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The three IOB registers function either as edge-triggered 
D-type flip-flops or as level-sensitive latches. Each IOB has 
a clock signal (CLK) shared by the three registers and 
independent Clock Enable (CE) signals for each register. In 
addition to the CLK and CE control signals, the three 
registers share a Set/Reset (SR). For each register, this 
signal can be independently configured as a synchronous 
Set, a synchronous Reset, an asynchronous Preset, or an 
asynchronous Clear.

A feature not shown in the block diagram, but controlled by 
the software, is polarity control. The input and output buffers 
and all of the IOB control signals have independent polarity 
controls.

Optional pull-up and pull-down resistors and an optional 
weak-keeper circuit are attached to each pad. Prior to 
configuration all outputs not involved in configuration are 
forced into their high-impedance state. The pull-down 
resistors and the weak-keeper circuits are inactive, but 
inputs may optionally be pulled up.  

The activation of pull-up resistors prior to configuration is 
controlled on a global basis by the configuration mode pins. 
If the pull-up resistors are not activated, all the pins will float. 
Consequently, external pull-up or pull-down resistors must 
be provided on pins required to be at a well-defined logic 
level prior to configuration.

All pads are protected against damage from electrostatic 
discharge (ESD) and from over-voltage transients. Two 
forms of over-voltage protection are provided, one that 
permits 5V compliance, and one that does not. For 5V 
compliance, a zener-like structure connected to ground 
turns on when the output rises to approximately 6.5V. When 
5V compliance is not required, a conventional clamp diode 
may be connected to the output supply voltage, VCCO. The 
type of over-voltage protection can be selected 
independently for each pad.

All Spartan-II FPGA IOBs support IEEE 1149.1-compatible 
boundary scan testing.

Input Path

A buffer In the Spartan-II FPGA IOB input path routes the 
input signal either directly to internal logic or through an 
optional input flip-flop. 

An optional delay element at the D-input of this flip-flop 
eliminates pad-to-pad hold time. The delay is matched to 
the internal clock-distribution delay of the FPGA, and when 
used, assures that the pad-to-pad hold time is zero.

Each input buffer can be configured to conform to any of the 
low-voltage signaling standards supported. In some of 
these standards the input buffer utilizes a user-supplied 
threshold voltage, VREF. The need to supply VREF imposes 
constraints on which standards can used in close proximity 
to each other. See "I/O Banking," page 9.

There are optional pull-up and pull-down resistors at each 
input for use after configuration.

Output Path

The output path includes a 3-state output buffer that drives 
the output signal onto the pad. The output signal can be 
routed to the buffer directly from the internal logic or through 
an optional IOB output flip-flop.

The 3-state control of the output can also be routed directly 
from the internal logic or through a flip-flip that provides 
synchronous enable and disable.

Each output driver can be individually programmed for a 
wide range of low-voltage signaling standards. Each output 
buffer can source up to 24 mA and sink up to 48 mA. Drive 
strength and slew rate controls minimize bus transients.

In most signaling standards, the output high voltage 
depends on an externally supplied VCCO voltage. The need 
to supply VCCO imposes constraints on which standards 
can be used in close proximity to each other. See "I/O 
Banking".

An optional weak-keeper circuit is connected to each 
output. When selected, the circuit monitors the voltage on 
the pad and weakly drives the pin High or Low to match the 
input signal. If the pin is connected to a multiple-source 
signal, the weak keeper holds the signal in its last state if all 

Table  3:  Standards Supported by I/O (Typical Values)

I/O Standard

Input 
Reference 

Voltage 
(VREF)

Output 
Source 
Voltage 
(VCCO)

Board 
Termination 

Voltage 
(VTT)

LVTTL (2-24 mA) N/A 3.3 N/A

LVCMOS2 N/A 2.5 N/A

PCI (3V/5V, 
33 MHz/66 MHz)

N/A 3.3 N/A

GTL 0.8 N/A 1.2

GTL+ 1.0 N/A 1.5

HSTL Class I 0.75 1.5 0.75 

HSTL Class III 0.9 1.5 1.5 

HSTL Class IV 0.9 1.5 1.5

SSTL3 Class I 
and II

1.5 3.3 1.5

SSTL2 Class I 
and II

1.25 2.5 1.25

CTT 1.5 3.3 1.5

AGP-2X 1.32 3.3 N/A
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drivers are disabled. Maintaining a valid logic level in this 
way helps eliminate bus chatter.

Because the weak-keeper circuit uses the IOB input buffer 
to monitor the input level, an appropriate VREF voltage must 
be provided if the signaling standard requires one. The 
provision of this voltage must comply with the I/O banking 
rules.

I/O Banking

Some of the I/O standards described above require VCCO 
and/or VREF voltages. These voltages are externally 
connected to device pins that serve groups of IOBs, called 
banks. Consequently, restrictions exist about which I/O 
standards can be combined within a given bank.

Eight I/O banks result from separating each edge of the 
FPGA into two banks (see Figure 3). Each bank has 
multiple VCCO pins which must be connected to the same 
voltage. Voltage is determined by the output standards in 
use.
 

Within a bank, output standards may be mixed only if they 
use the same VCCO. Compatible standards are shown in 
Table 4. GTL and GTL+ appear under all voltages because 
their open-drain outputs do not depend on VCCO.

Some input standards require a user-supplied threshold 
voltage, VREF. In this case, certain user-I/O pins are 

automatically configured as inputs for the VREF voltage. 
About one in six of the I/O pins in the bank assume this role.

VREF pins within a bank are interconnected internally and 
consequently only one VREF voltage can be used within 
each bank. All VREF pins in the bank, however, must be 
connected to the external voltage source for correct 
operation.

In a bank, inputs requiring VREF can be mixed with those 
that do not but only one VREF voltage may be used within a 
bank. Input buffers that use VREF are not 5V tolerant. 
LVTTL, LVCMOS2, and PCI are 5V tolerant. The VCCO and 
VREF pins for each bank appear in the device pinout tables.

Within a given package, the number of VREF and VCCO pins 
can vary depending on the size of device. In larger devices, 
more I/O pins convert to VREF pins. Since these are always 
a superset of the VREF pins used for smaller devices, it is 
possible to design a PCB that permits migration to a larger 
device. All VREF pins for the largest device anticipated must 
be connected to the VREF voltage, and not used for I/O.

Configurable Logic Block 

The basic building block of the Spartan-II FPGA CLB is the 
logic cell (LC). An LC includes a 4-input function generator, 
carry logic, and storage element. Output from the function 
generator in each LC drives the CLB output and the D input 
of the flip-flop. Each Spartan-II FPGA CLB contains four 
LCs, organized in two similar slices; a single slice is shown 
in Figure 4. 

In addition to the four basic LCs, the Spartan-II FPGA CLB 
contains logic that combines function generators to provide 
functions of five or six inputs.

Look-Up Tables

Spartan-II FPGA function generators are implemented as 
4-input look-up tables (LUTs). In addition to operating as a 
function generator, each LUT can provide a 16 x 1-bit 
synchronous RAM. Furthermore, the two LUTs within a 
slice can be combined to create a 16 x 2-bit or 32 x 1-bit 
synchronous RAM, or a 16 x 1-bit dual-port synchronous 
RAM.

The Spartan-II FPGA LUT can also provide a 16-bit shift 
register that is ideal for capturing high-speed or burst-mode 
data. This mode can also be used to store data in 
applications such as Digital Signal Processing.

Figure 3:  Spartan-II I/O Banks

Table  4:  Compatible Output Standards

VCCO Compatible Standards

3.3V PCI, LVTTL, SSTL3 I, SSTL3 II, CTT, AGP, 
GTL, GTL+

2.5V SSTL2 I, SSTL2 II, LVCMOS2, GTL, GTL+

1.5V HSTL I, HSTL III, HSTL IV, GTL, GTL+
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Local Routing

The local routing resources, as shown in Figure 6, provide 
the following three types of connections:

• Interconnections among the LUTs, flip-flops, and
General Routing Matrix (GRM)

• Internal CLB feedback paths that provide high-speed
connections to LUTs within the same CLB, chaining
them together with minimal routing delay

• Direct paths that provide high-speed connections
between horizontally adjacent CLBs, eliminating the
delay of the GRM  

General Purpose Routing

Most Spartan-II FPGA signals are routed on the general 
purpose routing, and consequently, the majority of 
interconnect resources are associated with this level of the 
routing hierarchy. The general routing resources are 
located in horizontal and vertical routing channels 
associated with the rows and columns CLBs. The 
general-purpose routing resources are listed below.

• Adjacent to each CLB is a General Routing Matrix 
(GRM). The GRM is the switch matrix through which 
horizontal and vertical routing resources connect, and 
is also the means by which the CLB gains access to 
the general purpose routing.

• 24 single-length lines route GRM signals to adjacent 
GRMs in each of the four directions.

• 96 buffered Hex lines route GRM signals to other 
GRMs six blocks away in each one of the four 
directions. Organized in a staggered pattern, Hex lines 
may be driven only at their endpoints. Hex-line signals 
can be accessed either at the endpoints or at the 
midpoint (three blocks from the source). One third of 
the Hex lines are bidirectional, while the remaining 
ones are unidirectional.

• 12 Longlines are buffered, bidirectional wires that 
distribute signals across the device quickly and 

efficiently. Vertical Longlines span the full height of the 
device, and horizontal ones span the full width of the 
device.

I/O Routing

Spartan-II devices have additional routing resources 
around their periphery that form an interface between the 
CLB array and the IOBs. This additional routing, called the 
VersaRing, facilitates pin-swapping and pin-locking, such 
that logic redesigns can adapt to existing PCB layouts. 
Time-to-market is reduced, since PCBs and other system 
components can be manufactured while the logic design is 
still in progress.

Dedicated Routing

Some classes of signal require dedicated routing resources 
to maximize performance. In the Spartan-II architecture, 
dedicated routing resources are provided for two classes of 
signal.

• Horizontal routing resources are provided for on-chip 
3-state busses. Four partitionable bus lines are 
provided per CLB row, permitting multiple busses 
within a row, as shown in Figure 7.

• Two dedicated nets per CLB propagate carry signals 
vertically to the adjacent CLB.

Global Routing

Global Routing resources distribute clocks and other 
signals with very high fanout throughout the device. 
Spartan-II devices include two tiers of global routing 
resources referred to as primary and secondary global 
routing resources.

• The primary global routing resources are four
dedicated global nets with dedicated input pins that are
designed to distribute high-fanout clock signals with
minimal skew. Each global clock net can drive all CLB,
IOB, and block RAM clock pins. The primary global
nets may only be driven by global buffers. There are
four global buffers, one for each global net.

• The secondary global routing resources consist of 24
backbone lines, 12 across the top of the chip and 12
across bottom. From these lines, up to 12 unique
signals per column can be distributed via the 12
longlines in the column. These secondary resources
are more flexible than the primary resources since they
are not restricted to routing only to clock pins.

Figure 6:  Spartan-II Local Routing
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Clock Distribution

The Spartan-II family provides high-speed, low-skew clock 
distribution through the primary global routing resources 
described above. A typical clock distribution net is shown in 
Figure 8. 

Four global buffers are provided, two at the top center of the 
device and two at the bottom center. These drive the four 
primary global nets that in turn drive any clock pin.

Four dedicated clock pads are provided, one adjacent to 
each of the global buffers. The input to the global buffer is 
selected either from these pads or from signals in the 
general purpose routing. Global clock pins do not have the 
option for internal, weak pull-up resistors.

Delay-Locked Loop (DLL)

Associated with each global clock input buffer is a fully 
digital Delay-Locked Loop (DLL) that can eliminate skew 
between the clock input pad and internal clock-input pins 
throughout the device. Each DLL can drive two global clock 

networks. The DLL monitors the input clock and the 
distributed clock, and automatically adjusts a clock delay 
element. Additional delay is introduced such that clock 
edges reach internal flip-flops exactly one clock period after 
they arrive at the input. This closed-loop system effectively 
eliminates clock-distribution delay by ensuring that clock 
edges arrive at internal flip-flops in synchronism with clock 
edges arriving at the input. 

In addition to eliminating clock-distribution delay, the DLL 
provides advanced control of multiple clock domains. The 
DLL provides four quadrature phases of the source clock, 
can double the clock, or divide the clock by 1.5, 2, 2.5, 3, 4, 
5, 8, or 16. It has six outputs.

The DLL also operates as a clock mirror. By driving the 
output from a DLL off-chip and then back on again, the DLL 
can be used to deskew a board level clock among multiple 
Spartan-II devices.

In order to guarantee that the system clock is operating 
correctly prior to the FPGA starting up after configuration, 
the DLL can delay the completion of the configuration 
process until after it has achieved lock.

Boundary Scan

Spartan-II devices support all the mandatory boundary- 
scan instructions specified in the IEEE standard 1149.1. A 
Test Access Port (TAP) and registers are provided that 
implement the EXTEST, SAMPLE/PRELOAD, and BYPASS 
instructions. The TAP also supports two USERCODE 
instructions and internal scan chains.

The TAP uses dedicated package pins that always operate 
using LVTTL. For TDO to operate using LVTTL, the VCCO 
for Bank 2 must be 3.3V. Otherwise, TDO switches 
rail-to-rail between ground and VCCO. TDI, TMS, and TCK 
have a default internal weak pull-up resistor, and TDO has 
no default resistor.  Bitstream options allow setting any of 
the four TAP pins to have an internal pull-up, pull-down, or 
neither.

Figure 7:  BUFT Connections to Dedicated Horizontal Bus Lines
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Figure 8:  Global Clock Distribution Network
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Signals

There are two kinds of pins that are used to configure 
Spartan-II devices: Dedicated pins perform only specific 
configuration-related functions; the other pins can serve as 
general purpose I/Os once user operation has begun.

The dedicated pins comprise the mode pins (M2, M1, M0), 
the configuration clock pin (CCLK), the PROGRAM pin, the 
DONE pin and the boundary-scan pins (TDI, TDO, TMS, 
TCK). Depending on the selected configuration mode, 
CCLK may be an output generated by the FPGA, or may be 
generated externally, and provided to the FPGA as an 
input.

Note that some configuration pins can act as outputs. For 
correct operation, these pins require a VCCO of 3.3V to drive 
an LVTTL signal or 2.5V to drive an LVCMOS signal. All the 
relevant pins fall in banks 2 or 3. The CS and WRITE pins 
for Slave Parallel mode are located in bank 1.

For a more detailed description than that given below, see 
"Pinout Tables" in Module 4 and XAPP176, Spartan-II 
FPGA Series Configuration and Readback.

The Process

The sequence of steps necessary to configure Spartan-II 
devices are shown in Figure 11. The overall flow can be 
divided into three different phases. 

• Initiating Configuration
• Configuration memory clear
• Loading data frames
• Start-up

The memory clearing and start-up phases are the same for 
all configuration modes; however, the steps for the loading 
of data frames are different. Thus, the details for data frame 
loading are described separately in the sections devoted to 
each mode.

Initiating Configuration

There are two different ways to initiate the configuration 
process: applying power to the device or asserting the 
PROGRAM input.

Configuration on power-up occurs automatically unless it is 
delayed by the user, as described in a separate section 
below. The waveform for configuration on power-up is 
shown in Figure 12, page 19. Before configuration can 
begin, VCCO Bank 2 must be greater than 1.0V. 
Furthermore, all VCCINT power pins must be connected to a 
2.5V supply. For more information on delaying 
configuration, see "Clearing Configuration Memory," 
page 19. 

Once in user operation, the device can be re-configured 
simply by pulling the PROGRAM pin Low. The device 
acknowledges the beginning of the configuration process 

by driving DONE Low, then enters the memory-clearing 
phase.

Figure 11:  Configuration Flow Diagram
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Master Serial Mode

In Master Serial mode, the CCLK output of the FPGA drives 
a Xilinx PROM which feeds a serial stream of configuration 
data to the FPGA’s DIN input. Figure 15 shows a Master 
Serial FPGA configuring a Slave Serial FPGA from a 
PROM. A Spartan-II device in Master Serial mode should 
be connected as shown for the device on the left side. 
Master Serial mode is selected by a <00x> on the mode 
pins (M0, M1, M2). The PROM RESET pin is driven by INIT, 
and CE input is driven by DONE. The interface is identical 
to the slave serial mode except that an oscillator internal to 
the FPGA is used to generate the configuration clock 
(CCLK). Any of a number of different frequencies ranging 
from 4 to 60 MHz can be set using the ConfigRate option in 
the Xilinx software. On power-up, while the first 60 bytes of 

the configuration data are being loaded, the CCLK 
frequency is always 2.5 MHz. This frequency is used until 
the ConfigRate bits, part of the configuration file, have been 
loaded into the FPGA, at which point, the frequency 
changes to the selected ConfigRate. Unless a different 
frequency is specified in the design, the default ConfigRate 
is 4 MHz. The frequency of the CCLK signal created by the 
internal oscillator has a variance of +45%, –30% from the 
specified value.

Figure 17 shows the timing for Master Serial configuration. 
The FPGA accepts one bit of configuration data on each 
rising CCLK edge. After the FPGA has been loaded, the 
data for the next device in a daisy-chain is presented on the 
DOUT pin after the rising CCLK edge. 

Slave Parallel Mode

The Slave Parallel mode is the fastest configuration option. 
Byte-wide data is written into the FPGA. A BUSY flag is 
provided for controlling the flow of data at a clock frequency 
FCCNH above 50 MHz. 

Figure 18, page 24 shows the connections for two 
Spartan-II devices using the Slave Parallel mode. Slave 
Parallel mode is selected by a <011> on the mode pins (M0, 
M1, M2). 

If a configuration file of the format .bit, .rbt, or non-swapped 
HEX is used for parallel programming, then the most 
significant bit (i.e. the left-most bit of each configuration 
byte, as displayed in a text editor) must be routed to the D0 
input on the FPGA.

The agent controlling configuration is not shown. Typically, 
a processor, a microcontroller, or CPLD controls the Slave 
Parallel interface. The controlling agent provides byte-wide 
configuration data, CCLK, a Chip Select (CS) signal and a 
Write signal (WRITE). If BUSY is asserted (High) by the 
FPGA, the data must be held until BUSY goes Low.

After configuration, the pins of the Slave Parallel port 
(D0-D7) can be used as additional user I/O. Alternatively, 
the port may be retained to permit high-speed 8-bit 
readback. Then data can be read by de-asserting WRITE. 
See "Readback," page 25.

Figure 17:  Master Serial Mode Timing
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Startup Delay Property 

This property, STARTUP_WAIT, takes on a value of TRUE 
or FALSE (the default value). When TRUE the Startup 
Sequence following device configuration is paused at a 
user-specified point until the DLL locks. XAPP176: 
Configuration and Readback of the Spartan-II and 
Spartan-IIE Families explains how this can result in delaying 
the assertion of the DONE pin until the DLL locks.

DLL Location Constraints

The DLLs are distributed such that there is one DLL in each 
corner of the device. The location constraint LOC, attached 
to the DLL primitive with the numeric identifier 0, 1, 2, or 3, 
controls DLL location. The orientation of the four DLLs and 
their corresponding clock resources appears in Figure 27. 

The LOC property uses the following form.

LOC = DLL2

Design Considerations

Use the following design considerations to avoid pitfalls and 
improve success designing with Xilinx devices.

Input Clock

The output clock signal of a DLL, essentially a delayed 
version of the input clock signal, reflects any instability on 
the input clock in the output waveform. For this reason the 
quality of the DLL input clock relates directly to the quality of 
the output clock waveforms generated by the DLL. The DLL 
input clock requirements are specified in the "DLL Timing 
Parameters" section of the data sheet. 

In most systems a crystal oscillator generates the system 
clock. The DLL can be used with any commercially 
available quartz crystal oscillator. For example, most crystal 
oscillators produce an output waveform with a frequency 
tolerance of 100 PPM, meaning 0.01 percent change in the 

clock period. The DLL operates reliably on an input 
waveform with a frequency drift of up to 1 ns — orders of 
magnitude in excess of that needed to support any crystal 
oscillator in the industry. However, the cycle-to-cycle jitter 
must be kept to less than 300 ps in the low frequencies and 
150 ps for the high frequencies.

Input Clock Changes

Changing the period of the input clock beyond the 
maximum drift amount requires a manual reset of the 
CLKDLL. Failure to reset the DLL will produce an unreliable 
lock signal and output clock.

It is possible to stop the input clock in a way that has little 
impact to the DLL. Stopping the clock should be limited to 
less than approximately 100 μs to keep device cooling to a 
minimum and maintain the validity of the current tap setting. 
The clock should be stopped during a Low phase, and when 
restored the full High period should be seen. During this 
time LOCKED will stay High and remain High when the 
clock is restored. If these conditions may not be met in the 
design, apply a manual reset to the DLL after re-starting the 
input clock, even if the LOCKED signal has not changed.

When the clock is stopped, one to four more clocks will still 
be observed as the delay line is flushed. When the clock is 
restarted, the output clocks will not be observed for one to 
four clocks as the delay line is filled. The most common 
case will be two or three clocks.

In a similar manner, a phase shift of the input clock is also 
possible. The phase shift will propagate to the output one to 
four clocks after the original shift, with no disruption to the 
CLKDLL control.

Output Clocks

As mentioned earlier in the DLL pin descriptions, some 
restrictions apply regarding the connectivity of the output 
pins. The DLL clock outputs can drive an OBUF, a global 
clock buffer BUFG, or route directly to destination clock 
pins. The only BUFGs that the DLL clock outputs can drive 
are the two on the same edge of the device (top or bottom). 
One DLL output can drive more than one OBUF; however, 
this adds skew.

Do not use the DLL output clock signals until after activation 
of the LOCKED signal. Prior to the activation of the 
LOCKED signal, the DLL output clocks are not valid and 
can exhibit glitches, spikes, or other spurious movement.

Figure 27:  Orientation of DLLs
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Useful Application Examples

The Spartan-II FPGA DLL can be used in a variety of 
creative and useful applications. The following examples 
show some of the more common applications. 

Standard Usage

The circuit shown in Figure 28 resembles the BUFGDLL 
macro implemented to provide access to the RST and 
LOCKED pins of the CLKDLL. 

Deskew of Clock and Its 2x Multiple

The circuit shown in Figure 29 implements a 2x clock 
multiplier and also uses the CLK0 clock output with zero ns 
skew between registers on the same chip. A clock divider 
circuit could alternatively be implemented using similar 
connections.

Because any single DLL can only access at most two 
BUFGs, any additional output clock signals must be routed 
from the DLL in this example on the high speed backbone 
routing.

Generating a 4x Clock

By connecting two DLL circuits each implementing a 2x 
clock multiplier in series as shown in Figure 30, a 4x clock 
multiply can be implemented with zero skew between 
registers in the same device. 

If other clock output is needed, the clock could access a 
BUFG only if the DLLs are constrained to exist on opposite 
edges (Top or Bottom) of the device.

When using this circuit it is vital to use the SRL16 cell to 
reset the second DLL after the initial chip reset. If this is not 
done, the second DLL may not recognize the change of 
frequencies from when the input changes from a 1x (25/75) 
waveform to a 2x (50/50) waveform. It is not recommended 
to cascade more than two DLLs.

For design examples and more information on using the 
DLL, see XAPP174, Using Delay-Locked Loops in Spartan-II 
FPGAs.

Figure 28:  Standard DLL Implementation

Figure 29:  DLL Deskew of Clock and 2x Multiple
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Figure 30:  DLL Generation of 4x Clock
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Creating Larger RAM Structures

The block RAM columns have specialized routing to allow 
cascading blocks together with minimal routing delays. This 
achieves wider or deeper RAM structures with a smaller 
timing penalty than when using normal routing channels. 

Location Constraints

Block RAM instances can have LOC properties attached to 
them to constrain the placement. The block RAM placement 
locations are separate from the CLB location naming 
convention, allowing the LOC properties to transfer easily 
from array to array.

The LOC properties use the following form:

LOC = RAMB4_R#C#

RAMB4_R0C0 is the upper left RAMB4 location on the 
device.

Conflict Resolution

The block RAM memory is a true dual-read/write port RAM 
that allows simultaneous access of the same memory cell 
from both ports. When one port writes to a given memory 
cell, the other port must not address that memory cell (for a 
write or a read) within the clock-to-clock setup window. The 
following lists specifics of port and memory cell write conflict 
resolution.

• If both ports write to the same memory cell
simultaneously, violating the clock-to-clock setup
requirement, consider the data stored as invalid.

• If one port attempts a read of the same memory cell 
the other simultaneously writes, violating the 
clock-to-clock setup requirement, the following occurs.
- The write succeeds
- The data out on the writing port accurately reflects

the data written.
- The data out on the reading port is invalid.

Conflicts do not cause any physical damage.

Single Port Timing

Figure 33 shows a timing diagram for a single port of a block 
RAM memory. The block RAM AC switching characteristics 
are specified in the data sheet. The block RAM memory is 
initially disabled. 

At the first rising edge of the CLK pin, the ADDR, DI, EN, 
WE, and RST pins are sampled. The EN pin is High and the 
WE pin is Low indicating a read operation. The DO bus 
contains the contents of the memory location, 0x00, as 
indicated by the ADDR bus.

At the second rising edge of the CLK pin, the ADDR, DI, EN, 
WR, and RST pins are sampled again. The EN and WE pins 
are High indicating a write operation. The DO bus mirrors 

the DI bus. The DI bus is written to the memory location 
0x0F.

At the third rising edge of the CLK pin, the ADDR, DI, EN, 
WR, and RST pins are sampled again. The EN pin is High 
and the WE pin is Low indicating a read operation. The DO 
bus contains the contents of the memory location 0x7E as 
indicated by the ADDR bus.

At the fourth rising edge of the CLK pin, the ADDR, DI, EN, 
WR, and RST pins are sampled again. The EN pin is Low 
indicating that the block RAM memory is now disabled. The 
DO bus retains the last value.

Dual Port Timing

Figure 34 shows a timing diagram for a true dual-port 
read/write block RAM memory. The clock on port A has a 
longer period than the clock on Port B. The timing 
parameter TBCCS, (clock-to-clock setup) is shown on this 
diagram. The parameter, TBCCS is violated once in the 
diagram. All other timing parameters are identical to the 
single port version shown in Figure 33.

TBCCS is only of importance when the address of both ports 
are the same and at least one port is performing a write 
operation. When the clock-to-clock set-up parameter is 
violated for a WRITE-WRITE condition, the contents of the 
memory at that location will be invalid. When the 
clock-to-clock set-up parameter is violated for a 
WRITE-READ condition, the contents of the memory will be 
correct, but the read port will have invalid data. At the first 
rising edge of the CLKA, memory location 0x00 is to be 
written with the value 0xAAAA and is mirrored on the DOA 
bus. The last operation of Port B was a read to the same 
memory location 0x00. The DOB bus of Port B does not 
change with the new value on Port A, and retains the last 
read value. A short time later, Port B executes another read 
to memory location 0x00, and the DOB bus now reflects the 
new memory value written by Port A.

At the second rising edge of CLKA, memory location 0x7E 
is written with the value 0x9999 and is mirrored on the DOA 
bus. Port B then executes a read operation to the same 
memory location without violating the TBCCS parameter and 
the DOB reflects the new memory values written by Port A.
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the LOC property is described below. Table 16 summarizes 
the input standards compatibility requirements.

An optional delay element is associated with each IBUF. 
When the IBUF drives a flip-flop within the IOB, the delay 
element by default activates to ensure a zero hold-time 
requirement. The NODELAY=TRUE property overrides this 
default.

When the IBUF does not drive a flip-flop within the IOB, the 
delay element de-activates by default to provide higher 
performance. To delay the input signal, activate the delay 
element with the DELAY=TRUE property.

IBUFG

Signals used as high fanout clock inputs to the 
Spartan-II device should drive a global clock input buffer 
(IBUFG) via an external input port in order to take 
advantage of one of the four dedicated global clock 
distribution networks. The output of the IBUFG primitive can 

only drive a CLKDLL, CLKDLLHF, or a BUFG primitive. The 
generic IBUFG primitive appears in Figure 37.

With no extension or property specified for the generic 
IBUFG primitive, the assumed standard is LVTTL.

The voltage reference signal is "banked" within the 
Spartan-II device on a half-edge basis such that for all 
packages there are eight independent VREF banks 
internally. See Figure 36 for a representation of the I/O 
banks. Within each bank approximately one of every six I/O 
pins is automatically configured as a VREF input. 

IBUFG placement restrictions require any differential 
amplifier input signals within a bank be of the same 
standard. The LOC property can specify a location for the 
IBUFG.

As an added convenience, the BUFGP can be used to 
instantiate a high fanout clock input. The BUFGP primitive 
represents a combination of the LVTTL IBUFG and BUFG 
primitives, such that the output of the BUFGP can connect 
directly to the clock pins throughout the design.

The Spartan-II FPGA BUFGP primitive can only be placed 
in a global clock pad location. The LOC property can specify 
a location for the BUFGP.

OBUF

An OBUF must drive outputs through an external output 
port. The generic output buffer (OBUF) primitive appears in 
Figure 38.

With no extension or property specified for the generic 
OBUF primitive, the assumed standard is slew rate limited 
LVTTL with 12 mA drive strength.

The LVTTL OBUF additionally can support one of two slew 
rate modes to minimize bus transients. By default, the slew 
rate for each output buffer is reduced to minimize power bus 
transients when switching non-critical signals.

Figure 36:  I/O Banks

Table  16:  Xilinx Input Standards Compatibility 
Requirements

Rule 1 All differential amplifier input signals within a 
bank are required to be of the same standard.

Rule 2 There are no placement restrictions for inputs 
with standards that require a single-ended input 
buffer.
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Figure 37:  Global Clock Input Buffer (IBUFG) Primitive

Figure 38:  Output Buffer (OBUF) Primitive
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LVTTL output buffers have selectable drive strengths.

The format for LVTTL OBUF primitive names is as follows.

OBUF_<slew_rate>_<drive_strength>

<slew_rate> is either F (Fast), or S (Slow) and 
<drive_strength> is specified in milliamps (2, 4, 6, 8, 12, 16, 
or 24). The default is slew rate limited with 12 mA drive.

OBUF placement restrictions require that within a given 
VCCO bank each OBUF share the same output source drive 
voltage. Input buffers of any type and output buffers that do 
not require VCCO can be placed within any VCCO bank. 
Table 17 summarizes the output compatibility requirements. 
The LOC property can specify a location for the OBUF.

OBUFT

The generic 3-state output buffer OBUFT, shown in 
Figure 39, typically implements 3-state outputs or 
bidirectional I/O.

With no extension or property specified for the generic 
OBUFT primitive, the assumed standard is slew rate limited 
LVTTL with 12 mA drive strength. 

The LVTTL OBUFT can support one of two slew rate modes 
to minimize bus transients. By default, the slew rate for each 
output buffer is reduced to minimize power bus transients 
when switching non-critical signals. 

LVTTL 3-state output buffers have selectable drive 
strengths. 

The format for LVTTL OBUFT primitive names is as follows.

OBUFT_<slew_rate>_<drive_strength>

<slew_rate> can be either F (Fast), or S (Slow) and 
<drive_strength> is specified in milliamps (2, 4, 6, 8, 12, 16, 
or 24).

The Versatile I/O OBUFT placement restrictions require 
that within a given VCCO bank each OBUFT share the same 
output source drive voltage. Input buffers of any type and 
output buffers that do not require VCCO can be placed within 
the same VCCO bank. 

The LOC property can specify a location for the OBUFT.

3-state output buffers and bidirectional buffers can have 
either a weak pull-up resistor, a weak pull-down resistor, or 
a weak "keeper" circuit. Control this feature by adding the 
appropriate primitive to the output net of the OBUFT 
(PULLUP, PULLDOWN, or KEEPER).

The weak "keeper" circuit requires the input buffer within the 
IOB to sample the I/O signal. So, OBUFTs programmed for 
an I/O standard that requires a VREF have automatic 
placement of a VREF in the bank with an OBUFT configured 
with a weak "keeper" circuit. This restriction does not affect 
most circuit design as applications using an OBUFT 
configured with a weak "keeper" typically implement a 
bidirectional I/O. In this case the IBUF (and the 
corresponding VREF) are explicitly placed.

The LOC property can specify a location for the OBUFT.

IOBUF

Use the IOBUF primitive for bidirectional signals that 
require both an input buffer and a 3-state output buffer with 
an active high 3-state pin. The generic input/output buffer 
IOBUF appears in Figure 40.

With no extension or property specified for the generic 
IOBUF primitive, the assumed standard is LVTTL input 
buffer and slew rate limited LVTTL with 12 mA drive strength 
for the output buffer. 

The LVTTL IOBUF can support one of two slew rate modes 
to minimize bus transients. By default, the slew rate for each 
output buffer is reduced to minimize power bus transients 
when switching non-critical signals.

LVTTL bidirectional buffers have selectable output drive 
strengths.

The format for LVTTL IOBUF primitive names is as follows:

Table  17:  Output Standards Compatibility 
Requirements

Rule 1 Only outputs with standards which share 
compatible VCCO may be used within the same 
bank.

Rule 2 There are no placement restrictions for outputs 
with standards that do not require a VCCO.

VCCO Compatible Standards

3.3 LVTTL, SSTL3_I, SSTL3_II, CTT, AGP, GTL, 
GTL+, PCI33_3, PCI66_3

2.5 SSTL2_I, SSTL2_II, LVCMOS2, GTL, GTL+

1.5 HSTL_I, HSTL_III, HSTL_IV, GTL, GTL+

Figure 39:  3-State Output Buffer Primitive (OBUFT
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Power-On Requirements

Spartan-II FPGAs require that a minimum supply current 
ICCPO be provided to the VCCINT lines for a successful 
power-on. If more current is available, the FPGA can 
consume more than ICCPO minimum, though this cannot 
adversely affect reliability. 

A maximum limit for ICCPO is not specified. Therefore the 
use of foldback/crowbar supplies and fuses deserves 
special attention. In these cases, limit the ICCPO current to a 
level below the trip point for over-current protection in order 
to avoid inadvertently shutting down the supply. 

DC Input and Output Levels

Values for VIL and VIH are recommended input voltages. 
Values for VOL and VOH are guaranteed output voltages 
over the recommended operating conditions. Only selected 
standards are tested. These are chosen to ensure that all 

standards meet their specifications. The selected standards 
are tested at minimum VCCO with the respective IOL and IOH 
currents shown. Other standards are sample tested.  

Symbol Description

Conditions

New 
Requirements(1)

For Devices with 
Date Code 0321 

or Later

Old 
Requirements(1)

For Devices with 
Date Code 

before 0321

Units
Junction 

Temperature(2)

Device 
Temperature 

Grade Min Max Min Max

ICCPO
(3) Total VCCINT supply 

current required 
during power-on

–40°C ≤ TJ < –20°C Industrial 1.50 - 2.00 - A

–20°C ≤ TJ < 0°C Industrial 1.00 - 2.00 - A

0°C ≤ TJ ≤ 85°C Commercial 0.25 - 0.50 - A

85°C < TJ ≤ 100°C Industrial 0.50 - 0.50 - A

TCCPO
(4,5) VCCINT

 ramp time –40°C ≤ TJ ≤ 100°C All - 50 - 50 ms
Notes: 
1. The date code is printed on the top of the device’s package. See the "Device Part Marking" section in Module 1.
2. The expected TJ range for the design determines the ICCPO minimum requirement. Use the applicable ranges in the junction 

temperature column to find the associated current values in the appropriate new or old requirements column according to the date 
code. Then choose the highest of these current values to serve as the minimum ICCPO requirement that must be met. For example, 
if the junction temperature for a given design is -25°C ≤ TJ ≤ 75°C, then the new minimum ICCPO requirement is 1.5A. 
If 5°C ≤ TJ ≤ 90°C, then the new minimum ICCPO requirement is 0.5A.

3. The ICCPO requirement applies for a brief time (commonly only a few milliseconds) when VCCINT ramps from 0 to 2.5V. 
4. The ramp time is measured from GND to VCCINT max on a fully loaded board.
5. During power-on, the VCCINT ramp must increase steadily in voltage with no dips.
6. For more information on designing to meet the power-on specifications, refer to the application note XAPP450 "Power-On Current 

Requirements for the Spartan-II and Spartan-IIE Families"

Input/Output
Standard

VIL VIH VOL VOH IOL IOH

V, Min V, Max V, Min V, Max V, Max V, Min mA mA

LVTTL(1) –0.5 0.8 2.0 5.5 0.4 2.4 24 –24

LVCMOS2 –0.5 0.7 1.7 5.5 0.4 1.9 12 –12

PCI, 3.3V –0.5 44% VCCINT 60% VCCINT VCCO + 0.5 10% VCCO 90% VCCO Note (2) Note (2)

PCI, 5.0V –0.5 0.8 2.0 5.5 0.55 2.4 Note (2) Note (2)

GTL –0.5 VREF – 0.05 VREF + 0.05 3.6 0.4 N/A 40 N/A

GTL+ –0.5 VREF – 0.1 VREF + 0.1 3.6 0.6 N/A 36 N/A

HSTL I –0.5 VREF – 0.1 VREF + 0.1 3.6 0.4 VCCO – 0.4 8 –8

HSTL III –0.5 VREF – 0.1 VREF + 0.1 3.6 0.4 VCCO – 0.4 24 –8

HSTL IV –0.5 VREF – 0.1 VREF + 0.1 3.6 0.4 VCCO – 0.4 48 –8

SSTL3 I –0.5 VREF – 0.2 VREF + 0.2 3.6 VREF – 0.6 VREF + 0.6 8 –8

SSTL3 II –0.5 VREF – 0.2 VREF + 0.2 3.6 VREF – 0.8 VREF + 0.8 16 –16

SSTL2 I –0.5 VREF – 0.2 VREF + 0.2 3.6 VREF – 0.6 VREF + 0.6 7.6 –7.6

SSTL2 II –0.5 VREF – 0.2 VREF + 0.2 3.6 VREF – 0.8 VREF + 0.8 15.2 –15.2

http://www.xilinx.com
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Clock Distribution Guidelines(1)  

Clock Distribution Switching Characteristics
TGPIO is specified for LVTTL levels. For other standards, adjust TGPIO with the values shown in "I/O Standard Global Clock
Input Adjustments". 

I/O Standard Global Clock Input Adjustments
Delays associated with a global clock input pad are specified for LVTTL levels. For other standards, adjust the delays by the
values shown. A delay adjusted in this way constitutes a worst-case limit. 

Symbol  Description

 Speed Grade

Units

-6 -5

Max Max

GCLK Clock Skew

TGSKEWIOB Global clock skew between IOB flip-flops 0.13 0.14 ns

Notes: 
1. These clock distribution delays are provided for guidance only. They reflect the delays encountered in a typical design under 

worst-case conditions. Precise values for a particular design are provided by the timing analyzer.

1

Symbol  Description

 Speed Grade

Units

-6 -5

Max Max

GCLK IOB and Buffer

TGPIO Global clock pad to output 0.7 0.8 ns

TGIO Global clock buffer I input to O output 0.7 0.8 ns

Symbol Description Standard

Speed Grade

Units-6 -5

Data Input Delay Adjustments

TGPLVTTL Standard-specific global clock 
input delay adjustments

LVTTL 0 0 ns

TGPLVCMOS2 LVCMOS2 –0.04 –0.05 ns

TGPPCI33_3 PCI, 33 MHz, 3.3V –0.11 –0.13 ns

TGPPCI33_5 PCI, 33 MHz, 5.0V 0.26 0.30 ns

TGPPCI66_3 PCI, 66 MHz, 3.3V –0.11 –0.13 ns

TGPGTL GTL 0.80 0.84 ns

TGPGTLP GTL+ 0.71 0.73 ns

TGPHSTL HSTL 0.63 0.64 ns

TGPSSTL2 SSTL2 0.52 0.51 ns

TGPSSTL3 SSTL3 0.56 0.55 ns

TGPCTT CTT 0.62 0.62 ns

TGPAGP AGP 0.54 0.53 ns

Notes: 
1. Input timing for GPLVTTL is measured at 1.4V. For other I/O standards, see the table "Delay Measurement Methodology," page 60.
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Figure 52:  Period Tolerance and Clock Jitter

Period Tolerance: the allowed input clock period change in nanoseconds.

Output Jitter: the difference between an ideal
reference clock edge and the actual design.
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CLB Arithmetic Switching Characteristics
Setup times not listed explicitly can be approximated by decreasing the combinatorial delays by the setup time adjustment
listed. Precise values are provided by the timing analyzer.  

Symbol  Description

 Speed Grade

Units

-6 -5

Min Max Min Max

Combinatorial Delays

TOPX F operand inputs to X via XOR - 0.8 - 0.9 ns

TOPXB F operand input to XB output - 1.3 - 1.5 ns

TOPY F operand input to Y via XOR - 1.7 - 2.0 ns

TOPYB F operand input to YB output - 1.7 - 2.0 ns

TOPCYF F operand input to COUT output - 1.3 - 1.5 ns

TOPGY G operand inputs to Y via XOR - 0.9 - 1.1 ns

TOPGYB G operand input to YB output - 1.6 - 2.0 ns

TOPCYG G operand input to COUT output - 1.2 - 1.4 ns

TBXCY BX initialization input to COUT - 0.9 - 1.0 ns

TCINX CIN input to X output via XOR - 0.4 - 0.5 ns

TCINXB CIN input to XB - 0.1 - 0.1 ns

TCINY CIN input to Y via XOR - 0.5 - 0.6 ns

TCINYB CIN input to YB - 0.6 - 0.7 ns

TBYP CIN input to COUT output - 0.1 - 0.1 ns

Multiplier Operation

TFANDXB F1/2 operand inputs to XB output via AND - 0.5 - 0.5 ns

TFANDYB F1/2 operand inputs to YB output via AND - 0.9 - 1.1 ns

TFANDCY F1/2 operand inputs to COUT output via AND - 0.5 - 0.6 ns

TGANDYB G1/2 operand inputs to YB output via AND - 0.6 - 0.7 ns

TGANDCY G1/2 operand inputs to COUT output via AND - 0.2 - 0.2 ns

Setup/Hold Times with Respect to Clock CLK(1)

TCCKX / TCKCX CIN input to FFX 1.1 / 0 - 1.2 / 0 - ns

TCCKY / TCKCY CIN input to FFY 1.2 / 0 - 1.3 / 0 - ns

Notes: 
1. A zero hold time listing indicates no hold time or a negative hold time. 
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Note: Some early versions of Spartan-II devices, including 
the XC2S15 and XC2S30 ES devices and the XC2S150 
with date code 0045 or earlier, included a power-down pin. 
For more information, see Answer Record 10500.

VCCO Banks
Some of the I/O standards require specific VCCO voltages. 
These voltages are externally connected to device pins that 
serve groups of IOBs, called banks. Eight I/O banks result 
from separating each edge of the FPGA into two banks (see 
Figure 3 in Module 2). Each bank has multiple VCCO pins 
which must be connected to the same voltage. In the 
smaller packages, the VCCO pins are connected between 
banks, effectively reducing the number of independent 
banks available (see Table 37). These interconnected 
banks are shown in the Pinout Tables with VCCO pads for 
multiple banks connected to the same pin. 

Package Overview
Table 36 shows the six low-cost, space-saving production 
package styles for the Spartan-II family. 

Each package style is available in an environmentally 
friendly lead-free (Pb-free) option. The Pb-free packages 
include an extra ‘G’ in the package style name. For 
example, the standard “CS144” package becomes 
“CSG144” when ordered as the Pb-free option. Leaded 
(non-Pb-free) packages may be available for selected 
devices, with the same pin-out and without the "G" in the 
ordering code; contact Xilinx sales for more information. 
The mechanical dimensions of the standard and Pb-free 
packages are similar, as shown in the mechanical drawings 
provided in Table 38. 

For additional package information, see UG112: Device 
Package User Guide.

Mechanical Drawings

Detailed mechanical drawings for each package type are 
available from the Xilinx web site at the specified location in 
Table 38. 

Material Declaration Data Sheets (MDDS) are also 
available on the Xilinx web site for each package.

Table  36:  Spartan-II Family Package Options

Package Leads Type Maximum 
I/O

Lead Pitch 
(mm)

Footprint 
Area (mm)

Height 
(mm)

Mass(1) 
(g)

VQ100 / VQG100 100 Very Thin Quad Flat Pack (VQFP) 60 0.5 16 x 16 1.20 0.6

TQ144 / TQG144 144 Thin Quad Flat Pack (TQFP) 92 0.5 22 x 22 1.60 1.4

CS144 / CSG144 144 Chip Scale Ball Grid Array (CSBGA) 92 0.8 12 x 12 1.20 0.3

PQ208 / PQG208 208 Plastic Quad Flat Pack (PQFP) 140 0.5 30.6 x 30.6 3.70 5.3

FG256 / FGG256 256 Fine-pitch Ball Grid Array (FBGA) 176 1.0 17 x 17 2.00 0.9

FG456 / FGG456 456 Fine-pitch Ball Grid Array (FBGA) 284 1.0 23 x 23 2.60 2.2

Notes: 
1. Package mass is ±10%.

Table  37:  Independent VCCO Banks Available

Package VQ100
PQ208

CS144
TQ144

FG256
FG456

Independent Banks 1 4 8

Table  38:  Xilinx Package Documentation

Package  Drawing MDDS

VQ100 Package Drawing PK173_VQ100

VQG100 PK130_VQG100

TQ144 Package Drawing PK169_TQ144

TQG144 PK126_TQG144

CS144 Package Drawing PK149_CS144

CSG144 PK103_CSG144

PQ208 Package Drawing PK166_PQ208

PQG208 PK123_PQG208

FG256 Package Drawing PK151_FG256

FGG256 PK105_FGG256

FG456 Package Drawing PK154_FG456

FGG456 PK109_FGG456

http://www.xilinx.com/support/answers/10500.htm
http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug112.pdf
http://www.xilinx.com/support/documentation/package_specifications.htm
http://www.xilinx.com/support/documentation/package_specs/vq100.pdf
http://www.xilinx.com/support/documentation/package_specs/pk173_vq100.pdf
http://www.xilinx.com/support/documentation/package_specs/pk130_vqg100.pdf
http://www.xilinx.com/support/documentation/package_specs/tq144.pdf
http://www.xilinx.com/support/documentation/package_specs/pk169_tq144.pdf
http://www.xilinx.com/support/documentation/package_specs/pk126_tqg144.pdf
http://www.xilinx.com/support/documentation/package_specs/cs144.pdf
http://www.xilinx.com/support/documentation/package_specs/pk149_cs144.pdf
http://www.xilinx.com/support/documentation/package_specs/pk103_csg144.pdf
http://www.xilinx.com/support/documentation/package_specs/pq208.pdf
http://www.xilinx.com/support/documentation/package_specs/pk166_pq208.pdf
http://www.xilinx.com/support/documentation/package_specs/pk123_pqg208.pdf
http://www.xilinx.com/support/documentation/package_specs/fg256.pdf
http://www.xilinx.com/support/documentation/package_specs/pk151_fg256.pdf
http://www.xilinx.com/support/documentation/package_specs/pk105_fgg256.pdf
http://www.xilinx.com/support/documentation/package_specs/fg456.pdf
http://www.xilinx.com/support/documentation/package_specs/pk154_fg456.pdf
http://www.xilinx.com/support/documentation/package_specs/pk109_fgg456.pdf
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Additional XC2S150 Package Pins

PQ208

Not Connected Pins

P55 P56 - - - -
11/02/00

FG256

VCCINT Pins

C3 C14 D4 D13 E5 E12

M5 M12 N4 N13 P3 P14

VCCO Bank 0 Pins

E8 F8 - - - -

VCCO Bank 1 Pins

E9 F9 - - - -

VCCO Bank 2 Pins

H11 H12 - - - -

VCCO Bank 3 Pins

J11 J12 - - - -

VCCO Bank 4 Pins

L9 M9 - - - -

VCCO Bank 5 Pins

L8 M8 - - - -

VCCO Bank 6 Pins

J5 J6 - - - -

VCCO Bank 7 Pins

H5 H6 - - - -

GND Pins

A1 A16 B2 B15 F6 F7

F10 F11 G6 G7 G8 G9

G10 G11 H7 H8 H9 H10

J7 J8 J9 J10 K6 K7

K8 K9 K10 K11 L6 L7

L10 L11 R2 R15 T1 T16

Not Connected Pins

P4 R4 - - - -
11/02/00

FG456

VCCINT Pins

E5 E18 F6 F17 G7 G8

G9 G14 G15 G16 H7 H16

J7 J16 P7 P16 R7 R16

T7 T8 T9 T14 T15 T16

U6 U17 V5 V18 - -

VCCO Bank 0 Pins

F7 F8 F9 F10 G10 G11

VCCO Bank 1 Pins

F13 F14 F15 F16 G12 G13

VCCO Bank 2 Pins

G17 H17 J17 K16 K17 L16

VCCO Bank 3 Pins

M16 N16 N17 P17 R17 T17

VCCO Bank 4 Pins

T12 T13 U13 U14 U15 U16

VCCO Bank 5 Pins

T10 T11 U7 U8 U9 U10

VCCO Bank 6 Pins

M7 N6 N7 P6 R6 T6

VCCO Bank 7 Pins

G6 H6 J6 K6 K7 L7

GND Pins

A1 A22 B2 B21 C3 C20

J9 J10 J11 J12 J13 J14

K9 K10 K11 K12 K13 K14

L9 L10 L11 L12 L13 L14

M9 M10 M11 M12 M13 M14

N9 N10 N11 N12 N13 N14

P9 P10 P11 P12 P13 P14

Y3 Y20 AA2 AA21 AB1 AB22

Not Connected Pins

A2 A6 A12 A13 A14 B11

B16 C2 C8 C9 D1 D4

D18 D19 E13 E17 E19 F11

G2 G22 H21 J1 J4 K2

K18 K19 L2 L19 M2 M17

M21 N1 P1 P5 P22 R3

R20 R22 U3 U18 V6 W4

W13 W15 W19 Y5 Y22 AA1

AA3 AA9 AA10 AA11 AA16 AB7

AB8 AB12 AB14 AB21 - -
11/02/00

Additional XC2S150 Package Pins (Continued)
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XC2S200 Device Pinouts
XC2S200 Pad Name

PQ208 FG256 FG456
Bndry 
ScanFunction Bank

GND - P1 GND* GND* -

TMS - P2 D3 D3 -

I/O 7 P3 C2 B1 257

I/O 7 - - E4 263

I/O 7 - - C1 266

I/O 7 - A2 F5 269

GND - - GND* GND* -

I/O, VREF 7 P4 B1 D2 272

I/O 7 - - E3 275

I/O 7 - - F4 281

GND - - GND* GND* -

I/O 7 - E3 G5 284

I/O 7 P5 D2 F3 287

GND - - GND* GND* -

VCCO 7 - VCCO 
Bank 7*

VCCO 
Bank 7*

-

I/O, VREF 7 P6 C1 E2 290

I/O 7 P7 F3 E1 293

I/O 7 - - G4 296

I/O 7 - - G3 299

I/O 7 - E2 H5 302

GND - - GND* GND* -

I/O 7 P8 E4 F2 305

I/O 7 - - F1 308

I/O, VREF 7 P9 D1 H4 314

I/O 7 P10 E1 G1 317

GND - P11 GND* GND* -

VCCO 7 P12 VCCO 
Bank 7*

VCCO 
Bank 7*

-

VCCINT - P13 VCCINT* VCCINT* -

I/O 7 P14 F2 H3 320

I/O 7 P15 G3 H2 323

I/O 7 - - J4 326

I/O 7 - - H1 329

I/O 7 - F1 J5 332

GND - - GND* GND* -

I/O 7 P16 F4 J2 335

I/O 7 - - J3 338

I/O 7 - - J1 341

I/O 7 P17 F5 K5 344

I/O 7 P18 G2 K1 347

GND - P19 GND* GND* -

VCCO 7 - VCCO 
Bank 7*

VCCO 
Bank 7*

-

I/O, VREF 7 P20 H3 K3 350

I/O 7 P21 G4 K4 353

I/O 7 - - K2 359

I/O 7 - H2 L6 362

I/O 7 P22 G5 L1 365

I/O 7 - - L5 368

I/O 7 P23 H4 L4 374

I/O, IRDY(1) 7 P24 G1 L3 377

GND - P25 GND* GND* -

VCCO 7 P26 VCCO 
Bank 7*

VCCO 
Bank 7*

-

VCCO 6 P26 VCCO 
Bank 6*

VCCO 
Bank 6*

-

I/O, TRDY(1) 6 P27 J2 M1 380

VCCINT - P28 VCCINT* VCCINT* -

I/O 6 - - M6 389

I/O 6 P29 H1 M3 392

I/O 6 - J4 M4 395

I/O 6 - - N1 398

I/O 6 P30 J1 M5 404

I/O, VREF 6 P31 J3 N2 407

VCCO 6 - VCCO 
Bank 6*

VCCO 
Bank 6*

-

GND - P32 GND* GND* -

I/O 6 P33 K5 N3 410

I/O 6 P34 K2 N4 413

I/O 6 - - P1 416

I/O 6 - - N5 419

I/O 6 P35 K1 P2 422

GND - - GND* GND* -

I/O 6 - K3 P4 425

I/O 6 - - R1 428

I/O 6 - - P5 431

I/O 6 P36 L1 P3 434

I/O 6 P37 L2 R2 437

VCCINT - P38 VCCINT* VCCINT* -

VCCO 6 P39 VCCO 
Bank 6*

VCCO 
Bank 6*

-

GND - P40 GND* GND* -

I/O 6 P41 K4 T1 440

I/O, VREF 6 P42 M1 R4 443

XC2S200 Device Pinouts (Continued)
XC2S200 Pad Name

PQ208 FG256 FG456
Bndry 
ScanFunction Bank

http://www.xilinx.com


Spartan-II FPGA Family: Pinout Tables

DS001-4 (v2.8) June 13, 2008 www.xilinx.com Module 4 of 4
Product Specification 95

R

I, GCK0 4 P80 N8 W12 636

I/O 4 P81 N9 U12 640

I/O 4 - - V12 646

I/O 4 P82 R9 Y12 649

I/O 4 - N10 AA12 652

I/O 4 - - W13 655

I/O 4 P83 T9 AB13 661

I/O, VREF 4 P84 P9 AA13 664

VCCO 4 - VCCO 
Bank 4*

VCCO 
Bank 4*

-

GND - P85 GND* GND* -

I/O 4 P86 M10 Y13 667

I/O 4 P87 R10 V13 670

I/O 4 - - AB14 673

I/O 4 - - W14 676

I/O 4 P88 P10 AA14 679

GND - - GND* GND* -

I/O 4 - - V14 682

I/O 4 - - Y14 685

I/O 4 - - W15 688

I/O 4 P89 T10 AB15 691

I/O 4 P90 R11 AA15 694

VCCINT - P91 VCCINT* VCCINT* -

VCCO 4 P92 VCCO 
Bank 4*

VCCO 
Bank 4*

-

GND - P93 GND* GND* -

I/O 4 P94 M11 Y15 697

I/O, VREF 4 P95 T11 AB16 700

I/O 4 - - AB17 706

I/O 4 P96 N11 V15 709

GND - - GND* GND* -

I/O 4 - R12 Y16 712

I/O 4 - - AA17 715

I/O 4 - - W16 718

I/O 4 P97 P11 AB18 721

I/O, VREF 4 P98 T12 AB19 724

VCCO 4 - VCCO 
Bank 4*

VCCO 
Bank 4*

-

GND - - GND* GND* -

I/O 4 P99 T13 Y17 727

I/O 4 - N12 V16 730

I/O 4 - - AA18 733

XC2S200 Device Pinouts (Continued)
XC2S200 Pad Name

PQ208 FG256 FG456
Bndry 
ScanFunction Bank

I/O 4 - - W17 739

I/O, VREF 4 P100 R13 AB20 742

GND - - GND* GND* -

I/O 4 - P12 AA19 745

I/O 4 - - V17 748

I/O 4 - - Y18 751

I/O 4 P101 P13 AA20 757

I/O 4 P102 T14 W18 760

GND - P103 GND* GND* -

DONE 3 P104 R14 Y19 763

VCCO 4 P105 VCCO 
Bank 4*

VCCO 
Bank 4*

-

VCCO 3 P105 VCCO 
Bank 3*

VCCO 
Bank 3*

-

PROGRAM - P106 P15 W20 766

I/O (INIT) 3 P107 N15 V19 767

I/O (D7) 3 P108 N14 Y21 770

I/O 3 - - V20 776

I/O 3 - - AA22 779

I/O 3 - T15 W21 782

GND - - GND* GND* -

I/O, VREF 3 P109 M13 U20 785

I/O 3 - - U19 788

I/O 3 - - V21 794

GND - - GND* GND* -

I/O 3 - R16 T18 797

I/O 3 P110 M14 W22 800

GND - - GND* GND* -

VCCO 3 - VCCO  
Bank 3*

VCCO  
Bank 3*

-

I/O, VREF 3 P111 L14 U21 803

I/O 3 P112 M15 T20 806

I/O 3 - - T19 809

I/O 3 - - V22 812

I/O 3 - L12 T21 815

GND - - GND* GND* -

I/O 3 P113 P16 R18 818

I/O 3 - - U22 821

I/O, VREF 3 P114 L13 R19 827

I/O (D6) 3 P115 N16 T22 830

GND - P116 GND* GND* -

XC2S200 Device Pinouts (Continued)
XC2S200 Pad Name

PQ208 FG256 FG456
Bndry 
ScanFunction Bank
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Revision History

11/02/00

FG456

VCCINT Pins

E5 E18 F6 F17 G7 G8

G9 G14 G15 G16 H7 H16

J7 J16 P7 P16 R7 R16

T7 T8 T9 T14 T15 T16

U6 U17 V5 V18 - -

VCCO Bank 0 Pins

F7 F8 F9 F10 G10 G11

VCCO Bank 1 Pins

F13 F14 F15 F16 G12 G13

VCCO Bank 2 Pins

G17 H17 J17 K16 K17 L16

VCCO Bank 3 Pins

M16 N16 N17 P17 R17 T17

VCCO Bank 4 Pins

T12 T13 U13 U14 U15 U16

VCCO Bank 5 Pins

T10 T11 U7 U8 U9 U10

VCCO Bank 6 Pins

M7 N6 N7 P6 R6 T6

VCCO Bank 7 Pins

Additional XC2S200 Package Pins (Continued)
G6 H6 J6 K6 K7 L7

GND Pins

A1 A22 B2 B21 C3 C20

J9 J10 J11 J12 J13 J14

K9 K10 K11 K12 K13 K14

L9 L10 L11 L12 L13 L14

M9 M10 M11 M12 M13 M14

N9 N10 N11 N12 N13 N14

P9 P10 P11 P12 P13 P14

Y3 Y20 AA2 AA21 AB1 AB22

Not Connected Pins

A2 A6 A12 B11 B16 C2

D1 D4 D18 D19 E17 E19

G2 G22 L2 L19 M2 M21

R3 R20 U3 U18 V6 W4

W19 Y5 Y22 AA1 AA3 AA11

AA16 AB7 AB12 AB21 - -

11/02/00

Additional XC2S200 Package Pins (Continued)

Version 
No. Date Description

2.0 09/18/00 Sectioned the Spartan-II Family data sheet into four modules. Corrected all known errors in the pinout tables.

2.1 10/04/00 Added notes requiring PWDN to be tied to VCCINT when unused.

2.2 11/02/00 Removed the Power Down feature.

2.3 03/05/01 Added notes on pinout tables for IRDY and TRDY.

2.4 04/30/01 Reinstated XC2S50 VCCO Bank 7, GND, and "not connected" pins missing in version 2.3.

2.5 09/03/03 Added caution about Not Connected Pins to XC2S30 pinout tables on page 76.

2.8 06/13/08 Added "Package Overview" section. Added notes to clarify shared VCCO banks. Updated description and links. 
Updated all modules for continuous page, figure, and table numbering. Synchronized all modules to v2.8.
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