). The PROM RESET pin is driven by INIT, 
and CE input is driven by DONE. The interface is identical 
to the slave serial mode except that an oscillator internal to 
the FPGA is used to generate the configuration clock 
(CCLK). Any of a number of different frequencies ranging 
from 4 to 60 MHz can be set using the ConfigRate option in 
the Xilinx software. On power-up, while the first 60 bytes of 

the configuration data are being loaded, the CCLK 
frequency is always 2.5 MHz. This frequency is used until 
the ConfigRate bits, part of the configuration file, have been 
loaded into the FPGA, at which point, the frequency 
changes to the selected ConfigRate. Unless a different 
frequency is specified in the design, the default ConfigRate 
is 4 MHz. The frequency of the CCLK signal created by the 
internal oscillator has a variance of +45%, –30% from the 
specified value.

Figure 17 shows the timing for Master Serial configuration. 
The FPGA accepts one bit of configuration data on each 
rising CCLK edge. After the FPGA has been loaded, the 
data for the next device in a daisy-chain is presented on the 
DOUT pin after the rising CCLK edge. 

Slave Parallel Mode

The Slave Parallel mode is the fastest configuration option. 
Byte-wide data is written into the FPGA. A BUSY flag is 
provided for controlling the flow of data at a clock frequency 
FCCNH above 50 MHz. 

Figure 18, page 24 shows the connections for two 
Spartan-II devices using the Slave Parallel mode. Slave 
Parallel mode is selected by a <011> on the mode pins (M0, 
M1, M2). 

If a configuration file of the format .bit, .rbt, or non-swapped 
HEX is used for parallel programming, then the most 
significant bit (i.e. the left-most bit of each configuration 
byte, as displayed in a text editor) must be routed to the D0 
input on the FPGA.

The agent controlling configuration is not shown. Typically, 
a processor, a microcontroller, or CPLD controls the Slave 
Parallel interface. The controlling agent provides byte-wide 
configuration data, CCLK, a Chip Select (CS) signal and a 
Write signal (WRITE). If BUSY is asserted (High) by the 
FPGA, the data must be held until BUSY goes Low.

After configuration, the pins of the Slave Parallel port 
(D0-D7) can be used as additional user I/O. Alternatively, 
the port may be retained to permit high-speed 8-bit 
readback. Then data can be read by de-asserting WRITE. 
See "Readback," page 25.

Figure 17:  Master Serial Mode Timing
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Multiple Spartan-II FPGAs can be configured using the 
Slave Parallel mode, and be made to start-up 
simultaneously. To configure multiple devices in this way, 
wire the individual CCLK, Data, WRITE, and BUSY pins of 
all the devices in parallel. The individual devices are loaded 
separately by asserting the CS pin of each device in turn 
and writing the appropriate data. Sync-to-DONE start-up 
timing is used to ensure that the start-up sequence does not 
begin until all the FPGAs have been loaded. See "Start-up," 
page 19.

Write

When using the Slave Parallel Mode, write operations send 
packets of byte-wide configuration data into the FPGA. 
Figure 19, page 25 shows a flowchart of the write sequence 
used to load data into the Spartan-II FPGA. This is an 
expansion of the "Load Configuration Data Frames" block in 
Figure 11, page 18. The timing for write operations is shown 
in Figure 20, page 26. 

For the present example, the user holds WRITE and CS 
Low throughout the sequence of write operations. Note that 
when CS is asserted on successive CCLKs, WRITE must 
remain either asserted or de-asserted. Otherwise an abort 
will be initiated, as in the next section.

1. Drive data onto D0-D7. Note that to avoid contention, 
the data source should not be enabled while CS is Low 
and WRITE is High. Similarly, while WRITE is High, no 
more than one device’s CS should be asserted.

2. On the rising edge of CCLK: If BUSY is Low, the data is 
accepted on this clock. If BUSY is High (from a previous 
write), the data is not accepted. Acceptance will instead 
occur on the first clock after BUSY goes Low, and the 
data must be held until this happens.

3. Repeat steps 1 and 2 until all the data has been sent.

4. De-assert CS and WRITE.

Figure 18:  Slave Parallel Configuration Circuit Diagram
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If CCLK is slower than FCCNH, the FPGA will never assert 
BUSY. In this case, the above handshake is unnecessary, 
and data can simply be entered into the FPGA every CCLK 
cycle.

A configuration packet does not have to be written in one 
continuous stretch, rather it can be split into many write 
sequences. Each sequence would involve assertion of CS.

In applications where multiple clock cycles may be required 
to access the configuration data before each byte can be 
loaded into the Slave Parallel interface, a new byte of data 
may not be ready for each consecutive CCLK edge. In such 
a case the CS signal may be de-asserted until the next byte 
is valid on D0-D7. While CS is High, the Slave Parallel 

interface does not expect any data and ignores all CCLK 
transitions. However, to avoid aborting configuration, 
WRITE must continue to be asserted while CS is asserted.

Abort

To abort configuration during a write sequence, de-assert 
WRITE while holding CS Low. The abort operation is 
initiated at the rising edge of CCLK, as shown in Figure 21, 
page 26. The device will remain BUSY until the aborted 
operation is complete. After aborting configuration, data is 
assumed to be unaligned to word boundaries and the FPGA 
requires a new synchronization word prior to accepting any 
new packets.

Boundary-Scan Mode

In the boundary-scan mode, no nondedicated pins are 
required, configuration being done entirely through the 
IEEE 1149.1 Test Access Port.

Configuration through the TAP uses the special CFG_IN 
instruction. This instruction allows data input on TDI to be 
converted into data packets for the internal configuration 
bus.

The following steps are required to configure the FPGA 
through the boundary-scan port.

1. Load the CFG_IN instruction into the boundary-scan 
instruction register (IR)

2. Enter the Shift-DR (SDR) state

3. Shift a standard configuration bitstream into TDI

4. Return to Run-Test-Idle (RTI)

5. Load the JSTART instruction into IR

6. Enter the SDR state

7. Clock TCK through the sequence (the length is 
programmable)

8. Return to RTI

Configuration and readback via the TAP is always available. 
The boundary-scan mode simply locks out the other modes. 
The boundary-scan mode is selected by a <10x> on the 
mode pins (M0, M1, M2).

Readback
The configuration data stored in the Spartan-II FPGA 
configuration memory can be readback for verification. 
Along with the configuration data it is possible to readback 
the contents of all flip-flops/latches, LUT RAMs, and block 
RAMs. This capability is used for real-time debugging.

For more detailed information see XAPP176, Spartan-II 
FPGA Family Configuration and Readback.

Figure 19:  Loading Configuration Data for the Slave 
Parallel Mode
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BUFGDLL Pin Descriptions

Use the BUFGDLL macro as the simplest way to provide 
zero propagation delay for a high-fanout on-chip clock from 
an external input. This macro uses the IBUFG, CLKDLL and 
BUFG primitives to implement the most basic DLL 
application as shown in Figure 25.  

This macro does not provide access to the advanced clock 
domain controls or to the clock multiplication or clock 
division features of the DLL. This macro also does not 
provide access to the RST or LOCKED pins of the DLL. For 
access to these features, a designer must use the DLL 
primitives described in the following sections.

Source Clock Input — I

The I pin provides the user source clock, the clock signal on 
which the DLL operates, to the BUFGDLL. For the 
BUFGDLL macro the source clock frequency must fall in the 
low frequency range as specified in the data sheet. The 
BUFGDLL requires an external signal source clock. 
Therefore, only an external input port can source the signal 
that drives the BUFGDLL I pin.

Clock Output — O

The clock output pin O represents a delay-compensated 
version of the source clock (I) signal. This signal, sourced 
by a global clock buffer BUFG primitive, takes advantage of 
the dedicated global clock routing resources of the device. 

The output clock has a 50/50 duty cycle unless you 
deactivate the duty cycle correction property.

CLKDLL Primitive Pin Descriptions

The library CLKDLL primitives provide access to the 
complete set of DLL features needed when implementing 
more complex applications with the DLL. 

Source Clock Input — CLKIN

The CLKIN pin provides the user source clock (the clock 
signal on which the DLL operates) to the DLL. The CLKIN 
frequency must fall in the ranges specified in the data sheet. 
A global clock buffer (BUFG) driven from another CLKDLL 

or one of the global clock input buffers (IBUFG) on the same 
edge of the device (top or bottom) must source this clock 
signal.

Feedback Clock Input — CLKFB

The DLL requires a reference or feedback signal to provide 
the delay-compensated output. Connect only the CLK0 or 
CLK2X DLL outputs to the feedback clock input (CLKFB) 
pin to provide the necessary feedback to the DLL. Either a 
global clock buffer (BUFG) or one of the global clock input 
buffers (IBUFG) on the same edge of the device (top or 
bottom) must source this clock signal.

If an IBUFG sources the CLKFB pin, the following special 
rules apply.

1. An external input port must source the signal that drives 
the IBUFG I pin. 

2. The CLK2X output must feed back to the device if both 
the CLK0 and CLK2X outputs are driving off chip 
devices.

3. That signal must directly drive only OBUFs and nothing 
else.

These rules enable the software to determine which DLL 
clock output sources the CLKFB pin.

Reset Input — RST

When the reset pin RST activates, the LOCKED signal 
deactivates within four source clock cycles. The RST pin, 
active High, must either connect to a dynamic signal or be 
tied to ground. As the DLL delay taps reset to zero, glitches 
can occur on the DLL clock output pins. Activation of the 
RST pin can also severely affect the duty cycle of the clock 
output pins. Furthermore, the DLL output clocks no longer 
deskew with respect to one another. The DLL must be reset 
when the input clock frequency changes, if the device is 
reconfigured in Boundary-Scan mode, if the device 
undergoes a hot swap, and after the device is configured if 
the input clock is not stable during the startup sequence.

2x Clock Output — CLK2X

The output pin CLK2X provides a frequency-doubled clock 
with an automatic 50/50 duty-cycle correction. Until the 
CLKDLL has achieved lock, the CLK2X output appears as a 
1x version of the input clock with a 25/75 duty cycle. This 
behavior allows the DLL to lock on the correct edge with 
respect to source clock. This pin is not available on the 
CLKDLLHF primitive.

Clock Divide Output — CLKDV

The clock divide output pin CLKDV provides a lower 
frequency version of the source clock. The CLKDV_DIVIDE 
property controls CLKDV such that the source clock is 
divided by N where N is either 1.5, 2, 2.5, 3, 4, 5, 8, or 16. 

This feature provides automatic duty cycle correction. The 
CLKDV output pin has a 50/50 duty cycle for all values of the 

Figure 25:  BUFGDLL Block Diagram
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Startup Delay Property 

This property, STARTUP_WAIT, takes on a value of TRUE 
or FALSE (the default value). When TRUE the Startup 
Sequence following device configuration is paused at a 
user-specified point until the DLL locks. XAPP176: 
Configuration and Readback of the Spartan-II and 
Spartan-IIE Families explains how this can result in delaying 
the assertion of the DONE pin until the DLL locks.

DLL Location Constraints

The DLLs are distributed such that there is one DLL in each 
corner of the device. The location constraint LOC, attached 
to the DLL primitive with the numeric identifier 0, 1, 2, or 3, 
controls DLL location. The orientation of the four DLLs and 
their corresponding clock resources appears in Figure 27. 

The LOC property uses the following form.

LOC = DLL2

Design Considerations

Use the following design considerations to avoid pitfalls and 
improve success designing with Xilinx devices.

Input Clock

The output clock signal of a DLL, essentially a delayed 
version of the input clock signal, reflects any instability on 
the input clock in the output waveform. For this reason the 
quality of the DLL input clock relates directly to the quality of 
the output clock waveforms generated by the DLL. The DLL 
input clock requirements are specified in the "DLL Timing 
Parameters" section of the data sheet. 

In most systems a crystal oscillator generates the system 
clock. The DLL can be used with any commercially 
available quartz crystal oscillator. For example, most crystal 
oscillators produce an output waveform with a frequency 
tolerance of 100 PPM, meaning 0.01 percent change in the 

clock period. The DLL operates reliably on an input 
waveform with a frequency drift of up to 1 ns — orders of 
magnitude in excess of that needed to support any crystal 
oscillator in the industry. However, the cycle-to-cycle jitter 
must be kept to less than 300 ps in the low frequencies and 
150 ps for the high frequencies.

Input Clock Changes

Changing the period of the input clock beyond the 
maximum drift amount requires a manual reset of the 
CLKDLL. Failure to reset the DLL will produce an unreliable 
lock signal and output clock.

It is possible to stop the input clock in a way that has little 
impact to the DLL. Stopping the clock should be limited to 
less than approximately 100 μs to keep device cooling to a 
minimum and maintain the validity of the current tap setting. 
The clock should be stopped during a Low phase, and when 
restored the full High period should be seen. During this 
time LOCKED will stay High and remain High when the 
clock is restored. If these conditions may not be met in the 
design, apply a manual reset to the DLL after re-starting the 
input clock, even if the LOCKED signal has not changed.

When the clock is stopped, one to four more clocks will still 
be observed as the delay line is flushed. When the clock is 
restarted, the output clocks will not be observed for one to 
four clocks as the delay line is filled. The most common 
case will be two or three clocks.

In a similar manner, a phase shift of the input clock is also 
possible. The phase shift will propagate to the output one to 
four clocks after the original shift, with no disruption to the 
CLKDLL control.

Output Clocks

As mentioned earlier in the DLL pin descriptions, some 
restrictions apply regarding the connectivity of the output 
pins. The DLL clock outputs can drive an OBUF, a global 
clock buffer BUFG, or route directly to destination clock 
pins. The only BUFGs that the DLL clock outputs can drive 
are the two on the same edge of the device (top or bottom). 
One DLL output can drive more than one OBUF; however, 
this adds skew.

Do not use the DLL output clock signals until after activation 
of the LOCKED signal. Prior to the activation of the 
LOCKED signal, the DLL output clocks are not valid and 
can exhibit glitches, spikes, or other spurious movement.

Figure 27:  Orientation of DLLs
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Using Block RAM Features
The Spartan-II FPGA family provides dedicated blocks of 
on-chip, true dual-read/write port synchronous RAM, with 
4096 memory cells. Each port of the block RAM memory 
can be independently configured as a read/write port, a 
read port, a write port, and can be configured to a specific 
data width. The block RAM memory offers new capabilities 
allowing the FPGA designer to simplify designs.

Operating Modes

Block RAM memory supports two operating modes.

• Read Through
• Write Back

Read Through (One Clock Edge)

The read address is registered on the read port clock edge 
and data appears on the output after the RAM access time. 
Some memories may place the latch/register at the outputs 
depending on the desire to have a faster clock-to-out versus 
setup time. This is generally considered to be an inferior 
solution since it changes the read operation to an 
asynchronous function with the possibility of missing an 
address/control line transition during the generation of the 
read pulse clock.

Write Back (One Clock Edge)

The write address is registered on the write port clock edge 
and the data input is written to the memory and mirrored on 
the write port input.

Block RAM Characteristics
1. All inputs are registered with the port clock and have a 

setup to clock timing specification.

2. All outputs have a read through or write back function 
depending on the state of the port WE pin. The outputs 
relative to the port clock are available after the 
clock-to-out timing specification.

3. The block RAM are true SRAM memories and do not 
have a combinatorial path from the address to the 
output. The LUT cells in the CLBs are still available with 
this function.

4. The ports are completely independent from each other 
(i.e., clocking, control, address, read/write function, and 
data width) without arbitration.

5. A write operation requires only one clock edge.

6. A read operation requires only one clock edge.

The output ports are latched with a self timed circuit to 
guarantee a glitch free read. The state of the output port will 
not change until the port executes another read or write 
operation.

Library Primitives

Figure 31 and Figure 32 show the two generic library block 
RAM primitives. Table 11 describes all of the available 
primitives for synthesis and simulation.

Figure 31:  Dual-Port Block RAM Memory

Figure 32:  Single-Port Block RAM Memory

Table  11:  Available Library Primitives

Primitive Port A Width Port B Width

RAMB4_S1
RAMB4_S1_S1
RAMB4_S1_S2
RAMB4_S1_S4
RAMB4_S1_S8
RAMB4_S1_S16

1 N/A
1
2
4
8
16

RAMB4_S2
RAMB4_S2_S2
RAMB4_S2_S4
RAMB4_S2_S8
RAMB4_S2_S16

2 N/A
2
4
8
16

WEB
ENB
RSTB
  CLKB
ADDRB[#:0]
DIB[#:0]

WEA
ENA
RSTA
  CLKA
ADDRA[#:0]
DIA[#:0]

DOA[#:0]

DOB[#:0]

RAMB4_S#_S#

DS001_31_061200

DS001_32_061200

DO[#:0]

WE

EN

RST

  CLK

ADDR[#:0]

DI[#:0]

RAMB4_S#
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support of a wide variety of applications, from general 
purpose standard applications to high-speed low-voltage 
memory busses.

Versatile I/O blocks also provide selectable output drive 
strengths and programmable slew rates for the LVTTL 
output buffers, as well as an optional, programmable weak 
pull-up, weak pull-down, or weak "keeper" circuit ideal for 
use in external bussing applications.

Each Input/Output Block (IOB) includes three registers, one 
each for the input, output, and 3-state signals within the 
IOB. These registers are optionally configurable as either a 
D-type flip-flop or as a level sensitive latch.

The input buffer has an optional delay element used to 
guarantee a zero hold time requirement for input signals 
registered within the IOB.

The Versatile I/O features also provide dedicated resources 
for input reference voltage (VREF) and output source 
voltage (VCCO), along with a convenient banking system 
that simplifies board design.

By taking advantage of the built-in features and wide variety 
of I/O standards supported by the Versatile I/O features, 
system-level design and board design can be greatly 
simplified and improved.

Fundamentals

Modern bus applications, pioneered by the largest and most 
influential companies in the digital electronics industry, are 
commonly introduced with a new I/O standard tailored 
specifically to the needs of that application. The bus I/O 
standards provide specifications to other vendors who 
create products designed to interface with these 
applications. Each standard often has its own specifications 
for current, voltage, I/O buffering, and termination 
techniques. 

The ability to provide the flexibility and time-to-market 
advantages of programmable logic is increasingly 
dependent on the capability of the programmable logic 
device to support an ever increasing variety of I/O 
standards

The Versatile I/O resources feature highly configurable 
input and output buffers which provide support for a wide 
variety of I/O standards. As shown in Table 15, each buffer 
type can support a variety of voltage requirements. 

Overview of Supported I/O Standards

This section provides a brief overview of the I/O standards 
supported by all Spartan-II devices. 

While most I/O standards specify a range of allowed 
voltages, this document records typical voltage values only. 
Detailed information on each specification may be found on 
the Electronic Industry Alliance JEDEC website at 
http://www.jedec.org. For more details on the I/O standards 
and termination application examples, see XAPP179, "Using 
SelectIO Interfaces in Spartan-II and Spartan-IIE FPGAs."

LVTTL — Low-Voltage TTL

The Low-Voltage TTL (LVTTL) standard is a general 
purpose EIA/JESDSA standard for 3.3V applications that 
uses an LVTTL input buffer and a Push-Pull output buffer. 
This standard requires a 3.3V output source voltage 
(VCCO), but does not require the use of a reference voltage 
(VREF) or a termination voltage (VTT). 

LVCMOS2 — Low-Voltage CMOS for 2.5V

The Low-Voltage CMOS for 2.5V or lower (LVCMOS2) 
standard is an extension of the LVCMOS standard (JESD 
8.5) used for general purpose 2.5V applications. This 
standard requires a 2.5V output source voltage (VCCO), but 
does not require the use of a reference voltage (VREF) or a 
board termination voltage (VTT). 

Table  15:   Versatile I/O Supported Standards (Typical 
Values)

I/O Standard

Input 
Reference 

Voltage 
(VREF)

Output 
Source 
Voltage 
(VCCO)

Board 
Termination 

Voltage 
(VTT)

LVTTL (2-24 mA) N/A 3.3 N/A

LVCMOS2 N/A 2.5 N/A

PCI (3V/5V, 
33 MHz/66 MHz)

N/A 3.3 N/A

GTL 0.8 N/A 1.2

GTL+ 1.0 N/A 1.5

HSTL Class I 0.75 1.5 0.75

HSTL Class III 0.9 1.5 1.5

HSTL Class IV 0.9 1.5 1.5

SSTL3 Class I 
and II

1.5 3.3 1.5

SSTL2 Class I 
and II

1.25 2.5 1.25

CTT 1.5 3.3 1.5

AGP-2X 1.32 3.3 N/A

http://www.xilinx.com
http://www.jedec.org
http://www.xilinx.com/support/documentation/application_notes/xapp179.pdf
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property. This property could have one of the following 
seven values.

DRIVE=2

DRIVE=4

DRIVE=6

DRIVE=8

DRIVE=12 (Default)

DRIVE=16

DRIVE=24

Design Considerations

Reference Voltage (VREF) Pins

Low-voltage I/O standards with a differential amplifier input 
buffer require an input reference voltage (VREF). Provide 
the VREF as an external signal to the device.

The voltage reference signal is "banked" within the device 
on a half-edge basis such that for all packages there are 
eight independent VREF banks internally. See Figure 36, 
page 39 for a representation of the I/O banks. Within each 
bank approximately one of every six I/O pins is 
automatically configured as a VREF input. 

Within each VREF bank, any input buffers that require a 
VREF signal must be of the same type. Output buffers of any 
type and input buffers can be placed without requiring a 
reference voltage within the same VREF bank.

Output Drive Source Voltage (VCCO) Pins

Many of the low voltage I/O standards supported by 
Versatile I/Os require a different output drive source voltage 
(VCCO). As a result each device can often have to support 
multiple output drive source voltages. 

The VCCO supplies are internally tied together for some 
packages. The VQ100 and the PQ208 provide one 
combined VCCO supply. The TQ144 and the CS144 
packages provide four independent VCCO supplies. The 
FG256 and the FG456 provide eight independent VCCO 
supplies.

Output buffers within a given VCCO bank must share the 
same output drive source voltage. Input buffers for LVTTL, 
LVCMOS2, PCI33_3, and PCI 66_3 use the VCCO voltage 
for Input VCCO voltage.

Transmission Line Effects

The delay of an electrical signal along a wire is dominated 
by the rise and fall times when the signal travels a short 
distance. Transmission line delays vary with inductance 
and capacitance, but a well-designed board can experience 
delays of approximately 180 ps per inch.

Transmission line effects, or reflections, typically start at 
1.5" for fast (1.5 ns) rise and fall times. Poor (or 
non-existent) termination or changes in the transmission 
line impedance cause these reflections and can cause 
additional delay in longer traces. As system speeds 
continue to increase, the effect of I/O delays can become a 
limiting factor and therefore transmission line termination 
becomes increasingly more important. 

Termination Techniques

A variety of termination techniques reduce the impact of 
transmission line effects.

The following lists output termination techniques:

None
Series
Parallel (Shunt)
Series and Parallel (Series-Shunt)

Input termination techniques include the following:

None
Parallel (Shunt)

These termination techniques can be applied in any 
combination. A generic example of each combination of 
termination methods appears in Figure 41.

Simultaneous Switching Guidelines

Ground bounce can occur with high-speed digital ICs when 
multiple outputs change states simultaneously, causing 
undesired transient behavior on an output, or in the internal 
logic. This problem is also referred to as the Simultaneous 
Switching Output (SSO) problem.

Ground bounce is primarily due to current changes in the 
combined inductance of ground pins, bond wires, and 

Figure 41:  Overview of Standard Input and Output 
Termination Methods

DS001_41_032300

Unterminated Double Parallel Terminated

Series-Parallel Terminated Output
Driving a Parallel Terminated Input

Series Terminated Output Driving
 a Parallel Terminated Input

Unterminated Output Driving
a Parallel Terminated Input

VTT

VREF

VREF

VREF

VREF

VTT VTT

VTT VTT

VTT

Series Terminated Output

VREF

Z=50

Z=50

Z=50

Z=50

Z=50

Z=50
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HSTL Class III

A sample circuit illustrating a valid termination technique for 
HSTL_III appears in Figure 45. DC voltage specifications 
appear in Table 23 for the HSTL_III standard. See "DC 
Specifications" in Module 3 for the actual FPGA 
characteristics.

HSTL Class IV

A sample circuit illustrating a valid termination technique for 
HSTL_IV appears in Figure 46.DC voltage specifications 
appear in Table 23 for the HSTL_IV standard. See "DC 
Specifications" in Module 3 for the actual FPGA 
characteristics  

Figure 45:  Terminated HSTL Class III

Table  23:  HSTL Class III Voltage Specification

Parameter Min Typ Max

VCCO 1.40 1.50 1.60

VREF 
(1) - 0.90 -

VTT - VCCO -

VIH VREF + 0.1 - -

VIL - - VREF – 0.1

VOH VCCO – 0.4 - -

VOL - - 0.4

IOH at VOH (mA) –8 - -

IOL at VOL (mA) 24 - -

Notes: 
1. Per EIA/JESD8-6, "The value of VREF is to be selected by the 

user to provide optimum noise margin in the use conditions 
specified by the user."

VREF = 0.9V

VCCO = 1.5V

50Ω

Z = 50

HSTL Class III

DS001_45_061200

VTT = 1.5V

Figure 46:  Terminated HSTL Class IV

Table  24:  HSTL Class IV Voltage Specification

Parameter Min Typ Max

VCCO 1.40 1.50 1.60

VREF - 0.90 -

VTT - VCCO -

VIH VREF + 0.1 - -

VIL - - VREF – 0.1

VOH VCCO – 0.4 - -

VOL - - 0.4

IOH at VOH (mA) –8 - -

IOL at VOL (mA) 48 - -

Notes: 
1. Per EIA/JESD8-6, "The value of VREF is to be selected by the 

user to provide optimum noise margin in the use conditions 
specified by the user."

VREF = 0.9V

VCCO = 1.5V

50Ω

Z = 50

HSTL Class IV

DS001_46_061200

VTT = 1.5V

50Ω

VTT = 1.5V

http://www.xilinx.com
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CTT

A sample circuit illustrating a valid termination technique for 
CTT appear in Figure 51. DC voltage specifications appear 
in Table 29 for the CTT standard. See "DC Specifications" in 
Module 3 for the actual FPGA characteristics .

PCI33_3 and PCI66_3

PCI33_3 or PCI66_3 require no termination. DC voltage 
specifications appear in Table 30 for the PCI33_3 and 
PCI66_3 standards. See "DC Specifications" in Module 3 
for the actual FPGA characteristics.

PCI33_5

PCI33_5 requires no termination. DC voltage specifications 
appear in Table 31 for the PCI33_5 standard. See "DC 
Specifications" in Module 3 for the actual FPGA 
characteristics.

Figure 51:  Terminated CTT

Table  29:  CTT Voltage Specifications

Parameter Min Typ Max

VCCO 2.05(1) 3.3 3.6

VREF 1.35 1.5 1.65

VTT 1.35 1.5 1.65

VIH ≥ VREF + 0.2 1.55 1.7 -

VIL ≤ VREF – 0.2 - 1.3 1.45

VOH ≥ VREF + 0.4 1.75 1.9 -

VOL ≤ VREF – 0.4 - 1.1 1.25

IOH at VOH (mA) –8 - -

IOL at VOL (mA) 8 - -

Notes: 
1. Timing delays are calculated based on VCCO min of 3.0V.

VREF = 1.5V

VCCO = 3.3V

50Ω

Z = 50

CTT

DS001_51_061200

VTT = 1.5V

Table  30:  PCI33_3 and PCI66_3 Voltage Specifications

Parameter Min Typ Max

VCCO 3.0 3.3 3.6

VREF - - -

VTT - - -

VIH = 0.5 × VCCO 1.5 1.65 VCCO+ 0.5

VIL = 0.3 × VCCO –0.5 0.99 1.08

VOH = 0.9 × VCCO 2.7 - -

VOL = 0.1 × VCCO - - 0.36

IOH at VOH (mA) Note 1 - -

IOL at VOL (mA) Note 1 - -

Notes: 
1. Tested according to the relevant specification.

Table  31:  PCI33_5 Voltage Specifications

Parameter Min Typ Max

VCCO 3.0 3.3 3.6

VREF - - -

VTT - - -

VIH 1.425 1.5 5.5

VIL –0.5 1.0 1.05

VOH 2.4 - -

VOL - - 0.55

IOH at VOH (mA) Note 1 - -

IOL at VOL (mA) Note 1 - -

Notes: 
1. Tested according to the relevant specification.
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CLB Distributed RAM Switching Characteristics 

CLB Shift Register Switching Characteristics  

Symbol  Description

 Speed Grade

Units

-6 -5

Min Max Min Max
Sequential Delays 

TSHCKO16 Clock CLK to X/Y outputs (WE active, 16 x 1 mode) - 2.2 - 2.6 ns

TSHCKO32 Clock CLK to X/Y outputs (WE active, 32 x 1 mode) - 2.5 - 3.0 ns

Setup/Hold Times with Respect to Clock CLK(1)

TAS / TAH F/G address inputs 0.7 / 0 - 0.7 / 0 - ns

TDS / TDH BX/BY data inputs (DIN) 0.8 / 0 - 0.9 / 0 - ns

TWS / TWH CE input (WS) 0.9 / 0 - 1.0 / 0 - ns

Clock CLK

TWPH Minimum pulse width, High - 2.9 - 2.9 ns

TWPL Minimum pulse width, Low - 2.9 - 2.9 ns

TWC Minimum clock period to meet address write cycle time - 5.8 - 5.8 ns

Notes: 
1. A zero hold time listing indicates no hold time or a negative hold time. 

Symbol  Description

 Speed Grade

Units

-6 -5

Min Max Min Max
Sequential Delays 

TREG Clock CLK to X/Y outputs - 3.47 - 3.88 ns

Setup Times with Respect to Clock CLK

TSHDICK BX/BY data inputs (DIN) 0.8 - 0.9 - ns

TSHCECK CE input (WS) 0.9 - 1.0 - ns

Clock CLK

TSRPH Minimum pulse width, High - 2.9 - 2.9 ns

TSRPL Minimum pulse width, Low - 2.9 - 2.9 ns

http://www.xilinx.com
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Introduction 
This section describes how the various pins on a 
Spartan®-II FPGA connect within the supported component 
packages, and provides device-specific thermal 
characteristics. Spartan-II FPGAs are available in both 
standard and Pb-free, RoHS versions of each package, 
with the Pb-free version adding a “G” to the middle of the 
package code. Except for the thermal characteristics, all 

information for the standard package applies equally to the 
Pb-free package.

Pin Types
Most pins on a Spartan-II FPGA are general-purpose, 
user-defined I/O pins. There are, however, different 
functional types of pins on Spartan-II FPGA packages, as 
outlined in Table 35.
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Table  35: Pin Definitions

Pin Name Dedicated Direction Description

GCK0, GCK1, GCK2, 
GCK3

No Input Clock input pins that connect to Global Clock Buffers. These pins become 
user inputs when not needed for clocks.

M0, M1, M2 Yes Input Mode pins are used to specify the configuration mode.

CCLK Yes Input or Output The configuration Clock I/O pin. It is an input for slave-parallel and slave-serial 
modes, and output in master-serial mode.

PROGRAM Yes Input Initiates a configuration sequence when asserted Low.

DONE Yes Bidirectional Indicates that configuration loading is complete, and that the start-up 
sequence is in progress. The output may be open drain.

INIT No Bidirectional 
(Open-drain)

When Low, indicates that the configuration memory is being cleared. This pin 
becomes a user I/O after configuration.

BUSY/DOUT No Output In Slave Parallel mode, BUSY controls the rate at which configuration data is 
loaded. This pin becomes a user I/O after configuration unless the Slave 
Parallel port is retained. 

In serial modes, DOUT provides configuration data to downstream devices in 
a daisy-chain. This pin becomes a user I/O after configuration.

D0/DIN, D1, D2, D3, D4, 
D5, D6, D7

No Input or Output In Slave Parallel mode, D0-D7 are configuration data input pins. During 
readback, D0-D7 are output pins. These pins become user I/Os after 
configuration unless the Slave Parallel port is retained. 

In serial modes, DIN is the single data input. This pin becomes a user I/O after 
configuration.

WRITE No Input In Slave Parallel mode, the active-low Write Enable signal. This pin becomes 
a user I/O after configuration unless the Slave Parallel port is retained.

CS No Input In Slave Parallel mode, the active-low Chip Select signal. This pin becomes a 
user I/O after configuration unless the Slave Parallel port is retained.

TDI, TDO, TMS, TCK Yes Mixed Boundary Scan Test Access Port pins (IEEE 1149.1).

VCCINT Yes Input Power supply pins for the internal core logic.

VCCO Yes Input Power supply pins for output drivers (subject to banking rules)

VREF No Input Input threshold voltage pins. Become user I/Os when an external threshold 
voltage is not needed (subject to banking rules).

GND Yes Input Ground.

IRDY, TRDY No See PCI core 
documentation

These signals can only be accessed when using Xilinx® PCI cores. If the 
cores are not used, these pins are available as user I/Os.

http://www.xilinx.com
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Package Thermal Characteristics
Table 39 provides the thermal characteristics for the various 
Spartan-II FPGA package offerings. This information is also 
available using the Thermal Query tool on xilinx.com 
(www.xilinx.com/cgi-bin/thermal/thermal.pl).

The junction-to-case thermal resistance (θJC) indicates the 
difference between the temperature measured on the 
package body (case) and the die junction temperature per 
watt of power consumption. The junction-to-board (θJB) 

value similarly reports the difference between the board and 
junction temperature. The junction-to-ambient (θJA) value 
reports the temperature difference between the ambient 
environment and the junction temperature. The θJA value is 
reported at different air velocities, measured in linear feet 
per minute (LFM). The “Still Air (0 LFM)” column shows the 
θJA value in a system without a fan. The thermal resistance 
drops with increasing air flow.

Table  39:  Spartan-II Package Thermal Characteristics

Package Device
Junction-to-Case 

(θJC)
Junction-to-
Board (θJB)

Junction-to-Ambient (θJA) 
at Different Air Flows

Units
Still Air 
(0 LFM) 250 LFM 500 LFM 750 LFM

VQ100
VQG100

XC2S15 11.3 N/A 44.1 36.7 34.2 33.3 °C/Watt

XC2S30 10.1 N/A 40.7 33.9 31.5 30.8 °C/Watt

TQ144
TQG144

XC2S15 7.3 N/A 38.6 30.0 25.7 24.1 °C/Watt

XC2S30 6.7 N/A 34.7 27.0 23.1 21.7 °C/Watt

XC2S50 5.8 N/A 32.2 25.1 21.4 20.1 °C/Watt

XC2S100 5.3 N/A 31.4 24.4 20.9 19.6 °C/Watt

CS144
CSG144 XC2S30 2.8 N/A 34.0 26.0 23.9 23.2 °C/Watt

PQ208
PQG208

XC2S50 6.7 N/A 25.2 18.6 16.4 15.2 °C/Watt

XC2S100 5.9 N/A 24.6 18.1 16.0 14.9 °C/Watt

XC2S150 5.0 N/A 23.8 17.6 15.6 14.4 °C/Watt

XC2S200 4.1 N/A 23.0 17.0 15.0 13.9 °C/Watt

FG256
FGG256

XC2S50 7.1 17.6 27.2 21.4 20.3 19.8 °C/Watt

XC2S100 5.8 15.1 25.1 19.5 18.3 17.8 °C/Watt

XC2S150 4.6 12.7 23.0 17.6 16.3 15.8 °C/Watt

XC2S200 3.5 10.7 21.4 16.1 14.7 14.2 °C/Watt

FG456
FGG456

XC2S150 2.0 N/A 21.9 17.3 15.8 15.2 °C/Watt

XC2S200 2.0 N/A 21.0 16.6 15.1 14.5 °C/Watt

http://www.xilinx.com
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Pinout Tables
The following device-specific pinout tables include all 
packages available for each Spartan®-II device. They follow 
the pad locations around the die, and include Boundary 
Scan register locations. 

XC2S15 Device Pinouts
XC2S15 Pad Name

VQ100 TQ144 CS144
Bndry 
ScanFunction Bank

GND - P1 P143 A1 -

TMS - P2 P142 B1 -

I/O 7 P3 P141 C2 77

I/O 7 - P140 C1 80

I/O, VREF 7 P4 P139 D4 83

I/O 7 P5 P137 D2 86

I/O 7 P6 P136 D1 89

GND - - P135 E4 -

I/O 7 P7 P134 E3 92

I/O 7 - P133 E2 95

I/O, VREF 7 P8 P132 E1 98

I/O 7 P9 P131 F4 101

I/O 7 - P130 F3 104

I/O, IRDY(1) 7 P10 P129 F2 107

GND - P11 P128 F1 -

VCCO 7 P12 P127 G2 -

VCCO 6 P12 P127 G2 -

I/O, TRDY(1) 6 P13 P126 G1 110

VCCINT - P14 P125 G3 -

I/O 6 - P124 G4 113

I/O 6 P15 P123 H1 116

I/O, VREF 6 P16 P122 H2 119

I/O 6 - P121 H3 122

I/O 6 P17 P120 H4 125

GND - - P119 J1 -

I/O 6 P18 P118 J2 128

I/O 6 P19 P117 J3 131

I/O, VREF 6 P20 P115 K1 134

I/O 6 - P114 K2 137

I/O 6 P21 P113 K3 140

I/O 6 P22 P112 L1 143

M1 - P23 P111 L2 146

GND - P24 P110 L3 -

M0 - P25 P109 M1 147

VCCO 6 P26 P108 M2 -

VCCO 5 P26 P107 N1 -

M2 - P27 P106 N2 148

I/O 5 - P103 K4 155

I/O, VREF 5 P30 P102 L4 158

I/O 5 P31 P100 N4 161

I/O 5 P32 P99 K5 164

GND - - P98 L5 -

VCCINT - P33 P97 M5 -

I/O 5 - P96 N5 167

I/O 5 - P95 K6 170

I/O, VREF 5 P34 P94 L6 173

I/O 5 - P93 M6 176

VCCINT - P35 P92 N6 -

I, GCK1 5 P36 P91 M7 185

VCCO 5 P37 P90 N7 -

VCCO 4 P37 P90 N7 -

GND - P38 P89 L7 -

I, GCK0 4 P39 P88 K7 186

I/O 4 P40 P87 N8 190

I/O 4 - P86 M8 193

I/O, VREF 4 P41 P85 L8 196

I/O 4 - P84 K8 199

I/O 4 - P83 N9 202

VCCINT - P42 P82 M9 -

GND - - P81 L9 -

I/O 4 P43 P80 K9 205

I/O 4 P44 P79 N10 208

I/O, VREF 4 P45 P77 L10 211

I/O 4 - P76 N11 214

I/O 4 P46 P75 M11 217

I/O 4 P47 P74 L11 220

GND - P48 P73 N12 -

DONE 3 P49 P72 M12 223

VCCO 4 P50 P71 N13 -

VCCO 3 P50 P70 M13 -

PROGRAM - P51 P69 L12 226

I/O (INIT) 3 P52 P68 L13 227

I/O (D7) 3 P53 P67 K10 230

I/O 3 - P66 K11 233

I/O, VREF 3 P54 P65 K12 236

I/O 3 P55 P63 J10 239

I/O (D6) 3 P56 P62 J11 242

XC2S15 Device Pinouts (Continued)
XC2S15 Pad Name

VQ100 TQ144 CS144
Bndry 
ScanFunction Bank
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I/O 4 - - - P87 295

I/O 4 - - - P88 298

I/O 4 - P84 K8 P89 301

I/O 4 - P83 N9 P90 304

VCCINT - P42 P82 M9 P91 -

VCCO 4 - - - P92 -

GND - - P81 L9 P93 -

I/O 4 P43 P80 K9 P94 307

I/O 4 P44 P79 N10 P95 310

I/O 4 - P78 M10 P96 313

I/O, VREF 4 P45 P77 L10 P98 316

I/O 4 - - - P99 319

I/O 4 - P76 N11 P100 322

I/O 4 P46 P75 M11 P101 325

I/O 4 P47 P74 L11 P102 328

GND - P48 P73 N12 P103 -

DONE 3 P49 P72 M12 P104 331

VCCO 4 P50 P71 N13 P105 -

VCCO 3 P50 P70 M13 P105 -

PROGRAM - P51 P69 L12 P106 334

I/O (INIT) 3 P52 P68 L13 P107 335

I/O (D7) 3 P53 P67 K10 P108 338

I/O 3 - P66 K11 P109 341

I/O 3 - - - P110 344

I/O, VREF 3 P54 P65 K12 P111 347

I/O 3 - P64 K13 P113 350

I/O 3 P55 P63 J10 P114 353

I/O (D6) 3 P56 P62 J11 P115 356

GND - - P61 J12 P116 -

VCCO 3 - - - P117 -

I/O (D5) 3 P57 P60 J13 P119 359

I/O 3 P58 P59 H10 P120 362

I/O 3 - - - P121 365

I/O 3 - - - P122 368

I/O 3 - - - P123 371

GND - - - - P124 -

I/O, VREF 3 P59 P58 H11 P125 374

I/O (D4) 3 P60 P57 H12 P126 377

I/O 3 - P56 H13 P127 380

VCCINT - P61 P55 G12 P128 -

I/O, TRDY(1) 3 P62 P54 G13 P129 386

XC2S30 Device Pinouts (Continued)
XC2S30 Pad Name

VQ100 TQ144 CS144 PQ208
Bndry 
ScanFunction Bank

VCCO 3 P63 P53 G11 P130 -

VCCO 2 P63 P53 G11 P130 -

GND - P64 P52 G10 P131 -

I/O, IRDY(1) 2 P65 P51 F13 P132 389

I/O 2 - - - P133 392

I/O 2 - P50 F12 P134 395

I/O (D3) 2 P66 P49 F11 P135 398

I/O, VREF 2 P67 P48 F10 P136 401

GND - - - - P137 -

I/O 2 - - - P138 404

I/O 2 - - - P139 407

I/O 2 - - - P140 410

I/O 2 P68 P47 E13 P141 413

I/O (D2) 2 P69 P46 E12 P142 416

VCCO 2 - - - P144 -

GND - - P45 E11 P145 -

I/O (D1) 2 P70 P44 E10 P146 419

I/O 2 P71 P43 D13 P147 422

I/O 2 - P42 D12 P148 425

I/O, VREF 2 P72 P41 D11 P150 428

I/O 2 - - - P151 431

I/O 2 - P40 C13 P152 434

I/O (DIN, D0) 2 P73 P39 C12 P153 437

I/O (DOUT, 
BUSY)

2 P74 P38 C11 P154 440

CCLK 2 P75 P37 B13 P155 443

VCCO 2 P76 P36 B12 P156 -

VCCO 1 P76 P35 A13 P156 -

TDO 2 P77 P34 A12 P157 -

GND - P78 P33 B11 P158 -

TDI - P79 P32 A11 P159 -

I/O (CS) 1 P80 P31 D10 P160 0

I/O (WRITE) 1 P81 P30 C10 P161 3

I/O 1 - P29 B10 P162 6

I/O 1 - - - P163 9

I/O, VREF 1 P82 P28 A10 P164 12

I/O 1 - - - P166 15

I/O 1 P83 P27 D9 P167 18

I/O 1 P84 P26 C9 P168 21

GND - - P25 B9 P169 -

VCCO 1 - - - P170 -

XC2S30 Device Pinouts (Continued)
XC2S30 Pad Name

VQ100 TQ144 CS144 PQ208
Bndry 
ScanFunction Bank
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I/O 0 - - D8 83

I/O 0 - P188 A6 86

I/O, VREF 0 P12 P189 B7 89

GND - - P190 GND* -

I/O 0 - P191 C8 92

I/O 0 - P192 D7 95

I/O 0 - P193 E7 98

I/O 0 P11 P194 C7 104

I/O 0 P10 P195 B6 107

VCCINT - P9 P196 VCCINT* -

VCCO 0 - P197 VCCO 
Bank 0*

-

GND - P8 P198 GND* -

I/O 0 P7 P199 A5 110

I/O 0 P6 P200 C6 113

I/O 0 - P201 B5 116

I/O 0 - - D6 119

I/O 0 - P202 A4 122

I/O, VREF 0 P5 P203 B4 125

GND - - - GND* -

I/O 0 - P204 E6 128

I/O 0 - - D5 131

I/O 0 P4 P205 A3 134

I/O 0 - - C5 137

I/O 0 P3 P206 B3 140

TCK - P2 P207 C4 -

VCCO 0 P1 P208 VCCO 
Bank 0*

-

VCCO 7 P144 P208 VCCO 
Bank 7*

-

04/18/01

Notes: 
1. IRDY and TRDY can only be accessed when using Xilinx PCI 

cores.
2. Pads labelled GND*, VCCINT*, VCCO Bank 0*, VCCO Bank 1*, 

VCCO Bank 2*, VCCO Bank 3*, VCCO Bank 4*, VCCO Bank 5*, 
VCCO Bank 6*, VCCO Bank 7* are internally bonded to 
independent ground or power planes within the package. 

3. See "VCCO Banks" for details on VCCO banking.

XC2S50 Device Pinouts (Continued)
XC2S50 Pad Name

TQ144 PQ208 FG256
Bndry 
ScanFunction Bank

Additional XC2S50 Package Pins

TQ144
Not Connected Pins

P104 P105 - - - -
11/02/00
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Additional XC2S100 Package Pins

TQ144

Not Connected Pins

P104 P105 - - - -
11/02/00

PQ208

Not Connected Pins

P55 P56 - - - -
11/02/00

FG256

VCCINT Pins

C3 C14 D4 D13 E5 E12

M5 M12 N4 N13 P3 P14

VCCO Bank 0 Pins

E8 F8 - - - -

VCCO Bank 1 Pins

E9 F9 - - - -

VCCO Bank 2 Pins

H11 H12 - - - -

VCCO Bank 3 Pins

J11 J12 - - - -

VCCO Bank 4 Pins

L9 M9 - - - -

VCCO Bank 5 Pins

L8 M8 - - - -

VCCO Bank 6 Pins

J5 J6 - - - -

VCCO Bank 7 Pins

H5 H6 - - - -

GND Pins

A1 A16 B2 B15 F6 F7

F10 F11 G6 G7 G8 G9

G10 G11 H7 H8 H9 H10

J7 J8 J9 J10 K6 K7

K8 K9 K10 K11 L6 L7

L10 L11 R2 R15 T1 T16

Not Connected Pins

P4 R4 - - - -
11/02/00

FG456

VCCINT Pins

E5 E18 F6 F17 G7 G8

G9 G14 G15 G16 H7 H16

J7 J16 P7 P16 R7 R16

T7 T8 T9 T14 T15 T16

U6 U17 V5 V18 - -

VCCO Bank 0 Pins

F10 F7 F8 F9 G10 G11

VCCO Bank 1 Pins

F13 F14 F15 F16 G12 G13

VCCO Bank 2 Pins

G17 H17 J17 K16 K17 L16

VCCO Bank 3 Pins

M16 N16 N17 P17 R17 T17

VCCO Bank 4 Pins

T12 T13 U13 U14 U15 U16

VCCO Bank 5 Pins

T10 T11 U10 U7 U8 U9

VCCO Bank 6 Pins

M7 N6 N7 P6 R6 T6

VCCO Bank 7 Pins

G6 H6 J6 K6 K7 L7

GND Pins

A1 A22 B2 B21 C3 C20

J9 J10 J11 J12 J13 J14

K9 K10 K11 K12 K13 K14

L9 L10 L11 L12 L13 L14

M9 M10 M11 M12 M13 M14

N9 N10 N11 N12 N13 N14

P9 P10 P11 P12 P13 P14

Y3 Y20 AA2 AA21 AB1 AB22

Not Connected Pins

A2 A4 A5 A6 A12 A13

A14 A15 A17 B3 B6 B8

B11 B14 B16 B19 C1 C2

C8 C9 C12 C18 C22 D1

D4 D5 D10 D18 D19 D21

E4 E11 E13 E15 E16 E17

E19 E22 F4 F11 F22 G2

G3 G4 G19 G22 H1 H21

J1 J3 J4 J19 J20 K2

K18 K19 L2 L5 L18 L19

M2 M6 M17 M18 M21 N1

N5 N19 P1 P5 P19 P22

R1 R3 R20 R22 T5 T19

U3 U11 U18 V1 V2 V10

V12 V17 V3 V4 V6 V8

V20 V21 V22 W4 W5 W9

W13 W14 W15 W16 W19 Y5

Y14 Y18 Y22 AA1 AA3 AA6

AA9 AA10 AA11 AA16 AA17 AA18

AA22 AB3 AB4 AB7 AB8 AB12

AB14 AB21 - - - -
11/02/00

Additional XC2S100 Package Pins (Continued)
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XC2S200 Device Pinouts
XC2S200 Pad Name

PQ208 FG256 FG456
Bndry 
ScanFunction Bank

GND - P1 GND* GND* -

TMS - P2 D3 D3 -

I/O 7 P3 C2 B1 257

I/O 7 - - E4 263

I/O 7 - - C1 266

I/O 7 - A2 F5 269

GND - - GND* GND* -

I/O, VREF 7 P4 B1 D2 272

I/O 7 - - E3 275

I/O 7 - - F4 281

GND - - GND* GND* -

I/O 7 - E3 G5 284

I/O 7 P5 D2 F3 287

GND - - GND* GND* -

VCCO 7 - VCCO 
Bank 7*

VCCO 
Bank 7*

-

I/O, VREF 7 P6 C1 E2 290

I/O 7 P7 F3 E1 293

I/O 7 - - G4 296

I/O 7 - - G3 299

I/O 7 - E2 H5 302

GND - - GND* GND* -

I/O 7 P8 E4 F2 305

I/O 7 - - F1 308

I/O, VREF 7 P9 D1 H4 314

I/O 7 P10 E1 G1 317

GND - P11 GND* GND* -

VCCO 7 P12 VCCO 
Bank 7*

VCCO 
Bank 7*

-

VCCINT - P13 VCCINT* VCCINT* -

I/O 7 P14 F2 H3 320

I/O 7 P15 G3 H2 323

I/O 7 - - J4 326

I/O 7 - - H1 329

I/O 7 - F1 J5 332

GND - - GND* GND* -

I/O 7 P16 F4 J2 335

I/O 7 - - J3 338

I/O 7 - - J1 341

I/O 7 P17 F5 K5 344

I/O 7 P18 G2 K1 347

GND - P19 GND* GND* -

VCCO 7 - VCCO 
Bank 7*

VCCO 
Bank 7*

-

I/O, VREF 7 P20 H3 K3 350

I/O 7 P21 G4 K4 353

I/O 7 - - K2 359

I/O 7 - H2 L6 362

I/O 7 P22 G5 L1 365

I/O 7 - - L5 368

I/O 7 P23 H4 L4 374

I/O, IRDY(1) 7 P24 G1 L3 377

GND - P25 GND* GND* -

VCCO 7 P26 VCCO 
Bank 7*

VCCO 
Bank 7*

-

VCCO 6 P26 VCCO 
Bank 6*

VCCO 
Bank 6*

-

I/O, TRDY(1) 6 P27 J2 M1 380

VCCINT - P28 VCCINT* VCCINT* -

I/O 6 - - M6 389

I/O 6 P29 H1 M3 392

I/O 6 - J4 M4 395

I/O 6 - - N1 398

I/O 6 P30 J1 M5 404

I/O, VREF 6 P31 J3 N2 407

VCCO 6 - VCCO 
Bank 6*

VCCO 
Bank 6*

-

GND - P32 GND* GND* -

I/O 6 P33 K5 N3 410

I/O 6 P34 K2 N4 413

I/O 6 - - P1 416

I/O 6 - - N5 419

I/O 6 P35 K1 P2 422

GND - - GND* GND* -

I/O 6 - K3 P4 425

I/O 6 - - R1 428

I/O 6 - - P5 431

I/O 6 P36 L1 P3 434

I/O 6 P37 L2 R2 437

VCCINT - P38 VCCINT* VCCINT* -

VCCO 6 P39 VCCO 
Bank 6*

VCCO 
Bank 6*

-

GND - P40 GND* GND* -

I/O 6 P41 K4 T1 440

I/O, VREF 6 P42 M1 R4 443

XC2S200 Device Pinouts (Continued)
XC2S200 Pad Name

PQ208 FG256 FG456
Bndry 
ScanFunction Bank
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