E·XFL

AMD Xilinx - XC2S15-5CS144C Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

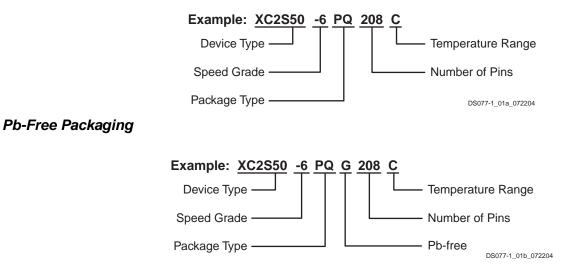
Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	96
Number of Logic Elements/Cells	432
Total RAM Bits	16384
Number of I/O	86
Number of Gates	15000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-TFBGA, CSPBGA
Supplier Device Package	144-LCSBGA (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc2s15-5cs144c

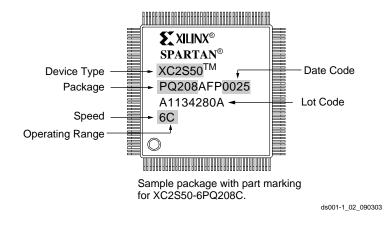

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information

Spartan-II devices are available in both standard and Pb-free packaging options for all device/package combinations. The Pb-free packages include a special "G" character in the ordering code.

Standard Packaging


Device Ordering Options

Device	Speed Grade		Numb	per of Pins / Package Type	Temperature Range (T _J)	
XC2S15	-5	Standard Performance	VQ(G)100	100-pin Plastic Very Thin QFP	C = Commercial	0°C to +85°C
XC2S30	-6	Higher Performance ⁽¹⁾	CS(G)144	144-ball Chip-Scale BGA	I = Industrial	-40°C to +100°C
XC2S50			TQ(G)144	144-pin Plastic Thin QFP		1
XC2S100			PQ(G)208	208-pin Plastic QFP		
XC2S150			FG(G)256	256-ball Fine Pitch BGA		
XC2S200			FG(G)456	456-ball Fine Pitch BGA		

Notes:

1. The -6 speed grade is exclusively available in the Commercial temperature range.

Device Part Marking

www.xilinx.com

Similarly, the F6 multiplexer combines the outputs of all four function generators in the CLB by selecting one of the F5-multiplexer outputs. This permits the implementation of any 6-input function, an 8:1 multiplexer, or selected functions of up to 19 inputs.

Each CLB has four direct feedthrough paths, one per LC. These paths provide extra data input lines or additional local routing that does not consume logic resources.

Arithmetic Logic

Dedicated carry logic provides capability for high-speed arithmetic functions. The Spartan-II FPGA CLB supports two separate carry chains, one per slice. The height of the carry chains is two bits per CLB.

The arithmetic logic includes an XOR gate that allows a 1-bit full adder to be implemented within an LC. In addition, a dedicated AND gate improves the efficiency of multiplier implementation.

The dedicated carry path can also be used to cascade function generators for implementing wide logic functions.

BUFTs

Each Spartan-II FPGA CLB contains two 3-state drivers (BUFTs) that can drive on-chip busses. See "Dedicated Routing," page 12. Each Spartan-II FPGA BUFT has an independent 3-state control pin and an independent input pin.

Block RAM

Spartan-II FPGAs incorporate several large block RAM memories. These complement the distributed RAM Look-Up Tables (LUTs) that provide shallow memory structures implemented in CLBs.

Block RAM memory blocks are organized in columns. All Spartan-II devices contain two such columns, one along each vertical edge. These columns extend the full height of the chip. Each memory block is four CLBs high, and consequently, a Spartan-II device eight CLBs high will contain two memory blocks per column, and a total of four blocks.

Table 5: Spartan-II Block RAM Amounts

Spartan-II Device	# of Blocks	Total Block RAM Bits
XC2S15	4	16K
XC2S30	6	24K
XC2S50	8	32K
XC2S100	10	40K
XC2S150	12	48K
XC2S200	14	56K

Each block RAM cell, as illustrated in Figure 5, is a fully synchronous dual-ported 4096-bit RAM with independent control signals for each port. The data widths of the two ports can be configured independently, providing built-in bus-width conversion.

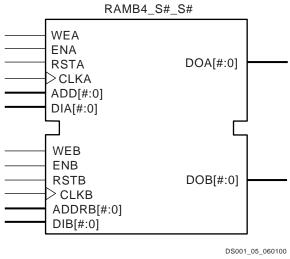


Figure 5: Dual-Port Block RAM

Table 6 shows the depth and width aspect ratios for the block RAM.

Table	6:	Block	RAM	Port	Aspect	Ratios
iabio	Ο.	BIOOK			7.0p00t	1.000

Width	Depth	ADDR Bus	Data Bus
1	4096	ADDR<11:0>	DATA<0>
2	2048	ADDR<10:0>	DATA<1:0>
4	1024	ADDR<9:0>	DATA<3:0>
8	512	ADDR<8:0>	DATA<7:0>
16	256	ADDR<7:0>	DATA<15:0>

The Spartan-II FPGA block RAM also includes dedicated routing to provide an efficient interface with both CLBs and other block RAMs.

Programmable Routing Matrix

It is the longest delay path that limits the speed of any worst-case design. Consequently, the Spartan-II routing architecture and its place-and-route software were defined in a single optimization process. This joint optimization minimizes long-path delays, and consequently, yields the best system performance.

The joint optimization also reduces design compilation times because the architecture is software-friendly. Design cycles are correspondingly reduced due to shorter design iteration times.

∑ XILINX[®]

Local Routing

The local routing resources, as shown in Figure 6, provide the following three types of connections:

- Interconnections among the LUTs, flip-flops, and General Routing Matrix (GRM)
- Internal CLB feedback paths that provide high-speed connections to LUTs within the same CLB, chaining them together with minimal routing delay
- Direct paths that provide high-speed connections between horizontally adjacent CLBs, eliminating the delay of the GRM

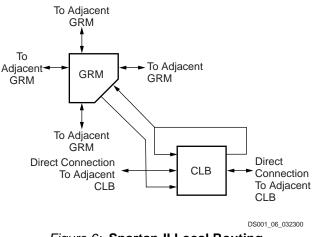


Figure 6: Spartan-II Local Routing

General Purpose Routing

Most Spartan-II FPGA signals are routed on the general purpose routing, and consequently, the majority of interconnect resources are associated with this level of the routing hierarchy. The general routing resources are located in horizontal and vertical routing channels associated with the rows and columns CLBs. The general-purpose routing resources are listed below.

- Adjacent to each CLB is a General Routing Matrix (GRM). The GRM is the switch matrix through which horizontal and vertical routing resources connect, and is also the means by which the CLB gains access to the general purpose routing.
- 24 single-length lines route GRM signals to adjacent GRMs in each of the four directions.
- 96 buffered Hex lines route GRM signals to other GRMs six blocks away in each one of the four directions. Organized in a staggered pattern, Hex lines may be driven only at their endpoints. Hex-line signals can be accessed either at the endpoints or at the midpoint (three blocks from the source). One third of the Hex lines are bidirectional, while the remaining ones are unidirectional.
- 12 Longlines are buffered, bidirectional wires that distribute signals across the device quickly and

efficiently. Vertical Longlines span the full height of the device, and horizontal ones span the full width of the device.

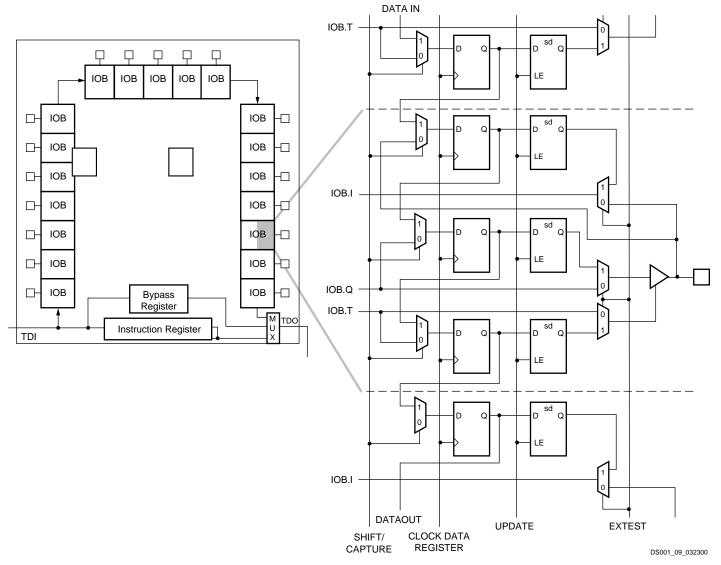
I/O Routing

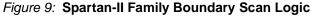
Spartan-II devices have additional routing resources around their periphery that form an interface between the CLB array and the IOBs. This additional routing, called the VersaRing, facilitates pin-swapping and pin-locking, such that logic redesigns can adapt to existing PCB layouts. Time-to-market is reduced, since PCBs and other system components can be manufactured while the logic design is still in progress.

Dedicated Routing

Some classes of signal require dedicated routing resources to maximize performance. In the Spartan-II architecture, dedicated routing resources are provided for two classes of signal.

- Horizontal routing resources are provided for on-chip 3-state busses. Four partitionable bus lines are provided per CLB row, permitting multiple busses within a row, as shown in Figure 7.
- Two dedicated nets per CLB propagate carry signals vertically to the adjacent CLB.


Global Routing


Global Routing resources distribute clocks and other signals with very high fanout throughout the device. Spartan-II devices include two tiers of global routing resources referred to as primary and secondary global routing resources.

- The primary global routing resources are four dedicated global nets with dedicated input pins that are designed to distribute high-fanout clock signals with minimal skew. Each global clock net can drive all CLB, IOB, and block RAM clock pins. The primary global nets may only be driven by global buffers. There are four global buffers, one for each global net.
- The secondary global routing resources consist of 24 backbone lines, 12 across the top of the chip and 12 across bottom. From these lines, up to 12 unique signals per column can be distributed via the 12 longlines in the column. These secondary resources are more flexible than the primary resources since they are not restricted to routing only to clock pins.

∑XILINX[®]

Figure 9 is a diagram of the Spartan-II family boundary scan logic. It includes three bits of Data Register per IOB, the IEEE 1149.1 Test Access Port controller, and the Instruction Register with decodes.

Bit Sequence

The bit sequence within each IOB is: In, Out, 3-State. The input-only pins contribute only the In bit to the boundary scan I/O data register, while the output-only pins contributes all three bits.

From a cavity-up view of the chip (as shown in the FPGA Editor), starting in the upper right chip corner, the boundary scan data-register bits are ordered as shown in Figure 10.

BSDL (Boundary Scan Description Language) files for Spartan-II family devices are available on the Xilinx website, in the <u>Downloads</u> area. By default, these operations are synchronized to CCLK. The entire start-up sequence lasts eight cycles, called C0-C7, after which the loaded design is fully functional. The default timing for start-up is shown in the top half of Figure 13. The four operations can be selected to switch on any CCLK cycle C1-C6 through settings in the Xilinx software. Heavy lines show default settings.

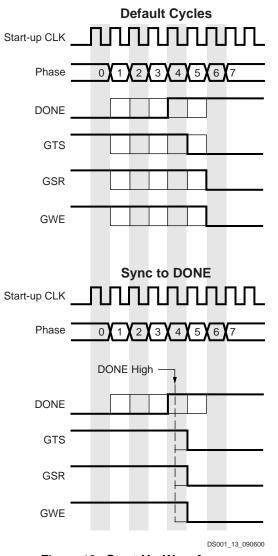
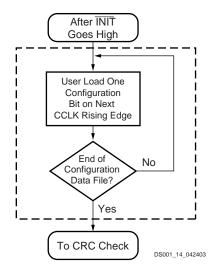
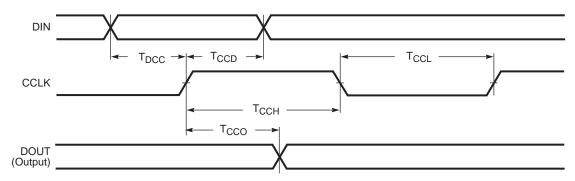


Figure 13: Start-Up Waveforms


The bottom half of Figure 13 shows another commonly used version of the start-up timing known as Sync-to-DONE. This version makes the GTS, GSR, and GWE events conditional upon the DONE pin going High. This timing is important for a daisy chain of multiple FPGAs in serial mode, since it ensures that all FPGAs go through start-up together, after all their DONE pins have gone High.

Sync-to-DONE timing is selected by setting the GTS, GSR, and GWE cycles to a value of DONE in the configuration options. This causes these signals to transition one clock cycle after DONE externally transitions High.


Serial Modes

There are two serial configuration modes: In Master Serial mode, the FPGA controls the configuration process by driving CCLK as an output. In Slave Serial mode, the FPGA passively receives CCLK as an input from an external agent (e.g., a microprocessor, CPLD, or second FPGA in master mode) that is controlling the configuration process. In both modes, the FPGA is configured by loading one bit per CCLK cycle. The MSB of each configuration data byte is always written to the DIN pin first.

See Figure 14 for the sequence for loading data into the Spartan-II FPGA serially. This is an expansion of the "Load Configuration Data Frames" block in Figure 11. Note that CS and WRITE normally are not used during serial configuration. To ensure successful loading of the FPGA, do not toggle WRITE with CS Low during serial configuration.

DS001_16_032300

Symbol		Description		Units
T _{DCC}		DIN setup	5	ns, min
T _{CCD}		DIN hold	0	ns, min
T _{CCO}	CCLK	DOUT	12	ns, max
ТССН		High time	5	ns, min
T _{CCL}		Low time	5	ns, min
F _{CC}		Maximum frequency	66	MHz, max

Figure 16: Slave Serial Mode Timing

LVTTL output buffers have selectable drive strengths.

The format for LVTTL OBUF primitive names is as follows.

OBUF <slew rate> <drive strength>

<slew_rate> is either F (Fast), or S (Slow) and <drive_strength> is specified in milliamps (2, 4, 6, 8, 12, 16, or 24). The default is slew rate limited with 12 mA drive.

OBUF placement restrictions require that within a given V_{CCO} bank each OBUF share the same output source drive voltage. Input buffers of any type and output buffers that do not require V_{CCO} can be placed within any V_{CCO} bank. Table 17 summarizes the output compatibility requirements. The LOC property can specify a location for the OBUF.

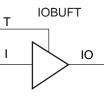
Table 17: Output Standards Compatibility Requirements

Rule 1	Only outputs with standards which share compatible $\rm V_{\rm CCO}$ may be used within the same bank.
Rule 2	There are no placement restrictions for outputs with standards that do not require a $\rm V_{\rm CCO}.$
V _{CCO}	Compatible Standards
3.3	LVTTL, SSTL3_I, SSTL3_II, CTT, AGP, GTL, GTL+, PCI33_3, PCI66_3
2.5	SSTL2_I, SSTL2_II, LVCMOS2, GTL, GTL+
1.5	HSTL_I, HSTL_III, HSTL_IV, GTL, GTL+

OBUFT

The generic 3-state output buffer OBUFT, shown in Figure 39, typically implements 3-state outputs or bidirectional I/O.

With no extension or property specified for the generic OBUFT primitive, the assumed standard is slew rate limited LVTTL with 12 mA drive strength.


The LVTTL OBUFT can support one of two slew rate modes to minimize bus transients. By default, the slew rate for each output buffer is reduced to minimize power bus transients when switching non-critical signals.

LVTTL 3-state output buffers have selectable drive strengths.

The format for LVTTL OBUFT primitive names is as follows.

OBUFT_<slew_rate>_<drive_strength>

<slew_rate> can be either F (Fast), or S (Slow) and <drive_strength> is specified in milliamps (2, 4, 6, 8, 12, 16, or 24).

DS001_39_032300

Figure 39: 3-State Output Buffer Primitive (OBUFT

The Versatile I/O OBUFT placement restrictions require that within a given V_{CCO} bank each OBUFT share the same output source drive voltage. Input buffers of any type and output buffers that do not require V_{CCO} can be placed within the same V_{CCO} bank.

The LOC property can specify a location for the OBUFT.

3-state output buffers and bidirectional buffers can have either a weak pull-up resistor, a weak pull-down resistor, or a weak "keeper" circuit. Control this feature by adding the appropriate primitive to the output net of the OBUFT (PULLUP, PULLDOWN, or KEEPER).

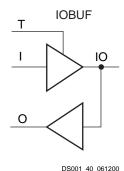
The weak "keeper" circuit requires the input buffer within the IOB to sample the I/O signal. So, OBUFTs programmed for an I/O standard that requires a V_{REF} have automatic placement of a V_{REF} in the bank with an OBUFT configured with a weak "keeper" circuit. This restriction does not affect most circuit design as applications using an OBUFT configured with a weak "keeper" typically implement a bidirectional I/O. In this case the IBUF (and the corresponding V_{REF}) are explicitly placed.

The LOC property can specify a location for the OBUFT.

IOBUF

Use the IOBUF primitive for bidirectional signals that require both an input buffer and a 3-state output buffer with an active high 3-state pin. The generic input/output buffer IOBUF appears in Figure 40.

With no extension or property specified for the generic IOBUF primitive, the assumed standard is LVTTL input buffer and slew rate limited LVTTL with 12 mA drive strength for the output buffer.


The LVTTL IOBUF can support one of two slew rate modes to minimize bus transients. By default, the slew rate for each output buffer is reduced to minimize power bus transients when switching non-critical signals.

LVTTL bidirectional buffers have selectable output drive strengths.

The format for LVTTL IOBUF primitive names is as follows:

IOBUF_<slew_rate>_<drive_strength>

<slew_rate> can be either F (Fast), or S (Slow) and <drive_strength> is specified in milliamps (2, 4, 6, 8, 12, 16, or 24).

When the IOBUF primitive supports an I/O standard such as LVTTL, LVCMOS, or PCI33_5, the IBUF automatically configures as a 5V tolerant input buffer unless the V_{CCO} for the bank is less than 2V. If the single-ended IBUF is placed in a bank with an HSTL standard (V_{CCO} < 2V), the input buffer is not 5V tolerant.

The voltage reference signal is "banked" within the Spartan-II device on a half-edge basis such that for all packages there are eight independent V_{REF} banks internally. See Figure 36, page 39 for a representation of the Spartan-II FPGA I/O banks. Within each bank approximately one of every six I/O pins is automatically configured as a V_{REF} input.

Additional restrictions on the Versatile I/O IOBUF placement require that within a given V_{CCO} bank each IOBUF must share the same output source drive voltage. Input buffers of any type and output buffers that do not require V_{CCO} can be placed within the same V_{CCO} bank. The LOC property can specify a location for the IOBUF.

An optional delay element is associated with the input path in each IOBUF. When the IOBUF drives an input flip-flop within the IOB, the delay element activates by default to ensure a zero hold-time requirement. Override this default with the NODELAY=TRUE property.

In the case when the IOBUF does not drive an input flip-flop within the IOB, the delay element de-activates by default to provide higher performance. To delay the input signal, activate the delay element with the DELAY=TRUE property.

3-state output buffers and bidirectional buffers can have either a weak pull-up resistor, a weak pull-down resistor, or a weak "keeper" circuit. Control this feature by adding the appropriate primitive to the output net of the IOBUF (PULLUP, PULLDOWN, or KEEPER).

Versatile I/O Properties

Access to some of the Versatile I/O features (for example, location constraints, input delay, output drive strength, and slew rate) is available through properties associated with these features.

Input Delay Properties

An optional delay element is associated with each IBUF. When the IBUF drives a flip-flop within the IOB, the delay element activates by default to ensure a zero hold-time requirement. Use the NODELAY=TRUE property to override this default.

In the case when the IBUF does not drive a flip-flop within the IOB, the delay element by default de-activates to provide higher performance. To delay the input signal, activate the delay element with the DELAY=TRUE property.

IOB Flip-Flop/Latch Property

The I/O Block (IOB) includes an optional register on the input path, an optional register on the output path, and an optional register on the 3-state control pin. The design implementation software automatically takes advantage of these registers when the following option for the Map program is specified:

map -pr b <filename>

Alternatively, the IOB = TRUE property can be placed on a register to force the mapper to place the register in an IOB.

Location Constraints

Specify the location of each Versatile I/O primitive with the location constraint LOC attached to the Versatile I/O primitive. The external port identifier indicates the value of the location constrain. The format of the port identifier depends on the package chosen for the specific design.

The LOC properties use the following form:

LOC=A42 LOC=P37

Output Slew Rate Property

In the case of the LVTTL output buffers (OBUF, OBUFT, and IOBUF), slew rate control can be programmed with the SLEW= property. By default, the slew rate for each output buffer is reduced to minimize power bus transients when switching non-critical signals. The SLEW= property has one of the two following values.

SLEW=SLOW

SLEW=FAST

Output Drive Strength Property

For the LVTTL output buffers (OBUF, OBUFT, and IOBUF, the desired drive strength can be specified with the DRIVE=

SSTL3 Class I

A sample circuit illustrating a valid termination technique for SSTL3_I appears in Figure 47. DC voltage specifications appear in Table 25 for the SSTL3_I standard. See "DC Specifications" in Module 3 for the actual FPGA characteristics.

SSTL3 Class I

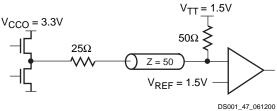


Figure 47: Terminated SSTL3 Class I

Table 2	25:	SSTL3_	I Voltage	Specifications
---------	-----	--------	-----------	----------------

Parameter	Min	Тур	Max
V _{CCO}	3.0	3.3	3.6
$V_{REF} = 0.45 \times V_{CCO}$	1.3	1.5	1.7
V _{TT} = V _{REF}	1.3	1.5	1.7
$V_{IH} \ge V_{REF} + 0.2$	1.5	1.7	3.9 ⁽¹⁾
$V_{IL} \leq V_{REF} - 0.2$	-0.3(2)	1.3	1.5
$V_{OH} \ge V_{REF} + 0.6$	1.9	-	-
$V_{OL} \leq V_{REF} - 0.6$	-	-	1.1
I _{OH} at V _{OH} (mA)	-8	-	-
I _{OL} at V _{OL} (mA)	8	-	-

Notes:

1. V_{IH} maximum is V_{CCO} + 0.3.

2. V_{IL} minimum does not conform to the formula.

SSTL3 Class II

A sample circuit illustrating a valid termination technique for SSTL3_II appears in Figure 48. DC voltage specifications appear in Table 26 for the SSTL3_II standard. See "DC Specifications" in Module 3 for the actual FPGA characteristics.

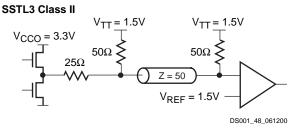


Figure 48: Terminated SSTL3 Class II

Table 26: SSTL3_II Voltage Specifications

Parameter	Min	Тур	Max
V _{CCO}	3.0	3.3	3.6
$V_{REF} = 0.45 \times V_{CCO}$	1.3	1.5	1.7
V _{TT} = V _{REF}	1.3	1.5	1.7
V _{IH} ≥ V _{REF} + 0.2	1.5	1.7	3.9 ⁽¹⁾
$V_{IL} \leq V_{REF} - 0.2$	-0.3(2)	1.3	1.5
$V_{OH} \ge V_{REF} + 0.8$	2.1	-	-
$V_{OL} \leq V_{REF} - 0.8$	-	-	0.9
I _{OH} at V _{OH} (mA)	-16	-	-
I _{OL} at V _{OL} (mA)	16	-	-

Notes:

1. V_{IH} maximum is V_{CCO} + 0.3

2. V_{IL} minimum does not conform to the formula

SSTL2_I

A sample circuit illustrating a valid termination technique for SSTL2_I appears in Figure 49. DC voltage specifications appear in Table 27 for the SSTL2_I standard. See "DC Specifications" in Module 3 for the actual FPGA characteristics

SSTL2 Class I

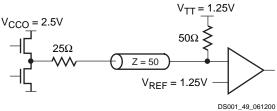


Figure 49: Terminated SSTL2 Class I

Table	27:	SSTL2_I	Voltage	Specifications
-------	-----	---------	---------	----------------

Parameter	Min	Тур	Max
V _{CCO}	2.3	2.5	2.7
$V_{REF} = 0.5 \times V_{CCO}$	1.15	1.25	1.35
$V_{TT} = V_{REF} + N^{(1)}$	1.11	1.25	1.39
$V_{IH} \ge V_{REF} + 0.18$	1.33	1.43	3.0 ⁽²⁾
$V_{IL} \leq V_{REF} - 0.18$	-0.3 ⁽³⁾	1.07	1.17
V _{OH} ≥ V _{REF} + 0.61	1.76	-	-
$V_{OL} \leq V_{REF} - 0.61$	-	-	0.74
I _{OH} at V _{OH} (mA)	-7.6	-	-
I _{OL} at V _{OL} (mA)	7.6	-	-

Notes:

- 1. N must be greater than or equal to -0.04 and less than or equal to 0.04.
- 2. V_{IH} maximum is V_{CCO} + 0.3.
- 3. V_{IL} minimum does not conform to the formula.

SSTL2 Class II

A sample circuit illustrating a valid termination technique for SSTL2_II appears in Figure 50. DC voltage specifications appear in Table 28 for the SSTL2_II standard. See "DC Specifications" in Module 3 for the actual FPGA characteristics.

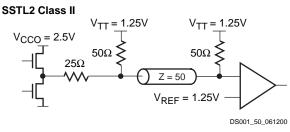


Figure 50: Terminated SSTL2 Class II

Table 28: SSTL2_II Voltage Specifications

Parameter	Min	Тур	Max
V _{CCO}	2.3	2.5	2.7
$V_{REF} = 0.5 \times V_{CCO}$	1.15	1.25	1.35
$V_{TT} = V_{REF} + N^{(1)}$	1.11	1.25	1.39
$V_{IH} \ge V_{REF} + 0.18$	1.33	1.43	3.0 ⁽²⁾
$V_{IL} \leq V_{REF} - 0.18$	-0.3 ⁽³⁾	1.07	1.17
$V_{OH} \ge V_{REF} + 0.8$	1.95	-	-
$V_{OL} \leq V_{REF} - 0.8$	-	-	0.55
I _{OH} at V _{OH} (mA)	-15.2	-	-
I _{OL} at V _{OL} (mA)	15.2	-	-

Notes:

- 1. N must be greater than or equal to -0.04 and less than or equal to 0.04.
- 2. V_{IH} maximum is V_{CCO} + 0.3.
- 3. V_{IL} minimum does not conform to the formula.

XILINX[®]

LVTTL

LVTTL requires no termination. DC voltage specifications appears in Table 32 for the LVTTL standard. See "DC Specifications" in Module 3 for the actual FPGA characteristics.

Table	32:	LVTTL	Voltage	Specifications
-------	-----	-------	---------	----------------

Parameter	Min	Тур	Max
V _{CCO}	3.0	3.3	3.6
V _{REF}	-	-	-
V _{TT}	-	-	-
V _{IH}	2.0	-	5.5
V _{IL}	-0.5	-	0.8
V _{OH}	2.4	-	-
V _{OL}	-	-	0.4
I _{OH} at V _{OH} (mA)	-24	-	-
I _{OL} at V _{OL} (mA)	24	-	-

Notes:

1. V_{OL} and V_{OH} for lower drive currents sample tested.

LVCMOS2

LVCMOS2 requires no termination. DC voltage specifications appear in Table 33 for the LVCMOS2 standard. See "DC Specifications" in Module 3 for the actual FPGA characteristics.

Table 33: LVCMOS2 Voltage Specifications

Parameter	Min	Тур	Max
V _{CCO}	2.3	2.5	2.7
V _{REF}	-	-	-
V _{TT}	-	-	-
V _{IH}	1.7	-	5.5
V _{IL}	-0.5	-	0.7
V _{OH}	1.9	-	-
V _{OL}	-	-	0.4
I _{OH} at V _{OH} (mA)	-12	-	-
I _{OL} at V _{OL} (mA)	12	-	-

AGP-2X

The specification for the AGP-2X standard does not document a recommended termination technique. DC voltage specifications appear in Table 34 for the AGP-2X standard. See "DC Specifications" in Module 3 for the actual FPGA characteristics.

Table 34: AGP-2X Voltage Specifications

Parameter	Min	Тур	Max
V _{CCO}	3.0	3.3	3.6
$V_{REF} = N \times V_{CCO}^{(1)}$	1.17	1.32	1.48
V _{TT}	-	-	-
$V_{IH} \ge V_{REF} + 0.2$	1.37	1.52	-
$V_{IL} \le V_{REF} - 0.2$	-	1.12	1.28
$V_{OH} \ge 0.9 \times V_{CCO}$	2.7	3.0	-
$V_{OL} \le 0.1 \times V_{CCO}$	-	0.33	0.36
I _{OH} at V _{OH} (mA)	Note 2	-	-
I _{OL} at V _{OL} (mA)	Note 2	-	-

Notes:

For design examples and more information on using the I/O, see <u>XAPP179</u>, Using SelectIO Interfaces in Spartan-II and Spartan-IIE FPGAs.

^{1.} N must be greater than or equal to 0.39 and less than or equal to 0.41.

^{2.} Tested according to the relevant specification.

Spartan-II FPGA Family: DC and Switching Characteristics

DS001-3 (v2.8) June 13, 2008

Product Specification

Definition of Terms

In this document, some specifications may be designated as Advance or Preliminary. These terms are defined as follows:

Advance: Initial estimates based on simulation and/or extrapolation from other speed grades, devices, or families. Values are subject to change. Use as estimates, not for production.

Preliminary: Based on preliminary characterization. Further changes are not expected.

Unmarked: Specifications not identified as either Advance or Preliminary are to be considered Final.

Except for pin-to-pin input and output parameters, the AC parameter delay specifications included in this document are derived from measuring internal test patterns. All limits are representative of worst-case supply voltage and junction temperature conditions. Typical numbers are based on measurements taken at a nominal V_{CCINT} level of 2.5V and a junction temperature of 25°C. The parameters included are common to popular designs and typical applications. All specifications are subject to change without notice.

DC Specifications

Absolute Maximum Ratings⁽¹⁾

Symbol	Descriptio	Description			Units
V _{CCINT}	Supply voltage relative to GND ⁽²⁾		-0.5	3.0	V
V _{CCO}	Supply voltage relative to GND ⁽²⁾		-0.5	4.0	V
V _{REF}	Input reference voltage	Input reference voltage			V
V _{IN}	Input voltage relative to GND ⁽³⁾	5V tolerant I/O ⁽⁴⁾	-0.5	5.5	V
		No 5V tolerance ⁽⁵⁾	-0.5	V _{CCO} +0.5	V
V _{TS}	Voltage applied to 3-state output	5V tolerant I/O ⁽⁴⁾	-0.5	5.5	V
		No 5V tolerance ⁽⁵⁾	-0.5	V _{CCO} +0.5	V
T _{STG}	Storage temperature (ambient)	Storage temperature (ambient)			°C
TJ	Junction temperature	Junction temperature			°C

Notes:

1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability.

2. Power supplies may turn on in any order.

3. V_{IN} should not exceed V_{CCO} by more than 3.6V over extended periods of time (e.g., longer than a day).

4. Spartan[®]-II device I/Os are 5V Tolerant whenever the LVTTL, LVCMOS2, or PCI33_5 signal standard has been selected. With 5V Tolerant I/Os selected, the Maximum DC overshoot must be limited to either +5.5V or 10 mA, and undershoot must be limited to either -0.5V or 10 mA, whichever is easier to achieve. The Maximum AC conditions are as follows: The device pins may undershoot to -2.0V or overshoot to +7.0V, provided this over/undershoot lasts no more than 11 ns with a forcing current no greater than 100 mA.

5. Without 5V Tolerant I/Os selected, the Maximum DC overshoot must be limited to either V_{CCO} + 0.5V or 10 mA, and undershoot must be limited to -0.5V or 10 mA, whichever is easier to achieve. The Maximum AC conditions are as follows: The device pins may undershoot to -2.0V or overshoot to V_{CCO} + 2.0V, provided this over/undershoot lasts no more than 11 ns with a forcing current no greater than 100 mA.

6. For soldering guidelines, see the <u>Packaging Information</u> on the Xilinx[®] web site.

© 2000-2008 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners.

Bndry

Scan

203

206

209

212

215

218

-

219

-

-

220

227

230

233

236

239

242

-

-

_

245

248

251

254

257

-

260

263

266

-

275

-

-

-

276

280

283

286

289

-

292

XC2S30 Device Pinouts

XC2S30 Device Pinouts	(Continued)
------------------------------	-------------

		Fillou	.3									
XC2S30 Pad	Name					Bndry	XC2S30 Pad	Name				
Function	Bank	VQ100	TQ144	CS144	PQ208	Scan	Function	Bank	VQ100	TQ144	CS144	ŀ
GND	-	P1	P143	A1	P1	-	I/O, V _{REF}	6	P20	P115	K1	
TMS	-	P2	P142	B1	P2	-	I/O	6	-	-	-	
I/O	7	P3	P141	C2	P3	113	I/O	6	-	P114	K2	
I/O	7	-	P140	C1	P4	116	I/O	6	P21	P113	K3	
I/O	7	-	-	-	P5	119	I/O	6	P22	P112	L1	
I/O, V _{REF}	7	P4	P139	D4	P6	122	M1	-	P23	P111	L2	
I/O	7	-	P138	D3	P8	125	GND	-	P24	P110	L3	
I/O	7	P5	P137	D2	P9	128	MO	-	P25	P109	M1	
I/O	7	P6	P136	D1	P10	131	V _{CCO}	6	P26	P108	M2	
GND	-	-	P135	E4	P11	-	V _{CCO}	5	P26	P107	N1	
V _{CCO}	7	-	-	-	P12	-	M2	-	P27	P106	N2	
1/0	7	P7	P134	E3	P14	134	I/O	5	-	P103	K4	
I/O	7	-	P133	E2	P15	137	I/O	5	-	-	-	
I/O	7	-	-	-	P16	140	I/O, V _{REF}	5	P30	P102	L4	
I/O	7	-	-	-	P17	143	I/O	5	-	P101	M4	
I/O	7	-	-	-	P18	146	I/O	5	P31	P100	N4	
GND	-	-	-	-	P19	-	I/O	5	P32	P99	K5	
I/O, V _{REF}	7	P8	P132	E1	P20	149	GND	-	-	P98	L5	
I/O	7	P9	P131	F4	P21	152	V _{CCO}	5	-	-	-	
I/O	7	-	P130	F3	P22	155	V _{CCINT}	-	P33	P97	M5	
I/O	7	-	-	-	P23	158	I/O	5	-	P96	N5	
I/O, IRDY ⁽¹⁾	7	P10	P129	F2	P24	161	I/O	5	-	P95	K6	
GND	-	P11	P128	F1	P25	-	I/O	5	-	-	-	
V _{CCO}	7	P12	P127	G2	P26	-	I/O	5	-	-	-	
V _{CCO}	6	P12	P127	G2	P26	-	I/O	5	-	-	-	
I/O, TRDY ⁽¹⁾	6	P13	P126	G1	P27	164	GND	-	-	-	-	
V _{CCINT}	-	P14	P125	G3	P28	-	I/O, V _{REF}	5	P34	P94	L6	
I/O	6	-	P124	G4	P29	170	I/O	5	-	-	-	
I/O	6	P15	P123	H1	P30	173	I/O	5	-	P93	M6	
I/O, V _{REF}	6	P16	P122	H2	P31	176	V _{CCINT}	-	P35	P92	N6	
GND	-	-	-	-	P32	-	I, GCK1	5	P36	P91	M7	
I/O	6	-	-	-	P33	179	V _{CCO}	5	P37	P90	N7	
I/O	6	-	-	-	P34	182	V _{CCO}	4	P37	P90	N7	
I/O	6	-	-	-	P35	185	GND	-	P38	P89	L7	
I/O	6	-	P121	H3	P36	188	I, GCK0	4	P39	P88	K7	
I/O	6	P17	P120	H4	P37	191	I/O	4	P40	P87	N8	
V _{CCO}	6	-	-	-	P39	-	I/O	4	-	P86	M8	
GND	-	-	P119	J1	P40	-	I/O	4	-	-	-	
I/O	6	P18	P118	J2	P41	194	I/O, V _{REF}	4	P41	P85	L8	
I/O	6	P19	P117	J3	P42	197	GND	-	-	-	-	
I/O	6	-	P116	J4	P43	200	I/O	4	-	-	-	

XC2S30 Device Pinouts (Continued)

XC2S30 Pad Name						Bndry
Function	Bank	VQ100	TQ144	CS144	PQ208	Scan
V _{CCINT}	-	P85	P24	A9	P171	-
I/O	1	-	P23	D8	P172	24
I/O	1	-	P22	C8	P173	27
I/O	1	-	-	-	P174	30
I/O	1	-	-	-	P175	33
I/O	1	-	-	-	P176	36
GND	-	-	-	-	P177	-
I/O, V _{REF}	1	P86	P21	B8	P178	39
I/O	1	-	-	-	P179	42
I/O	1	-	P20	A8	P180	45
I/O	1	P87	P19	B7	P181	48
I, GCK2	1	P88	P18	A7	P182	54
GND	-	P89	P17	C7	P183	-
V _{CCO}	1	P90	P16	D7	P184	-
V _{CCO}	0	P90	P16	D7	P184	-
I, GCK3	0	P91	P15	A6	P185	55
V _{CCINT}	-	P92	P14	B6	P186	-
I/O	0	-	P13	C6	P187	62
I/O	0	-	-	-	P188	65
I/O, V _{REF}	0	P93	P12	D6	P189	68
GND	-	-	-	-	P190	-
I/O	0	-	-	-	P191	71
I/O	0	-	-	-	P192	74
I/O	0	-	-	-	P193	77
I/O	0	-	P11	A5	P194	80
I/O	0	-	P10	B5	P195	83
V _{CCINT}	-	P94	P9	C5	P196	-
V _{CCO}	0	-	-	-	P197	-
GND	-	-	P8	D5	P198	-
I/O	0	P95	P7	A4	P199	86
I/O	0	P96	P6	B4	P200	89
I/O	0	-	-	-	P201	92

XC2S30 Device Pinouts (Continued)

XC2S30 Pad Name						Bndry
Function	Bank	VQ100	TQ144	CS144	PQ208	Scan
I/O, V _{REF}	0	P97	P5	C4	P203	95
I/O	0	-	-	-	P204	98
I/O	0	-	P4	A3	P205	101
I/O	0	P98	P3	B3	P206	104
тск	-	P99	P2	C3	P207	-
V _{CCO}	0	P100	P1	A2	P208	-
V _{CCO}	7	P100	P144	B2	P208	-

04/18/01

Notes:

- 1. IRDY and TRDY can only be accessed when using Xilinx PCI cores.
- 2. See "VCCO Banks" for details on V_{CCO} banking.

Additional XC2S30 Package Pins

VQ100

Not Connected Pins								
P28	P29	-	-	-	-			
11/02/00								

TQ144

Not Connected Pins								
P104	P105	-	-	-	-			
11/02/00								

CS144

Not Connected Pins								
M3	N3	-	-	-	-			
11/02/00								

PQ208

Not Connected Pins								
P7	P13	P38	P44	P55	P56			
P60	P97	P112	P118	P143	P149			
P165	P202	-	-	-	-			
11/02/00								

Notes:

1. For the PQ208 package, P13, P38, P118, and P143, which are Not Connected Pins on the XC2S30, are assigned to $V_{\rm CCINT}$ on larger devices.

XC2S50 Device Pinouts (Continued)

XC2S50 Pad Name					Bndry
Function	Bank	TQ144	PQ208	FG256	Scan
I/O	0	-	-	D8	83
I/O	0	-	P188	A6	86
I/O, V _{REF}	0	P12	P189	B7	89
GND	-	-	P190	GND*	-
I/O	0	-	P191	C8	92
I/O	0	-	P192	D7	95
I/O	0	-	P193	E7	98
I/O	0	P11	P194	C7	104
I/O	0	P10	P195	B6	107
V _{CCINT}	-	P9	P196	V _{CCINT} *	-
V _{CCO}	0	-	P197	V _{CCO} Bank 0*	-
GND	-	P8	P198	GND*	-
I/O	0	P7	P199	A5	110
I/O	0	P6	P200	C6	113
I/O	0	-	P201	B5	116
I/O	0	-	-	D6	119
I/O	0	-	P202	A4	122
I/O, V _{REF}	0	P5	P203	B4	125
GND	-	-	-	GND*	-
I/O	0	-	P204	E6	128
I/O	0	-	-	D5	131
I/O	0	P4	P205	A3	134
I/O	0	-	-	C5	137
I/O	0	P3	P206	B3	140
TCK	-	P2	P207	C4	-
V _{CCO}	0	P1	P208	V _{CCO} Bank 0*	-
V _{CCO}	7	P144	P208	V _{CCO} Bank 7*	-

04/18/01

Notes:

- 1. IRDY and TRDY can only be accessed when using Xilinx PCI cores.
- Pads labelled GND*, V_{CCINT}*, V_{CCO} Bank 0*, V_{CCO} Bank 1*, V_{CCO} Bank 2*, V_{CCO} Bank 3*, V_{CCO} Bank 4*, V_{CCO} Bank 5*, V_{CCO} Bank 6*, V_{CCO} Bank 7* are internally bonded to independent ground or power planes within the package.
- 3. See "VCCO Banks" for details on V_{CCO} banking.

Additional XC2S50 Package Pins

TQ144	
-------	--

Not Connected Pins								
P104	P105	-	-	-	-			
11/02/00								

XC2S100 Device Pinouts (Continued)

XC2S100 Pad Name						Bndry
Function	Bank	TQ144	PQ208	FG256	FG456	Scan
V _{CCINT}	-	-	P38	V_{CCINT}^{*}	V _{CCINT} *	-
V _{CCO}	6	-	P39	V _{CCO} Bank 6*	V _{CCO} Bank 6*	-
GND	-	P119	P40	GND*	GND*	-
I/O	6	P118	P41	K4	T1	314
I/O, V _{REF}	6	P117	P42	M1	R4	317
I/O	6	-	-	-	T2	320
I/O	6	P116	P43	L4	U1	323
I/O	6	-	-	M2	R5	326
I/O	6	-	P44	L3	U2	332
I/O, V _{REF}	6	P115	P45	N1	Т3	335
V _{CCO}	6	-	-	V _{CCO} Bank 6*	V _{CCO} Bank 6*	-
GND	-	-	-	GND*	GND*	-
I/O	6	-	P46	P1	T4	338
I/O	6	-	-	L5	W1	341
I/O	6	-	-	-	U4	344
I/O	6	P114	P47	N2	Y1	347
I/O	6	-	-	M4	W2	350
I/O	6	P113	P48	R1	Y2	356
I/O	6	P112	P49	М3	W3	359
M1	-	P111	P50	P2	U5	362
GND	-	P110	P51	GND*	GND*	-
MO	-	P109	P52	N3	AB2	363
V _{CCO}	6	P108	P53	V _{CCO} Bank 6*	V _{CCO} Bank 6*	-
V _{CCO}	5	P107	P53	V _{CCO} Bank 5*	V _{CCO} Bank 5*	-
M2	-	P106	P54	R3	Y4	364
I/O	5	-	-	N5	V7	374
I/O	5	P103	P57	T2	Y6	377
I/O	5	-	-	-	AA4	380
I/O	5	-	-	P5	W6	383
I/O	5	-	P58	Т3	Y7	386
GND	-	-	-	GND*	GND*	-
V _{CCO}	5	-	-	V _{CCO} Bank 5*	V _{CCO} Bank 5*	-
I/O, V _{REF}	5	P102	P59	T4	AA5	389
I/O	5	-	P60	M6	AB5	392
I/O	5	-	-	T5	AB6	398
I/O	5	P101	P61	N6	AA7	401
I/O	5	-	-	-	W7	404

XC2S100 Device Pinouts (Continued)

XC2S100 Name						Bndry
Function	Bank	TQ144	PQ208	FG256	FG456	Scan
I/O, V _{REF}	5	P100	P62	R5	W8	407
I/O	5	P99	P63	P6	Y8	410
GND	-	P98	P64	GND*	GND*	-
V _{CCO}	5	-	P65	V _{CCO} Bank 5*	V _{CCO} Bank 5*	-
V _{CCINT}	-	P97	P66	V _{CCINT} *	V _{CCINT} *	-
I/O	5	P96	P67	R6	AA8	413
I/O	5	P95	P68	M7	V9	416
I/O	5	-	-	-	AB9	419
I/O	5	-	P69	N7	Y9	422
I/O	5	-	P70	T6	W10	428
I/O	5	-	P71	P7	AB10	431
GND	-	-	P72	GND*	GND*	-
I/O, V _{REF}	5	P94	P73	P8	Y10	434
I/O	5	-	P74	R7	V11	437
I/O	5	-	-	T7	W11	440
I/O	5	P93	P75	Т8	AB11	443
V _{CCINT}	-	P92	P76	V _{CCINT} *	V _{CCINT} *	-
I, GCK1	5	P91	P77	R8	Y11	455
V _{CCO}	5	P90	P78	V _{CCO} Bank 5*	V _{CCO} Bank 5*	-
V _{CCO}	4	P90	P78	V _{CCO} Bank 4*	V _{CCO} Bank 4*	-
GND	-	P89	P79	GND*	GND*	-
I, GCK0	4	P88	P80	N8	W12	456
I/O	4	P87	P81	N9	U12	460
I/O	4	P86	P82	R9	Y12	466
I/O	4	-	-	N10	AA12	469
I/O	4	-	P83	Т9	AB13	472
I/O, V _{REF}	4	P85	P84	P9	AA13	475
GND	-	-	P85	GND*	GND*	-
I/O	4	-	P86	M10	Y13	478
I/O	4	-	P87	R10	V13	481
I/O	4	-	P88	P10	AA14	487
I/O	4	-	-	-	V14	490
I/O	4	P84	P89	T10	AB15	493
I/O	4	P83	P90	R11	AA15	496
V _{CCINT}	-	P82	P91	V _{CCINT} *	V _{CCINT} *	-
V _{CCO}	4	-	P92	V _{CCO} Bank 4*	V _{CCO} Bank 4*	-
GND	-	P81	P93	GND*	GND*	-
I/O	4	P80	P94	M11	Y15	499

XC2S200 Device Pinouts (Continued)

XC2S200 Pac				Bndry	
Function	Bank	PQ208	FG256	FG456	Scan
V _{CCO}	3	P117	V _{CCO} Bank 3*	V _{CCO} Bank 3*	-
V _{CCINT}	-	P118	V _{CCINT} *	V _{CCINT} *	-
I/O (D5)	3	P119	M16	R21	833
I/O	3	P120	K14	P18	836
I/O	3	-	-	R22	839
I/O	3	-	-	P19	842
I/O	3	-	L16	P20	845
GND	-	-	GND*	GND*	-
I/O	3	P121	K13	P21	848
I/O	3	-	-	N19	851
I/O	3	-	-	P22	854
I/O	3	P122	L15	N18	857
I/O	3	P123	K12	N20	860
GND	-	P124	GND*	GND*	-
V _{CCO}	3	-	V _{CCO} Bank 3*	V _{CCO} Bank 3*	-
I/O, V _{REF}	3	P125	K16	N21	863
I/O (D4)	3	P126	J16	N22	866
I/O	3	-	-	M17	872
I/O	3	-	J14	M19	875
I/O	3	P127	K15	M20	878
I/O	3	-	-	M18	881
V _{CCINT}	-	P128	V _{CCINT} *	V _{CCINT} *	-
I/O, TRDY ⁽¹⁾	3	P129	J15	M22	890
V _{CCO}	3	P130	V _{CCO} Bank 3*	V _{CCO} Bank 3*	-
V _{CCO}	2	P130	V _{CCO} Bank 2*	V _{CCO} Bank 2*	-
GND	-	P131	GND*	GND*	-
I/O, IRDY ⁽¹⁾	2	P132	H16	L20	893
I/O	2	P133	H14	L17	896
I/O	2	-	-	L18	902
I/O	2	P134	H15	L21	905
I/O	2	-	J13	L22	908
I/O	2	-	-	K19	911
I/O (D3)	2	P135	G16	K20	917
I/O, V _{REF}	2	P136	H13	K21	920
V _{CCO}	2	-	V _{CCO} Bank 2*	V _{CCO} Bank 2*	-
GND	-	P137	GND*	GND*	-
I/O	2	P138	G14	K22	923
I/O	2	P139	G15	J21	926

XC2S200 Device Pinouts (Continued)

XC2S200 Pad	l Name				Bndry
Function	Bank	PQ208	FG256	FG456	Scan
I/O	2	-	-	K18	929
I/O	2	-	-	J20	932
I/O	2	P140	G12	J18	935
GND	-	-	GND*	GND*	-
I/O	2	-	F16	J22	938
I/O	2	-	-	J19	941
I/O	2	-	-	H21	944
I/O	2	P141	G13	H19	947
I/O (D2)	2	P142	F15	H20	950
V _{CCINT}	-	P143	V _{CCINT} *	V _{CCINT} *	-
V _{CCO}	2	P144	V _{CCO} Bank 2*	V _{CCO} Bank 2*	-
GND	-	P145	GND*	GND*	-
I/O (D1)	2	P146	E16	H22	953
I/O, V _{REF}	2	P147	F14	H18	956
I/O	2	-	-	G21	962
I/O	2	P148	D16	G18	965
GND	-	-	GND*	GND*	-
I/O	2	-	F12	G20	968
I/O	2	-	-	G19	971
I/O	2	-	-	F22	974
I/O	2	P149	E15	F19	977
I/O, V _{REF}	2	P150	F13	F21	980
V _{CCO}	2	-	V _{CCO} Bank 2*	V _{CCO} Bank 2*	-
GND	-	-	GND*	GND*	-
I/O	2	P151	E14	F20	983
I/O	2	-	C16	F18	986
GND	-	-	GND*	GND*	-
I/O	2	-	-	E22	989
I/O	2	-	-	E21	995
I/O, V _{REF}	2	P152	E13	D22	998
GND	-	-	GND*	GND*	-
I/O	2	-	B16	E20	1001
I/O	2	-	-	D21	1004
I/O	2	-	-	C22	1007
I/O (DIN, D0)	2	P153	D14	D20	1013
I/O (DOUT, BUSY)	2	P154	C15	C21	1016
CCLK	2	P155	D15	B22	1019
V _{CCO}	2	P156	V _{CCO} Bank 2*	V _{CCO} Bank 2*	-

XC2S200 Device Pinouts (Continued)

XC2S200 Pad	l Name				Bndry
Function	Bank	PQ208	FG256	FG456	Scan
V _{CCO}	1	P156	V _{CCO} Bank 1*	V _{CCO} Bank 1*	-
TDO	2	P157	B14	A21	-
GND	-	P158	GND*	GND*	-
TDI	-	P159	A15	B20	-
I/O (<u>CS</u>)	1	P160	B13	C19	0
I/O (WRITE)	1	P161	C13	A20	3
I/O	1	-	-	B19	9
I/O	1	-	-	C18	12
I/O	1	-	C12	D17	15
GND	-	-	GND*	GND*	-
I/O, V _{REF}	1	P162	A14	A19	18
I/O	1	-	-	B18	21
I/O	1	-	-	E16	27
I/O	1	-	D12	C17	30
I/O	1	P163	B12	D16	33
GND	-	-	GND*	GND*	-
V _{CCO}	1	-	V _{CCO} Bank 1*	V _{CCO} Bank 1*	-
I/O, V _{REF}	1	P164	C11	A18	36
I/O	1	P165	A13	B17	39
I/O	1	-	-	E15	42
I/O	1	-	-	A17	45
I/O	1	-	D11	D15	48
GND	-	-	GND*	GND*	-
I/O	1	P166	A12	C16	51
I/O	1	-	-	D14	54
I/O, V _{REF}	1	P167	E11	E14	60
I/O	1	P168	B11	A16	63
GND	-	P169	GND*	GND*	-
V _{CCO}	1	P170	V _{CCO} Bank 1*	V _{CCO} Bank 1*	-
V _{CCINT}	-	P171	V _{CCINT} *	V _{CCINT} *	-
I/O	1	P172	A11	C15	66
I/O	1	P173	C10	B15	69
I/O	1	-	-	E13	72
I/O	1	-	-	A15	75
I/O	1	-	-	F12	78
GND	-	-	GND*	GND*	-
I/O	1	P174	B10	C14	81
I/O	1	-	-	B14	84
I/O	1	-	-	A14	87

XC2S200 Device Pinouts (Continued)

XC2S200 Pad Name					Bndry
Function	Bank	PQ208	FG256	FG456	Scan
I/O	1	P175	D10	D13	90
I/O	1	P176	A10	C13	93
GND	-	P177	GND*	GND*	-
V _{CCO}	1	-	V _{CCO} Bank 1*	V _{CCO} Bank 1*	-
I/O, V _{REF}	1	P178	B9	B13	96
I/O	1	P179	E10	E12	99
I/O	1	-	-	A13	105
I/O	1	-	A9	B12	108
I/O	1	P180	D9	D12	111
I/O	1	-	-	C12	114
I/O	1	P181	A8	D11	120
I, GCK2	1	P182	C9	A11	126
GND	-	P183	GND*	GND*	-
V _{CCO}	1	P184	V _{CCO} Bank 1*	V _{CCO} Bank 1*	-
V _{CCO}	0	P184	V _{CCO} Bank 0*	V _{CCO} Bank 0*	-
I, GCK3	0	P185	B8	C11	127
V _{CCINT}	-	P186	V _{CCINT} *	V _{CCINT} *	-
I/O	0	-	-	E11	137
I/O	0	P187	A7	A10	140
I/O	0	-	D8	B10	143
I/O	0	-	-	F11	146
I/O	0	P188	A6	C10	152
I/O, V _{REF}	0	P189	B7	A9	155
V _{CCO}	0	-	V _{CCO} Bank 0*	V _{CCO} Bank 0*	-
GND	-	P190	GND*	GND*	-
I/O	0	P191	C8	B9	158
I/O	0	P192	D7	E10	161
I/O	0	-	-	C9	164
I/O	0	-	-	D10	167
I/O	0	P193	E7	A8	170
GND	-	-	GND*	GND*	-
I/O	0	-	-	D9	173
I/O	0	-	-	B8	176
I/O	0	-	-	C8	179
I/O	0	P194	C7	E9	182
I/O	0	P195	B6	A7	185
V _{CCINT}	-	P196	V _{CCINT} *	V_{CCINT}^{*}	-
V _{CCO}	0	P197	V _{CCO} Bank 0*	V _{CCO} Bank 0*	-

XC2S200 Device Pinouts (Continued)

XC2S200 Pad Name					Bndry
Function	Bank	PQ208	FG256	FG456	Scan
GND	-	P198	GND*	GND*	-
I/O	0	P199	A5	B7	188
I/O, V _{REF}	0	P200	C6	E8	191
I/O	0	-	-	D8	197
I/O	0	P201	B5	C7	200
GND	-	-	GND*	GND*	-
I/O	0	-	D6	D7	203
I/O	0	-	-	B6	206
I/O	0	-	-	A5	209
I/O	0	P202	A4	D6	212
I/O, V _{REF}	0	P203	B4	C6	215
V _{CCO}	0	-	V _{CCO} Bank 0*	V _{CCO} Bank 0*	-
GND	-	-	GND*	GND*	-
I/O	0	P204	E6	B5	218
I/O	0	-	D5	E7	221
I/O	0	-	-	A4	224
I/O	0	-	-	E6	230
I/O, V _{REF}	0	P205	A3	B4	233
GND	-	-	GND*	GND*	-
I/O	0	-	C5	A3	236
I/O	0	-	-	B3	239
I/O	0	-	-	D5	242
I/O	0	P206	B3	C5	248
TCK	-	P207	C4	C4	-
V _{CCO}	0	P208	V _{CCO} Bank 0*	V _{CCO} Bank 0*	-
V _{CCO}	7	P208	V _{CCO} Bank 7*	V _{CCO} Bank 7*	-

04/18/01

- 1. IRDY and TRDY can only be accessed when using Xilinx PCI cores.
- 2. Pads labelled GND*, V_{CCINT} *, V_{CCO} Bank 0*, V_{CCO} Bank 1*, V_{CCO} Bank 2*, V_{CCO} Bank 3*, V_{CCO} Bank 4*, V_{CCO} Bank 5*, V_{CCO} Bank 6*, V_{CCO} Bank 7* are internally bonded to independent ground or power planes within the package.
- 3. See "VCCO Banks" for details on V_{CCO} banking.

Additional XC2S200 Package Pins

PQ208

Not Connected Pins					
P55	P56	-	-	-	-
11/02/00					

FG256

FG230					
		V _{CCIN}	_{IT} Pins		
C3	C14	D4	D13	E5	E12
M5	M12	N4	N13	P3	P14
		V _{CCO} Ba	nk 0 Pins		1
E8	F8	-	-	-	-
		V _{CCO} Ba	nk 1 Pins		
E9	F9	-	-	-	-
		V _{CCO} Ba	nk 2 Pins		
H11	H12	-	-	-	-
		V _{CCO} Ba	nk 3 Pins		
J11	J12	-	-	-	-
	•	V _{CCO} Ba	nk 4 Pins		•
L9	M9	-	-	-	-
		V _{CCO} Ba	nk 5 Pins		
L8	M8	-	-	-	-
		V _{CCO} Ba	nk 6 Pins		
J5	J6	-	-	-	-
		V _{CCO} Ba	nk 7 Pins		
H5	H6	-	-	-	-
		GND	Pins		
A1	A16	B2	B15	F6	F7
F10	F11	G6	G7	G8	G9
G10	G11	H7	H8	H9	H10
J7	J8	J9	J10	K6	K7
K8	K9	K10	K11	L6	L7
L10	L11	R2	R15	T1	T16
		Not Conn	ected Pins		
P4	R4	-	-	-	-
			1		

Additional XC2S200 Package Pins (Continued)

11/02/00

FG456					
		V _{CCIN}	_T Pins		
E5	E18	F6	F17	G7	G8
G9	G14	G15	G16	H7	H16
J7	J16	P7	P16	R7	R16
T7	Т8	Т9	T14	T15	T16
U6	U17	V5	V18	-	-
	L	V _{CCO} Ba	nk 0 Pins		
F7	F8	F9	F10	G10	G11
	V _{CCO} Bank 1 Pins				
F13	F14	F15	F16	G12	G13
V _{CCO} Bank 2 Pins					
G17	H17	J17	K16	K17	L16
		V _{CCO} Ba	nk 3 Pins		
M16	N16	N17	P17	R17	T17
		V _{CCO} Ba	nk 4 Pins		
T12	T13	U13	U14	U15	U16
	V _{CCO} Bank 5 Pins				
T10	T11	U7	U8	U9	U10
V _{CCO} Bank 6 Pins					
M7	N6	N7	P6	R6	T6
V _{CCO} Bank 7 Pins					

Additional XC2S200 Package Pins (Continued)

				•	
G6	H6	J6	K6	K7	L7
GND Pins					
A1	A22	B2	B21	C3	C20
J9	J10	J11	J12	J13	J14
K9	K10	K11	K12	K13	K14
L9	L10	L11	L12	L13	L14
M9	M10	M11	M12	M13	M14
N9	N10	N11	N12	N13	N14
P9	P10	P11	P12	P13	P14
Y3	Y20	AA2	AA21	AB1	AB22
Not Connected Pins					
A2	A6	A12	B11	B16	C2
D1	D4	D18	D19	E17	E19
G2	G22	L2	L19	M2	M21
R3	R20	U3	U18	V6	W4
W19	Y5	Y22	AA1	AA3	AA11
AA16	AB7	AB12	AB21	-	-
11/02/00]

Revision History

Version No.	Date	Description
2.0	09/18/00	Sectioned the Spartan-II Family data sheet into four modules. Corrected all known errors in the pinout tables.
2.1	10/04/00	Added notes requiring PWDN to be tied to V _{CCINT} when unused.
2.2	11/02/00	Removed the Power Down feature.
2.3	03/05/01	Added notes on pinout tables for IRDY and TRDY.
2.4	04/30/01	Reinstated XC2S50 V _{CCO} Bank 7, GND, and "not connected" pins missing in version 2.3.
2.5	09/03/03	Added caution about Not Connected Pins to XC2S30 pinout tables on page 76.
2.8	06/13/08	Added "Package Overview" section. Added notes to clarify shared V _{CCO} banks. Updated description and links. Updated all modules for continuous page, figure, and table numbering. Synchronized all modules to v2.8.