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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Introduction
The Spartan®-II Field-Programmable Gate Array family 
gives users high performance, abundant logic resources, 
and a rich feature set, all at an exceptionally low price. The 
six-member family offers densities ranging from 15,000 to 
200,000 system gates, as shown in Table 1. System 
performance is supported up to 200 MHz. Features include 
block RAM (to 56K bits), distributed RAM (to 75,264 bits), 
16 selectable I/O standards, and four DLLs. Fast, 
predictable interconnect means that successive design 
iterations continue to meet timing requirements.

The Spartan-II family is a superior alternative to 
mask-programmed ASICs. The FPGA avoids the initial 
cost, lengthy development cycles, and inherent risk of 
conventional ASICs. Also, FPGA programmability permits 
design upgrades in the field with no hardware replacement 
necessary (impossible with ASICs).

Features
• Second generation ASIC replacement technology

- Densities as high as 5,292 logic cells with up to 
200,000 system gates

- Streamlined features based on Virtex® FPGA 
architecture

- Unlimited reprogrammability
- Very low cost
- Cost-effective 0.18 micron process

• System level features
- SelectRAM™ hierarchical memory:

· 16 bits/LUT distributed RAM
· Configurable 4K bit block RAM
· Fast interfaces to external RAM

- Fully PCI compliant
- Low-power segmented routing architecture
- Full readback ability for verification/observability
- Dedicated carry logic for high-speed arithmetic
- Efficient multiplier support
- Cascade chain for wide-input functions
- Abundant registers/latches with enable, set, reset
- Four dedicated DLLs for advanced clock control
- Four primary low-skew global clock distribution 

nets
- IEEE 1149.1 compatible boundary scan logic

• Versatile I/O and packaging
- Pb-free package options
- Low-cost packages available in all densities
- Family footprint compatibility in common packages
- 16 high-performance interface standards
- Hot swap Compact PCI friendly
- Zero hold time simplifies system timing

• Core logic powered at 2.5V and I/Os powered at 1.5V, 
2.5V, or 3.3V

• Fully supported by powerful Xilinx® ISE® development 
system
- Fully automatic mapping, placement, and routing
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Table  1:  Spartan-II FPGA Family Members

Device
Logic 
Cells

System Gates  
(Logic and RAM)

CLB 
Array  

(R x C)
Total 
CLBs

Maximum 
Available 

User I/O(1)

Total 
Distributed RAM 

Bits

Total 
Block RAM 

Bits

XC2S15 432 15,000 8 x 12 96 86 6,144 16K

XC2S30 972 30,000 12 x 18 216 92 13,824 24K

XC2S50 1,728 50,000 16 x 24 384 176 24,576 32K

XC2S100 2,700 100,000 20 x 30 600 176 38,400 40K

XC2S150 3,888 150,000 24 x 36 864 260 55,296 48K

XC2S200 5,292 200,000 28 x 42 1,176 284 75,264 56K

Notes: 
1. All user I/O counts do not include the four global clock/user input pins. See details in Table 2, page 4.

http://www.xilinx.com
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Local Routing

The local routing resources, as shown in Figure 6, provide 
the following three types of connections:

• Interconnections among the LUTs, flip-flops, and
General Routing Matrix (GRM)

• Internal CLB feedback paths that provide high-speed
connections to LUTs within the same CLB, chaining
them together with minimal routing delay

• Direct paths that provide high-speed connections
between horizontally adjacent CLBs, eliminating the
delay of the GRM  

General Purpose Routing

Most Spartan-II FPGA signals are routed on the general 
purpose routing, and consequently, the majority of 
interconnect resources are associated with this level of the 
routing hierarchy. The general routing resources are 
located in horizontal and vertical routing channels 
associated with the rows and columns CLBs. The 
general-purpose routing resources are listed below.

• Adjacent to each CLB is a General Routing Matrix 
(GRM). The GRM is the switch matrix through which 
horizontal and vertical routing resources connect, and 
is also the means by which the CLB gains access to 
the general purpose routing.

• 24 single-length lines route GRM signals to adjacent 
GRMs in each of the four directions.

• 96 buffered Hex lines route GRM signals to other 
GRMs six blocks away in each one of the four 
directions. Organized in a staggered pattern, Hex lines 
may be driven only at their endpoints. Hex-line signals 
can be accessed either at the endpoints or at the 
midpoint (three blocks from the source). One third of 
the Hex lines are bidirectional, while the remaining 
ones are unidirectional.

• 12 Longlines are buffered, bidirectional wires that 
distribute signals across the device quickly and 

efficiently. Vertical Longlines span the full height of the 
device, and horizontal ones span the full width of the 
device.

I/O Routing

Spartan-II devices have additional routing resources 
around their periphery that form an interface between the 
CLB array and the IOBs. This additional routing, called the 
VersaRing, facilitates pin-swapping and pin-locking, such 
that logic redesigns can adapt to existing PCB layouts. 
Time-to-market is reduced, since PCBs and other system 
components can be manufactured while the logic design is 
still in progress.

Dedicated Routing

Some classes of signal require dedicated routing resources 
to maximize performance. In the Spartan-II architecture, 
dedicated routing resources are provided for two classes of 
signal.

• Horizontal routing resources are provided for on-chip 
3-state busses. Four partitionable bus lines are 
provided per CLB row, permitting multiple busses 
within a row, as shown in Figure 7.

• Two dedicated nets per CLB propagate carry signals 
vertically to the adjacent CLB.

Global Routing

Global Routing resources distribute clocks and other 
signals with very high fanout throughout the device. 
Spartan-II devices include two tiers of global routing 
resources referred to as primary and secondary global 
routing resources.

• The primary global routing resources are four
dedicated global nets with dedicated input pins that are
designed to distribute high-fanout clock signals with
minimal skew. Each global clock net can drive all CLB,
IOB, and block RAM clock pins. The primary global
nets may only be driven by global buffers. There are
four global buffers, one for each global net.

• The secondary global routing resources consist of 24
backbone lines, 12 across the top of the chip and 12
across bottom. From these lines, up to 12 unique
signals per column can be distributed via the 12
longlines in the column. These secondary resources
are more flexible than the primary resources since they
are not restricted to routing only to clock pins.

Figure 6:  Spartan-II Local Routing
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Clock Distribution

The Spartan-II family provides high-speed, low-skew clock 
distribution through the primary global routing resources 
described above. A typical clock distribution net is shown in 
Figure 8. 

Four global buffers are provided, two at the top center of the 
device and two at the bottom center. These drive the four 
primary global nets that in turn drive any clock pin.

Four dedicated clock pads are provided, one adjacent to 
each of the global buffers. The input to the global buffer is 
selected either from these pads or from signals in the 
general purpose routing. Global clock pins do not have the 
option for internal, weak pull-up resistors.

Delay-Locked Loop (DLL)

Associated with each global clock input buffer is a fully 
digital Delay-Locked Loop (DLL) that can eliminate skew 
between the clock input pad and internal clock-input pins 
throughout the device. Each DLL can drive two global clock 

networks. The DLL monitors the input clock and the 
distributed clock, and automatically adjusts a clock delay 
element. Additional delay is introduced such that clock 
edges reach internal flip-flops exactly one clock period after 
they arrive at the input. This closed-loop system effectively 
eliminates clock-distribution delay by ensuring that clock 
edges arrive at internal flip-flops in synchronism with clock 
edges arriving at the input. 

In addition to eliminating clock-distribution delay, the DLL 
provides advanced control of multiple clock domains. The 
DLL provides four quadrature phases of the source clock, 
can double the clock, or divide the clock by 1.5, 2, 2.5, 3, 4, 
5, 8, or 16. It has six outputs.

The DLL also operates as a clock mirror. By driving the 
output from a DLL off-chip and then back on again, the DLL 
can be used to deskew a board level clock among multiple 
Spartan-II devices.

In order to guarantee that the system clock is operating 
correctly prior to the FPGA starting up after configuration, 
the DLL can delay the completion of the configuration 
process until after it has achieved lock.

Boundary Scan

Spartan-II devices support all the mandatory boundary- 
scan instructions specified in the IEEE standard 1149.1. A 
Test Access Port (TAP) and registers are provided that 
implement the EXTEST, SAMPLE/PRELOAD, and BYPASS 
instructions. The TAP also supports two USERCODE 
instructions and internal scan chains.

The TAP uses dedicated package pins that always operate 
using LVTTL. For TDO to operate using LVTTL, the VCCO 
for Bank 2 must be 3.3V. Otherwise, TDO switches 
rail-to-rail between ground and VCCO. TDI, TMS, and TCK 
have a default internal weak pull-up resistor, and TDO has 
no default resistor.  Bitstream options allow setting any of 
the four TAP pins to have an internal pull-up, pull-down, or 
neither.

Figure 7:  BUFT Connections to Dedicated Horizontal Bus Lines
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Figure 8:  Global Clock Distribution Network
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If CCLK is slower than FCCNH, the FPGA will never assert 
BUSY. In this case, the above handshake is unnecessary, 
and data can simply be entered into the FPGA every CCLK 
cycle.

A configuration packet does not have to be written in one 
continuous stretch, rather it can be split into many write 
sequences. Each sequence would involve assertion of CS.

In applications where multiple clock cycles may be required 
to access the configuration data before each byte can be 
loaded into the Slave Parallel interface, a new byte of data 
may not be ready for each consecutive CCLK edge. In such 
a case the CS signal may be de-asserted until the next byte 
is valid on D0-D7. While CS is High, the Slave Parallel 

interface does not expect any data and ignores all CCLK 
transitions. However, to avoid aborting configuration, 
WRITE must continue to be asserted while CS is asserted.

Abort

To abort configuration during a write sequence, de-assert 
WRITE while holding CS Low. The abort operation is 
initiated at the rising edge of CCLK, as shown in Figure 21, 
page 26. The device will remain BUSY until the aborted 
operation is complete. After aborting configuration, data is 
assumed to be unaligned to word boundaries and the FPGA 
requires a new synchronization word prior to accepting any 
new packets.

Boundary-Scan Mode

In the boundary-scan mode, no nondedicated pins are 
required, configuration being done entirely through the 
IEEE 1149.1 Test Access Port.

Configuration through the TAP uses the special CFG_IN 
instruction. This instruction allows data input on TDI to be 
converted into data packets for the internal configuration 
bus.

The following steps are required to configure the FPGA 
through the boundary-scan port.

1. Load the CFG_IN instruction into the boundary-scan 
instruction register (IR)

2. Enter the Shift-DR (SDR) state

3. Shift a standard configuration bitstream into TDI

4. Return to Run-Test-Idle (RTI)

5. Load the JSTART instruction into IR

6. Enter the SDR state

7. Clock TCK through the sequence (the length is 
programmable)

8. Return to RTI

Configuration and readback via the TAP is always available. 
The boundary-scan mode simply locks out the other modes. 
The boundary-scan mode is selected by a <10x> on the 
mode pins (M0, M1, M2).

Readback
The configuration data stored in the Spartan-II FPGA 
configuration memory can be readback for verification. 
Along with the configuration data it is possible to readback 
the contents of all flip-flops/latches, LUT RAMs, and block 
RAMs. This capability is used for real-time debugging.

For more detailed information see XAPP176, Spartan-II 
FPGA Family Configuration and Readback.

Figure 19:  Loading Configuration Data for the Slave 
Parallel Mode
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Design Considerations
This section contains more detailed design information on 
the following features:

• Delay-Locked Loop . . . see page 27 
• Block RAM . . . see page 32
• Versatile I/O . . . see page 36

Using Delay-Locked Loops
The Spartan-II FPGA family provides up to four fully digital 
dedicated on-chip Delay-Locked Loop (DLL) circuits which 
provide zero propagation delay, low clock skew between 
output clock signals distributed throughout the device, and 
advanced clock domain control. These dedicated DLLs can 
be used to implement several circuits that improve and 
simplify system level design.

Introduction

Quality on-chip clock distribution is important. Clock skew 
and clock delay impact device performance and the task of 
managing clock skew and clock delay with conventional 
clock trees becomes more difficult in large devices. The 
Spartan-II family of devices resolve this potential problem 
by providing up to four fully digital dedicated on-chip 
Delay-Locked Loop (DLL) circuits which provide zero 
propagation delay and low clock skew between output clock 
signals distributed throughout the device.

Each DLL can drive up to two global clock routing networks 
within the device. The global clock distribution network 
minimizes clock skews due to loading differences. By 
monitoring a sample of the DLL output clock, the DLL can 
compensate for the delay on the routing network, effectively 
eliminating the delay from the external input port to the 
individual clock loads within the device. 

In addition to providing zero delay with respect to a user 
source clock, the DLL can provide multiple phases of the 
source clock. The DLL can also act as a clock doubler or it 
can divide the user source clock by up to 16.

Clock multiplication gives the designer a number of design 
alternatives. For instance, a 50 MHz source clock doubled 
by the DLL can drive an FPGA design operating at 
100 MHz. This technique can simplify board design 
because the clock path on the board no longer distributes 
such a high-speed signal. A multiplied clock also provides 
designers the option of time-domain-multiplexing, using one 
circuit twice per clock cycle, consuming less area than two 
copies of the same circuit. 

The DLL can also act as a clock mirror. By driving the DLL 
output off-chip and then back in again, the DLL can be used 
to de-skew a board level clock between multiple devices.

In order to guarantee the system clock establishes prior to 
the device "waking up," the DLL can delay the completion of 

the device configuration process until after the DLL 
achieves lock. 

By taking advantage of the DLL to remove on-chip clock 
delay, the designer can greatly simplify and improve system 
level design involving high-fanout, high-performance 
clocks.

Library DLL Primitives

Figure 22 shows the simplified Xilinx library DLL macro, 
BUFGDLL. This macro delivers a quick and efficient way to 
provide a system clock with zero propagation delay 
throughout the device. Figure 23 and Figure 24 show the 
two library DLL primitives. These primitives provide access 
to the complete set of DLL features when implementing 
more complex applications.  

Figure 22:  Simplified DLL Macro BUFGDLL

Figure 23:  Standard DLL Primitive CLKDLL

Figure 24:  High-Frequency DLL Primitive CLKDLLHF
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BUFGDLL Pin Descriptions

Use the BUFGDLL macro as the simplest way to provide 
zero propagation delay for a high-fanout on-chip clock from 
an external input. This macro uses the IBUFG, CLKDLL and 
BUFG primitives to implement the most basic DLL 
application as shown in Figure 25.  

This macro does not provide access to the advanced clock 
domain controls or to the clock multiplication or clock 
division features of the DLL. This macro also does not 
provide access to the RST or LOCKED pins of the DLL. For 
access to these features, a designer must use the DLL 
primitives described in the following sections.

Source Clock Input — I

The I pin provides the user source clock, the clock signal on 
which the DLL operates, to the BUFGDLL. For the 
BUFGDLL macro the source clock frequency must fall in the 
low frequency range as specified in the data sheet. The 
BUFGDLL requires an external signal source clock. 
Therefore, only an external input port can source the signal 
that drives the BUFGDLL I pin.

Clock Output — O

The clock output pin O represents a delay-compensated 
version of the source clock (I) signal. This signal, sourced 
by a global clock buffer BUFG primitive, takes advantage of 
the dedicated global clock routing resources of the device. 

The output clock has a 50/50 duty cycle unless you 
deactivate the duty cycle correction property.

CLKDLL Primitive Pin Descriptions

The library CLKDLL primitives provide access to the 
complete set of DLL features needed when implementing 
more complex applications with the DLL. 

Source Clock Input — CLKIN

The CLKIN pin provides the user source clock (the clock 
signal on which the DLL operates) to the DLL. The CLKIN 
frequency must fall in the ranges specified in the data sheet. 
A global clock buffer (BUFG) driven from another CLKDLL 

or one of the global clock input buffers (IBUFG) on the same 
edge of the device (top or bottom) must source this clock 
signal.

Feedback Clock Input — CLKFB

The DLL requires a reference or feedback signal to provide 
the delay-compensated output. Connect only the CLK0 or 
CLK2X DLL outputs to the feedback clock input (CLKFB) 
pin to provide the necessary feedback to the DLL. Either a 
global clock buffer (BUFG) or one of the global clock input 
buffers (IBUFG) on the same edge of the device (top or 
bottom) must source this clock signal.

If an IBUFG sources the CLKFB pin, the following special 
rules apply.

1. An external input port must source the signal that drives 
the IBUFG I pin. 

2. The CLK2X output must feed back to the device if both 
the CLK0 and CLK2X outputs are driving off chip 
devices.

3. That signal must directly drive only OBUFs and nothing 
else.

These rules enable the software to determine which DLL 
clock output sources the CLKFB pin.

Reset Input — RST

When the reset pin RST activates, the LOCKED signal 
deactivates within four source clock cycles. The RST pin, 
active High, must either connect to a dynamic signal or be 
tied to ground. As the DLL delay taps reset to zero, glitches 
can occur on the DLL clock output pins. Activation of the 
RST pin can also severely affect the duty cycle of the clock 
output pins. Furthermore, the DLL output clocks no longer 
deskew with respect to one another. The DLL must be reset 
when the input clock frequency changes, if the device is 
reconfigured in Boundary-Scan mode, if the device 
undergoes a hot swap, and after the device is configured if 
the input clock is not stable during the startup sequence.

2x Clock Output — CLK2X

The output pin CLK2X provides a frequency-doubled clock 
with an automatic 50/50 duty-cycle correction. Until the 
CLKDLL has achieved lock, the CLK2X output appears as a 
1x version of the input clock with a 25/75 duty cycle. This 
behavior allows the DLL to lock on the correct edge with 
respect to source clock. This pin is not available on the 
CLKDLLHF primitive.

Clock Divide Output — CLKDV

The clock divide output pin CLKDV provides a lower 
frequency version of the source clock. The CLKDV_DIVIDE 
property controls CLKDV such that the source clock is 
divided by N where N is either 1.5, 2, 2.5, 3, 4, 5, 8, or 16. 

This feature provides automatic duty cycle correction. The 
CLKDV output pin has a 50/50 duty cycle for all values of the 

Figure 25:  BUFGDLL Block Diagram
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Startup Delay Property 

This property, STARTUP_WAIT, takes on a value of TRUE 
or FALSE (the default value). When TRUE the Startup 
Sequence following device configuration is paused at a 
user-specified point until the DLL locks. XAPP176: 
Configuration and Readback of the Spartan-II and 
Spartan-IIE Families explains how this can result in delaying 
the assertion of the DONE pin until the DLL locks.

DLL Location Constraints

The DLLs are distributed such that there is one DLL in each 
corner of the device. The location constraint LOC, attached 
to the DLL primitive with the numeric identifier 0, 1, 2, or 3, 
controls DLL location. The orientation of the four DLLs and 
their corresponding clock resources appears in Figure 27. 

The LOC property uses the following form.

LOC = DLL2

Design Considerations

Use the following design considerations to avoid pitfalls and 
improve success designing with Xilinx devices.

Input Clock

The output clock signal of a DLL, essentially a delayed 
version of the input clock signal, reflects any instability on 
the input clock in the output waveform. For this reason the 
quality of the DLL input clock relates directly to the quality of 
the output clock waveforms generated by the DLL. The DLL 
input clock requirements are specified in the "DLL Timing 
Parameters" section of the data sheet. 

In most systems a crystal oscillator generates the system 
clock. The DLL can be used with any commercially 
available quartz crystal oscillator. For example, most crystal 
oscillators produce an output waveform with a frequency 
tolerance of 100 PPM, meaning 0.01 percent change in the 

clock period. The DLL operates reliably on an input 
waveform with a frequency drift of up to 1 ns — orders of 
magnitude in excess of that needed to support any crystal 
oscillator in the industry. However, the cycle-to-cycle jitter 
must be kept to less than 300 ps in the low frequencies and 
150 ps for the high frequencies.

Input Clock Changes

Changing the period of the input clock beyond the 
maximum drift amount requires a manual reset of the 
CLKDLL. Failure to reset the DLL will produce an unreliable 
lock signal and output clock.

It is possible to stop the input clock in a way that has little 
impact to the DLL. Stopping the clock should be limited to 
less than approximately 100 μs to keep device cooling to a 
minimum and maintain the validity of the current tap setting. 
The clock should be stopped during a Low phase, and when 
restored the full High period should be seen. During this 
time LOCKED will stay High and remain High when the 
clock is restored. If these conditions may not be met in the 
design, apply a manual reset to the DLL after re-starting the 
input clock, even if the LOCKED signal has not changed.

When the clock is stopped, one to four more clocks will still 
be observed as the delay line is flushed. When the clock is 
restarted, the output clocks will not be observed for one to 
four clocks as the delay line is filled. The most common 
case will be two or three clocks.

In a similar manner, a phase shift of the input clock is also 
possible. The phase shift will propagate to the output one to 
four clocks after the original shift, with no disruption to the 
CLKDLL control.

Output Clocks

As mentioned earlier in the DLL pin descriptions, some 
restrictions apply regarding the connectivity of the output 
pins. The DLL clock outputs can drive an OBUF, a global 
clock buffer BUFG, or route directly to destination clock 
pins. The only BUFGs that the DLL clock outputs can drive 
are the two on the same edge of the device (top or bottom). 
One DLL output can drive more than one OBUF; however, 
this adds skew.

Do not use the DLL output clock signals until after activation 
of the LOCKED signal. Prior to the activation of the 
LOCKED signal, the DLL output clocks are not valid and 
can exhibit glitches, spikes, or other spurious movement.

Figure 27:  Orientation of DLLs
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Useful Application Examples

The Spartan-II FPGA DLL can be used in a variety of 
creative and useful applications. The following examples 
show some of the more common applications. 

Standard Usage

The circuit shown in Figure 28 resembles the BUFGDLL 
macro implemented to provide access to the RST and 
LOCKED pins of the CLKDLL. 

Deskew of Clock and Its 2x Multiple

The circuit shown in Figure 29 implements a 2x clock 
multiplier and also uses the CLK0 clock output with zero ns 
skew between registers on the same chip. A clock divider 
circuit could alternatively be implemented using similar 
connections.

Because any single DLL can only access at most two 
BUFGs, any additional output clock signals must be routed 
from the DLL in this example on the high speed backbone 
routing.

Generating a 4x Clock

By connecting two DLL circuits each implementing a 2x 
clock multiplier in series as shown in Figure 30, a 4x clock 
multiply can be implemented with zero skew between 
registers in the same device. 

If other clock output is needed, the clock could access a 
BUFG only if the DLLs are constrained to exist on opposite 
edges (Top or Bottom) of the device.

When using this circuit it is vital to use the SRL16 cell to 
reset the second DLL after the initial chip reset. If this is not 
done, the second DLL may not recognize the change of 
frequencies from when the input changes from a 1x (25/75) 
waveform to a 2x (50/50) waveform. It is not recommended 
to cascade more than two DLLs.

For design examples and more information on using the 
DLL, see XAPP174, Using Delay-Locked Loops in Spartan-II 
FPGAs.

Figure 28:  Standard DLL Implementation

Figure 29:  DLL Deskew of Clock and 2x Multiple
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Figure 30:  DLL Generation of 4x Clock
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Creating Larger RAM Structures

The block RAM columns have specialized routing to allow 
cascading blocks together with minimal routing delays. This 
achieves wider or deeper RAM structures with a smaller 
timing penalty than when using normal routing channels. 

Location Constraints

Block RAM instances can have LOC properties attached to 
them to constrain the placement. The block RAM placement 
locations are separate from the CLB location naming 
convention, allowing the LOC properties to transfer easily 
from array to array.

The LOC properties use the following form:

LOC = RAMB4_R#C#

RAMB4_R0C0 is the upper left RAMB4 location on the 
device.

Conflict Resolution

The block RAM memory is a true dual-read/write port RAM 
that allows simultaneous access of the same memory cell 
from both ports. When one port writes to a given memory 
cell, the other port must not address that memory cell (for a 
write or a read) within the clock-to-clock setup window. The 
following lists specifics of port and memory cell write conflict 
resolution.

• If both ports write to the same memory cell
simultaneously, violating the clock-to-clock setup
requirement, consider the data stored as invalid.

• If one port attempts a read of the same memory cell 
the other simultaneously writes, violating the 
clock-to-clock setup requirement, the following occurs.
- The write succeeds
- The data out on the writing port accurately reflects

the data written.
- The data out on the reading port is invalid.

Conflicts do not cause any physical damage.

Single Port Timing

Figure 33 shows a timing diagram for a single port of a block 
RAM memory. The block RAM AC switching characteristics 
are specified in the data sheet. The block RAM memory is 
initially disabled. 

At the first rising edge of the CLK pin, the ADDR, DI, EN, 
WE, and RST pins are sampled. The EN pin is High and the 
WE pin is Low indicating a read operation. The DO bus 
contains the contents of the memory location, 0x00, as 
indicated by the ADDR bus.

At the second rising edge of the CLK pin, the ADDR, DI, EN, 
WR, and RST pins are sampled again. The EN and WE pins 
are High indicating a write operation. The DO bus mirrors 

the DI bus. The DI bus is written to the memory location 
0x0F.

At the third rising edge of the CLK pin, the ADDR, DI, EN, 
WR, and RST pins are sampled again. The EN pin is High 
and the WE pin is Low indicating a read operation. The DO 
bus contains the contents of the memory location 0x7E as 
indicated by the ADDR bus.

At the fourth rising edge of the CLK pin, the ADDR, DI, EN, 
WR, and RST pins are sampled again. The EN pin is Low 
indicating that the block RAM memory is now disabled. The 
DO bus retains the last value.

Dual Port Timing

Figure 34 shows a timing diagram for a true dual-port 
read/write block RAM memory. The clock on port A has a 
longer period than the clock on Port B. The timing 
parameter TBCCS, (clock-to-clock setup) is shown on this 
diagram. The parameter, TBCCS is violated once in the 
diagram. All other timing parameters are identical to the 
single port version shown in Figure 33.

TBCCS is only of importance when the address of both ports 
are the same and at least one port is performing a write 
operation. When the clock-to-clock set-up parameter is 
violated for a WRITE-WRITE condition, the contents of the 
memory at that location will be invalid. When the 
clock-to-clock set-up parameter is violated for a 
WRITE-READ condition, the contents of the memory will be 
correct, but the read port will have invalid data. At the first 
rising edge of the CLKA, memory location 0x00 is to be 
written with the value 0xAAAA and is mirrored on the DOA 
bus. The last operation of Port B was a read to the same 
memory location 0x00. The DOB bus of Port B does not 
change with the new value on Port A, and retains the last 
read value. A short time later, Port B executes another read 
to memory location 0x00, and the DOB bus now reflects the 
new memory value written by Port A.

At the second rising edge of CLKA, memory location 0x7E 
is written with the value 0x9999 and is mirrored on the DOA 
bus. Port B then executes a read operation to the same 
memory location without violating the TBCCS parameter and 
the DOB reflects the new memory values written by Port A.
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GTL

A sample circuit illustrating a valid termination technique for 
GTL is shown in Figure 42. Table 20 lists DC voltage 
specifications for the GTL standard. See "DC 
Specifications" in Module 3 for the actual FPGA 
characteristics.

GTL+

A sample circuit illustrating a valid termination technique for 
GTL+ appears in Figure 43. DC voltage specifications 
appear in Table 21 for the GTL+ standard. See "DC 
Specifications" in Module 3 for the actual FPGA 
characteristics.

HSTL Class I

A sample circuit illustrating a valid termination technique for 
HSTL_I appears in Figure 44. DC voltage specifications 
appear in Table 22 for the HSTL_1 standard. See "DC 
Specifications" in Module 3 for the actual FPGA 
characteristics.

Figure 42:  Terminated GTL

Table  20:  GTL Voltage Specifications

Parameter Min Typ Max

VCCO - N/A -

VREF = N × VTT
(1) 0.74 0.8 0.86

VTT 1.14 1.2 1.26

VIH ≥ VREF + 0.05 0.79 0.85 -

VIL ≤ VREF – 0.05 - 0.75 0.81

VOH - - -

VOL - 0.2 0.4

IOH at VOH (mA) - - -

IOL at VOL (mA) at 0.4V 32 - -

IOL at VOL (mA) at 0.2V - - 40

Notes: 
1. N must be greater than or equal to 0.653 and less than or 

equal to 0.68.

Figure 43:  Terminated GTL+
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Table  21:  GTL+ Voltage Specifications

Parameter Min Typ Max

VCCO - - -

VREF = N × VTT
(1) 0.88 1.0 1.12

VTT 1.35 1.5 1.65

VIH ≥ VREF + 0.1 0.98 1.1 -

VIL ≤ VREF – 0.1 - 0.9 1.02

VOH - - -

VOL 0.3 0.45 0.6

IOH at VOH (mA) - - -

IOL at VOL (mA) at 0.6V 36 - -

IOL at VOL (mA) at 0.3V - - 48

Notes: 
1. N must be greater than or equal to 0.653 and less than or 

equal to 0.68.

Figure 44:  Terminated HSTL Class I

Table  22:  HSTL Class I Voltage Specification

Parameter Min Typ Max

VCCO 1.40 1.50 1.60

VREF 0.68 0.75 0.90

VTT - VCCO × 0.5 -

VIH VREF + 0.1 - -

VIL - - VREF – 0.1

VOH VCCO – 0.4 - -

VOL 0.4

IOH at VOH (mA) –8 - -

IOL at VOL (mA) 8 - -

VREF = 0.75V

VCCO = 1.5V

50Ω

Z = 50

HSTL Class I

DS001_44_061200

VTT = 0.75V
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IOB Output Delay Adjustments for Different Standards(1) 
Output delays terminating at a pad are specified for LVTTL with 12 mA drive and fast slew rate. For other standards, adjust
the delays by the values shown. A delay adjusted in this way constitutes a worst-case limit. 

1

Symbol

 

Description Standard

 Speed Grade

Units-6 -5

Output Delay Adjustments (Adj)

TOLVTTL_S2 Standard-specific adjustments for 
output delays terminating at pads 
(based on standard capacitive 
load, CSL)

LVTTL, Slow, 2 mA 14.2 16.9 ns

TOLVTTL_S4 4 mA 7.2 8.6 ns

TOLVTTL_S6 6 mA 4.7 5.5 ns

TOLVTTL_S8 8 mA 2.9 3.5 ns

TOLVTTL_S12 12 mA 1.9 2.2 ns

TOLVTTL_S16 16 mA 1.7 2.0 ns

TOLVTTL_S24 24 mA 1.3 1.5 ns

TOLVTTL_F2 LVTTL, Fast, 2 mA 12.6 15.0 ns

TOLVTTL_F4 4 mA 5.1 6.1 ns

TOLVTTL_F6 6 mA 3.0 3.6 ns

TOLVTTL_F8 8 mA 1.0 1.2 ns

TOLVTTL_F12 12 mA 0 0 ns

TOLVTTL_F16 16 mA –0.1 –0.1 ns

TOLVTTL_F24 24 mA –0.1 –0.2 ns

TOLVCMOS2 LVCMOS2 0.2 0.2 ns

TOPCI33_3 PCI, 33 MHz, 3.3V 2.4 2.9 ns

TOPCI33_5 PCI, 33 MHz, 5.0V 2.9 3.5 ns

TOPCI66_3 PCI, 66 MHz, 3.3V –0.3 –0.4 ns

TOGTL GTL 0.6 0.7 ns

TOGTLP GTL+ 0.9 1.1 ns

TOHSTL_I HSTL I –0.4 –0.5 ns

TOHSTL_III HSTL III –0.8 –1.0 ns

TOHSTL_IV HSTL IV –0.9 –1.1 ns

TOSSTL2_I SSTL2 I –0.4 –0.5 ns

TOSSLT2_II SSTL2 II –0.8 –1.0 ns

TOSSTL3_I SSTL3 I –0.4 –0.5 ns

TOSSTL3_II SSTL3 II –0.9 –1.1 ns

TOCTT CTT –0.5 –0.6 ns

TOAGP AGP –0.8 –1.0 ns

Notes: 
1. Output timing is measured at 1.4V with 35 pF external capacitive load for LVTTL. For other I/O standards and different loads, see the 

tables "Constants for Calculating TIOOP" and "Delay Measurement Methodology," page 60.
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Calculation of TIOOP as a Function of 
Capacitance

TIOOP is the propagation delay from the O Input of the IOB 
to the pad. The values for TIOOP are based on the standard 
capacitive load (CSL) for each I/O standard as listed in the 
table "Constants for Calculating TIOOP", below.

For other capacitive loads, use the formulas below to 
calculate an adjusted propagation delay, TIOOP1.

TIOOP1 = TIOOP + Adj + (CLOAD – CSL) * FL

Where:

Adj is selected from "IOB Output Delay 
Adjustments for Different Standards", page 59, 
according to the I/O standard used

CLOAD is the capacitive load for the design

FL is the capacitance scaling factor  

Delay Measurement Methodology

Standard VL
(1) VH

(1)
Meas.
Point

VREF 
Typ(2)

LVTTL 0 3 1.4 -

LVCMOS2 0 2.5 1.125 -

PCI33_5 Per PCI Spec -

PCI33_3 Per PCI Spec -

PCI66_3 Per PCI Spec -

GTL VREF – 0.2 VREF + 0.2 VREF 0.80

GTL+ VREF – 0.2 VREF + 0.2 VREF 1.0

HSTL Class I VREF – 0.5 VREF + 0.5 VREF 0.75

HSTL Class III VREF – 0.5 VREF + 0.5 VREF 0.90

HSTL Class IV VREF – 0.5 VREF + 0.5 VREF 0.90

SSTL3 I and II VREF – 1.0 VREF + 1.0 VREF 1.5

SSTL2 I and II VREF – 0.75 VREF + 0.75 VREF 1.25

CTT VREF – 0.2 VREF + 0.2 VREF 1.5

AGP VREF – 
(0.2xVCCO)

VREF + 
(0.2xVCCO)

VREF Per AGP 
Spec

Notes: 
1. Input waveform switches between VL and VH.
2. Measurements are made at VREF Typ, Maximum, and 

Minimum. Worst-case values are reported. 
3. I/O parameter measurements are made with the capacitance 

values shown in the table, "Constants for Calculating TIOOP". 
See Xilinx application note XAPP179 for the appropriate 
terminations.

4. I/O standard measurements are reflected in the IBIS model 
information except where the IBIS format precludes it.

Constants for Calculating TIOOP

Standard
CSL

(1) 
(pF)

FL 
(ns/pF)

LVTTL Fast Slew Rate, 2 mA drive 35 0.41

LVTTL Fast Slew Rate, 4 mA drive 35 0.20

LVTTL Fast Slew Rate, 6 mA drive 35 0.13

LVTTL Fast Slew Rate, 8 mA drive 35 0.079

LVTTL Fast Slew Rate, 12 mA drive 35 0.044

LVTTL Fast Slew Rate, 16 mA drive 35 0.043

LVTTL Fast Slew Rate, 24 mA drive 35 0.033

LVTTL Slow Slew Rate, 2 mA drive 35 0.41

LVTTL Slow Slew Rate, 4 mA drive 35 0.20

LVTTL Slow Slew Rate, 6 mA drive 35 0.100

LVTTL Slow Slew Rate, 8 mA drive 35 0.086

LVTTL Slow Slew Rate, 12 mA drive 35 0.058

LVTTL Slow Slew Rate, 16 mA drive 35 0.050

LVTTL Slow Slew Rate, 24 mA drive 35 0.048

LVCMOS2 35 0.041

PCI 33 MHz 5V 50 0.050

PCI 33 MHZ 3.3V 10 0.050

PCI 66 MHz 3.3V 10 0.033

GTL 0 0.014

GTL+ 0 0.017

HSTL Class I 20 0.022

HSTL Class III 20 0.016

HSTL Class IV 20 0.014

SSTL2 Class I 30 0.028

SSTL2 Class II 30 0.016

SSTL3 Class I 30 0.029

SSTL3 Class II 30 0.016

CTT 20 0.035

AGP 10 0.037

Notes: 
1. I/O parameter measurements are made with the capacitance 

values shown above. See Xilinx application note XAPP179 
for the appropriate terminations.

2. I/O standard measurements are reflected in the IBIS model 
information except where the IBIS format precludes it.

http://www.xilinx.com/support/documentation/application_notes/xapp179.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp179.pdf
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DLL Timing Parameters

All devices are 100 percent functionally tested. Because of 
the difficulty in directly measuring many internal timing 
parameters, those parameters are derived from benchmark 

timing patterns. The following guidelines reflect worst-case 
values across the recommended operating conditions.  

DLL Clock Tolerance, Jitter, and Phase Information

All DLL output jitter and phase specifications were 
determined through statistical measurement at the package 
pins using a clock mirror configuration and matched drivers. 

Figure 52, page 63, provides definitions for various 
parameters in the table below.  

Symbol Description

Speed Grade

Units

-6 -5

Min Max Min Max

FCLKINHF Input clock frequency (CLKDLLHF) 60 200 60 180 MHz

FCLKINLF Input clock frequency (CLKDLL) 25 100 25 90 MHz

TDLLPWHF Input clock pulse width (CLKDLLHF) 2.0 - 2.4 - ns

TDLLPWLF Input clock pulse width (CLKDLL) 2.5 - 3.0 - ns

Symbol Description FCLKIN 

CLKDLLHF CLKDLL

UnitsMin Max Min Max

TIPTOL Input clock period tolerance - 1.0 - 1.0 ns

TIJITCC Input clock jitter tolerance (cycle-to-cycle) - ±150 - ±300 ps

TLOCK Time required for DLL to acquire lock > 60 MHz - 20 - 20 μs

50-60 MHz - - - 25 μs

40-50 MHz - - - 50 μs

30-40 MHz - - - 90 μs

25-30 MHz - - - 120 μs

TOJITCC Output jitter (cycle-to-cycle) for any DLL clock output(1) - ±60 - ±60 ps

TPHIO Phase offset between CLKIN and CLKO(2) - ±100 - ±100 ps

TPHOO Phase offset between clock outputs on the DLL(3) - ±140 - ±140 ps

TPHIOM Maximum phase difference between CLKIN and CLKO(4) - ±160 - ±160 ps

TPHOOM Maximum phase difference between clock outputs on the DLL(5) - ±200 - ±200 ps

Notes: 
1. Output Jitter is cycle-to-cycle jitter measured on the DLL output clock, excluding input clock jitter.
2. Phase Offset between CLKIN and CLKO is the worst-case fixed time difference between rising edges of CLKIN and CLKO, 

excluding output jitter and input clock jitter.
3. Phase Offset between Clock Outputs on the DLL is the worst-case fixed time difference between rising edges of any two DLL 

outputs, excluding Output Jitter and input clock jitter.
4. Maximum Phase Difference between CLKIN an CLKO is the sum of Output Jitter and Phase Offset between CLKIN and CLKO, 

or the greatest difference between CLKIN and CLKO rising edges due to DLL alone (excluding input clock jitter).
5. Maximum Phase Difference between Clock Outputs on the DLL is the sum of Output JItter and Phase Offset between any DLL 

clock outputs, or the greatest difference between any two DLL output rising edges due to DLL alone (excluding input clock jitter).
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Package Thermal Characteristics
Table 39 provides the thermal characteristics for the various 
Spartan-II FPGA package offerings. This information is also 
available using the Thermal Query tool on xilinx.com 
(www.xilinx.com/cgi-bin/thermal/thermal.pl).

The junction-to-case thermal resistance (θJC) indicates the 
difference between the temperature measured on the 
package body (case) and the die junction temperature per 
watt of power consumption. The junction-to-board (θJB) 

value similarly reports the difference between the board and 
junction temperature. The junction-to-ambient (θJA) value 
reports the temperature difference between the ambient 
environment and the junction temperature. The θJA value is 
reported at different air velocities, measured in linear feet 
per minute (LFM). The “Still Air (0 LFM)” column shows the 
θJA value in a system without a fan. The thermal resistance 
drops with increasing air flow.

Table  39:  Spartan-II Package Thermal Characteristics

Package Device
Junction-to-Case 

(θJC)
Junction-to-
Board (θJB)

Junction-to-Ambient (θJA) 
at Different Air Flows

Units
Still Air 
(0 LFM) 250 LFM 500 LFM 750 LFM

VQ100
VQG100

XC2S15 11.3 N/A 44.1 36.7 34.2 33.3 °C/Watt

XC2S30 10.1 N/A 40.7 33.9 31.5 30.8 °C/Watt

TQ144
TQG144

XC2S15 7.3 N/A 38.6 30.0 25.7 24.1 °C/Watt

XC2S30 6.7 N/A 34.7 27.0 23.1 21.7 °C/Watt

XC2S50 5.8 N/A 32.2 25.1 21.4 20.1 °C/Watt

XC2S100 5.3 N/A 31.4 24.4 20.9 19.6 °C/Watt

CS144
CSG144 XC2S30 2.8 N/A 34.0 26.0 23.9 23.2 °C/Watt

PQ208
PQG208

XC2S50 6.7 N/A 25.2 18.6 16.4 15.2 °C/Watt

XC2S100 5.9 N/A 24.6 18.1 16.0 14.9 °C/Watt

XC2S150 5.0 N/A 23.8 17.6 15.6 14.4 °C/Watt

XC2S200 4.1 N/A 23.0 17.0 15.0 13.9 °C/Watt

FG256
FGG256

XC2S50 7.1 17.6 27.2 21.4 20.3 19.8 °C/Watt

XC2S100 5.8 15.1 25.1 19.5 18.3 17.8 °C/Watt

XC2S150 4.6 12.7 23.0 17.6 16.3 15.8 °C/Watt

XC2S200 3.5 10.7 21.4 16.1 14.7 14.2 °C/Watt

FG456
FGG456

XC2S150 2.0 N/A 21.9 17.3 15.8 15.2 °C/Watt

XC2S200 2.0 N/A 21.0 16.6 15.1 14.5 °C/Watt

http://www.xilinx.com
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VCCINT - P85 P24 A9 P171 -

I/O 1 - P23 D8 P172 24

I/O 1 - P22 C8 P173 27

I/O 1 - - - P174 30

I/O 1 - - - P175 33

I/O 1 - - - P176 36

GND - - - - P177 -

I/O, VREF 1 P86 P21 B8 P178 39

I/O 1 - - - P179 42

I/O 1 - P20 A8 P180 45

I/O 1 P87 P19 B7 P181 48

I, GCK2 1 P88 P18 A7 P182 54

GND - P89 P17 C7 P183 -

VCCO 1 P90 P16 D7 P184 -

VCCO 0 P90 P16 D7 P184 -

I, GCK3 0 P91 P15 A6 P185 55

VCCINT - P92 P14 B6 P186 -

I/O 0 - P13 C6 P187 62

I/O 0 - - - P188 65

I/O, VREF 0 P93 P12 D6 P189 68

GND - - - - P190 -

I/O 0 - - - P191 71

I/O 0 - - - P192 74

I/O 0 - - - P193 77

I/O 0 - P11 A5 P194 80

I/O 0 - P10 B5 P195 83

VCCINT - P94 P9 C5 P196 -

VCCO 0 - - - P197 -

GND - - P8 D5 P198 -

I/O 0 P95 P7 A4 P199 86

I/O 0 P96 P6 B4 P200 89

I/O 0 - - - P201 92

XC2S30 Device Pinouts (Continued)
XC2S30 Pad Name

VQ100 TQ144 CS144 PQ208
Bndry 
ScanFunction Bank

I/O, VREF 0 P97 P5 C4 P203 95

I/O 0 - - - P204 98

I/O 0 - P4 A3 P205 101

I/O 0 P98 P3 B3 P206 104

TCK - P99 P2 C3 P207 -

VCCO 0 P100 P1 A2 P208 -

VCCO 7 P100 P144 B2 P208 -

04/18/01

Notes: 
1. IRDY and TRDY can only be accessed when using Xilinx 

PCI cores.
2. See "VCCO Banks" for details on VCCO banking.

Additional XC2S30 Package Pins

VQ100
Not Connected Pins

P28 P29 - - - -
11/02/00

TQ144
Not Connected Pins

P104 P105 - - - -
11/02/00

CS144
Not Connected Pins

M3 N3 - - - -
11/02/00

PQ208
Not Connected Pins

P7 P13 P38 P44 P55 P56
P60 P97 P112 P118 P143 P149

P165 P202 - - - -
11/02/00

Notes: 
1. For the PQ208 package, P13, P38, P118, and P143, which 

are Not Connected Pins on the XC2S30, are assigned to 
VCCINT on larger devices.

XC2S30 Device Pinouts (Continued)
XC2S30 Pad Name

VQ100 TQ144 CS144 PQ208
Bndry 
ScanFunction Bank
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I/O 0 - - D8 83

I/O 0 - P188 A6 86

I/O, VREF 0 P12 P189 B7 89

GND - - P190 GND* -

I/O 0 - P191 C8 92

I/O 0 - P192 D7 95

I/O 0 - P193 E7 98

I/O 0 P11 P194 C7 104

I/O 0 P10 P195 B6 107

VCCINT - P9 P196 VCCINT* -

VCCO 0 - P197 VCCO 
Bank 0*

-

GND - P8 P198 GND* -

I/O 0 P7 P199 A5 110

I/O 0 P6 P200 C6 113

I/O 0 - P201 B5 116

I/O 0 - - D6 119

I/O 0 - P202 A4 122

I/O, VREF 0 P5 P203 B4 125

GND - - - GND* -

I/O 0 - P204 E6 128

I/O 0 - - D5 131

I/O 0 P4 P205 A3 134

I/O 0 - - C5 137

I/O 0 P3 P206 B3 140

TCK - P2 P207 C4 -

VCCO 0 P1 P208 VCCO 
Bank 0*

-

VCCO 7 P144 P208 VCCO 
Bank 7*

-

04/18/01

Notes: 
1. IRDY and TRDY can only be accessed when using Xilinx PCI 

cores.
2. Pads labelled GND*, VCCINT*, VCCO Bank 0*, VCCO Bank 1*, 

VCCO Bank 2*, VCCO Bank 3*, VCCO Bank 4*, VCCO Bank 5*, 
VCCO Bank 6*, VCCO Bank 7* are internally bonded to 
independent ground or power planes within the package. 

3. See "VCCO Banks" for details on VCCO banking.

XC2S50 Device Pinouts (Continued)
XC2S50 Pad Name

TQ144 PQ208 FG256
Bndry 
ScanFunction Bank

Additional XC2S50 Package Pins

TQ144
Not Connected Pins

P104 P105 - - - -
11/02/00
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I/O 2 - - F12 G20 695

I/O 2 - P149 E15 F19 701

I/O, VREF 2 P41 P150 F13 F21 704

VCCO 2 - - VCCO 
Bank 2*

VCCO 
Bank 2*

-

GND - - - GND* GND* -

I/O 2 - P151 E14 F20 707

I/O 2 - - C16 F18 710

I/O 2 - - - E21 713

I/O 2 P40 P152 E13 D22 716

I/O 2 - - B16 E20 719

I/O (DIN, 
D0)

2 P39 P153 D14 D20 725

I/O (DOUT, 
BUSY)

2 P38 P154 C15 C21 728

CCLK 2 P37 P155 D15 B22 731

VCCO 2 P36 P156 VCCO 
Bank 2*

VCCO 
Bank 2*

-

VCCO 1 P35 P156 VCCO 
Bank 1*

VCCO 
Bank 1*

-

TDO 2 P34 P157 B14 A21 -

GND - P33 P158 GND* GND* -

TDI - P32 P159 A15 B20 -

I/O (CS) 1 P31 P160 B13 C19 0

I/O (WRITE) 1 P30 P161 C13 A20 3

I/O 1 - - C12 D17 9

I/O 1 P29 P162 A14 A19 12

I/O 1 - - - B18 15

I/O 1 - - D12 C17 18

I/O 1 - P163 B12 D16 21

GND - - - GND* GND* -

VCCO 1 - - VCCO 
Bank 1*

VCCO 
Bank 1*

-

I/O, VREF 1 P28 P164 C11 A18 24

I/O 1 - P165 A13 B17 27

I/O 1 - - D11 D15 33

I/O 1 - P166 A12 C16 36

I/O 1 - - - D14 39

I/O, VREF 1 P27 P167 E11 E14 42

I/O 1 P26 P168 B11 A16 45

GND - P25 P169 GND* GND* -

XC2S100 Device Pinouts (Continued)
XC2S100 Pad 

Name

TQ144 PQ208 FG256 FG456
Bndry 
ScanFunction Bank

VCCO 1 - P170 VCCO 
Bank 1*

VCCO 
Bank 1*

-

VCCINT - P24 P171 VCCINT* VCCINT* -

I/O 1 P23 P172 A11 C15 48

I/O 1 P22 P173 C10 B15 51

I/O 1 - - - F12 54

I/O 1 - P174 B10 C14 57

I/O 1 - P175 D10 D13 63

I/O 1 - P176 A10 C13 66

GND - - P177 GND* GND* -

I/O, VREF 1 P21 P178 B9 B13 69

I/O 1 - P179 E10 E12 72

I/O 1 - - A9 B12 75

I/O 1 P20 P180 D9 D12 78

I/O 1 P19 P181 A8 D11 84

I, GCK2 1 P18 P182 C9 A11 90

GND - P17 P183 GND* GND* -

VCCO 1 P16 P184 VCCO 
Bank 1*

VCCO 
Bank 1*

-

VCCO 0 P16 P184 VCCO 
Bank 0*

VCCO 
Bank 0*

-

I, GCK3 0 P15 P185 B8 C11 91

VCCINT - P14 P186 VCCINT* VCCINT* -

I/O 0 P13 P187 A7 A10 101

I/O 0 - - D8 B10 104

XC2S100 Device Pinouts (Continued)
XC2S100 Pad 

Name

TQ144 PQ208 FG256 FG456
Bndry 
ScanFunction Bank
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Additional XC2S100 Package Pins

TQ144

Not Connected Pins

P104 P105 - - - -
11/02/00

PQ208

Not Connected Pins

P55 P56 - - - -
11/02/00

FG256

VCCINT Pins

C3 C14 D4 D13 E5 E12

M5 M12 N4 N13 P3 P14

VCCO Bank 0 Pins

E8 F8 - - - -

VCCO Bank 1 Pins

E9 F9 - - - -

VCCO Bank 2 Pins

H11 H12 - - - -

VCCO Bank 3 Pins

J11 J12 - - - -

VCCO Bank 4 Pins

L9 M9 - - - -

VCCO Bank 5 Pins

L8 M8 - - - -

VCCO Bank 6 Pins

J5 J6 - - - -

VCCO Bank 7 Pins

H5 H6 - - - -

GND Pins

A1 A16 B2 B15 F6 F7

F10 F11 G6 G7 G8 G9

G10 G11 H7 H8 H9 H10

J7 J8 J9 J10 K6 K7

K8 K9 K10 K11 L6 L7

L10 L11 R2 R15 T1 T16

Not Connected Pins

P4 R4 - - - -
11/02/00

FG456

VCCINT Pins

E5 E18 F6 F17 G7 G8

G9 G14 G15 G16 H7 H16

J7 J16 P7 P16 R7 R16

T7 T8 T9 T14 T15 T16

U6 U17 V5 V18 - -

VCCO Bank 0 Pins

F10 F7 F8 F9 G10 G11

VCCO Bank 1 Pins

F13 F14 F15 F16 G12 G13

VCCO Bank 2 Pins

G17 H17 J17 K16 K17 L16

VCCO Bank 3 Pins

M16 N16 N17 P17 R17 T17

VCCO Bank 4 Pins

T12 T13 U13 U14 U15 U16

VCCO Bank 5 Pins

T10 T11 U10 U7 U8 U9

VCCO Bank 6 Pins

M7 N6 N7 P6 R6 T6

VCCO Bank 7 Pins

G6 H6 J6 K6 K7 L7

GND Pins

A1 A22 B2 B21 C3 C20

J9 J10 J11 J12 J13 J14

K9 K10 K11 K12 K13 K14

L9 L10 L11 L12 L13 L14

M9 M10 M11 M12 M13 M14

N9 N10 N11 N12 N13 N14

P9 P10 P11 P12 P13 P14

Y3 Y20 AA2 AA21 AB1 AB22

Not Connected Pins

A2 A4 A5 A6 A12 A13

A14 A15 A17 B3 B6 B8

B11 B14 B16 B19 C1 C2

C8 C9 C12 C18 C22 D1

D4 D5 D10 D18 D19 D21

E4 E11 E13 E15 E16 E17

E19 E22 F4 F11 F22 G2

G3 G4 G19 G22 H1 H21

J1 J3 J4 J19 J20 K2

K18 K19 L2 L5 L18 L19

M2 M6 M17 M18 M21 N1

N5 N19 P1 P5 P19 P22

R1 R3 R20 R22 T5 T19

U3 U11 U18 V1 V2 V10

V12 V17 V3 V4 V6 V8

V20 V21 V22 W4 W5 W9

W13 W14 W15 W16 W19 Y5

Y14 Y18 Y22 AA1 AA3 AA6

AA9 AA10 AA11 AA16 AA17 AA18

AA22 AB3 AB4 AB7 AB8 AB12

AB14 AB21 - - - -
11/02/00

Additional XC2S100 Package Pins (Continued)
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I/O 4 P90 R11 AA15 595

VCCINT - P91 VCCINT* VCCINT* -

VCCO 4 P92 VCCO 
Bank 4*

VCCO 
Bank 4*

-

GND - P93 GND* GND* -

I/O 4 P94 M11 Y15 598

I/O, VREF 4 P95 T11 AB16 601

I/O 4 - - AB17 604

I/O 4 P96 N11 V15 607

I/O 4 - R12 Y16 610

I/O 4 - - AA17 613

I/O 4 - - W16 616

I/O 4 P97 P11 AB18 619

I/O, VREF 4 P98 T12 AB19 622

VCCO 4 - VCCO 
Bank 4*

VCCO 
Bank 4*

-

GND - - GND* GND* -

I/O 4 P99 T13 Y17 625

I/O 4 - N12 V16 628

I/O 4 - - AA18 631

I/O 4 - - W17 634

I/O 4 P100 R13 AB20 637

GND - - GND* GND* -

I/O 4 - P12 AA19 640

I/O 4 - - V17 643

I/O 4 - - Y18 646

I/O 4 P101 P13 AA20 649

I/O 4 P102 T14 W18 652

GND - P103 GND* GND* -

DONE 3 P104 R14 Y19 655

VCCO 4 P105 VCCO 
Bank 4*

VCCO 
Bank 4*

-

VCCO 3 P105 VCCO 
Bank 3*

VCCO 
Bank 3*

-

PROGRAM - P106 P15 W20 658

I/O (INIT) 3 P107 N15 V19 659

I/O (D7) 3 P108 N14 Y21 662

I/O 3 - - V20 665

I/O 3 - - AA22 668

I/O 3 - T15 W21 671

GND - - GND* GND* -

I/O 3 P109 M13 U20 674

XC2S150 Device Pinouts (Continued)
XC2S150 Pad Name

PQ208 FG256 FG456
Bndry 
ScanFunction Bank

I/O 3 - - U19 677

I/O 3 - - V21 680

I/O 3 - R16 T18 683

I/O 3 P110 M14 W22 686

GND - - GND* GND* -

VCCO 3 - VCCO  
Bank 3*

VCCO  
Bank 3*

-

I/O, VREF 3 P111 L14 U21 689

I/O 3 P112 M15 T20 692

I/O 3 - - T19 695

I/O 3 - - V22 698

I/O 3 - L12 T21 701

I/O 3 P113 P16 R18 704

I/O 3 - - U22 707

I/O, VREF 3 P114 L13 R19 710

I/O (D6) 3 P115 N16 T22 713

GND - P116 GND* GND* -

VCCO 3 P117 VCCO  
Bank 3*

VCCO  
Bank 3*

-

VCCINT - P118 VCCINT* VCCINT* -

I/O (D5) 3 P119 M16 R21 716

I/O 3 P120 K14 P18 719

I/O 3 - - P19 725

I/O 3 - L16 P20 728

I/O 3 P121 K13 P21 731

I/O 3 - - N19 734

I/O 3 P122 L15 N18 740

I/O 3 P123 K12 N20 743

GND - P124 GND* GND* -

VCCO 3 - VCCO 
Bank 3*

VCCO 
Bank 3*

-

I/O, VREF 3 P125 K16 N21 746

I/O (D4) 3 P126 J16 N22 749

I/O 3 - J14 M19 752

I/O 3 P127 K15 M20 755

I/O 3 - - M18 758

VCCINT - P128 VCCINT* VCCINT* -

I/O, TRDY(1) 3 P129 J15 M22 764

VCCO 3 P130 VCCO 
Bank 3*

VCCO 
Bank 3*

-

VCCO 2 P130 VCCO 
Bank 2*

VCCO 
Bank 2*

-

GND - P131 GND* GND* -

XC2S150 Device Pinouts (Continued)
XC2S150 Pad Name

PQ208 FG256 FG456
Bndry 
ScanFunction Bank
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VCCO 3 P117 VCCO  
Bank 3*

VCCO  
Bank 3*

-

VCCINT - P118 VCCINT* VCCINT* -

I/O (D5) 3 P119 M16 R21 833

I/O 3 P120 K14 P18 836

I/O 3 - - R22 839

I/O 3 - - P19 842

I/O 3 - L16 P20 845

GND - - GND* GND* -

I/O 3 P121 K13 P21 848

I/O 3 - - N19 851

I/O 3 - - P22 854

I/O 3 P122 L15 N18 857

I/O 3 P123 K12 N20 860

GND - P124 GND* GND* -

VCCO 3 - VCCO 
Bank 3*

VCCO 
Bank 3*

-

I/O, VREF 3 P125 K16 N21 863

I/O (D4) 3 P126 J16 N22 866

I/O 3 - - M17 872

I/O 3 - J14 M19 875

I/O 3 P127 K15 M20 878

I/O 3 - - M18 881

VCCINT - P128 VCCINT* VCCINT* -

I/O, TRDY(1) 3 P129 J15 M22 890

VCCO 3 P130 VCCO 
Bank 3*

VCCO 
Bank 3*

-

VCCO 2 P130 VCCO 
Bank 2*

VCCO 
Bank 2*

-

GND - P131 GND* GND* -

I/O, IRDY(1) 2 P132 H16 L20 893

I/O 2 P133 H14 L17 896

I/O 2 - - L18 902

I/O 2 P134 H15 L21 905

I/O 2 - J13 L22 908

I/O 2 - - K19 911

I/O (D3) 2 P135 G16 K20 917

I/O, VREF 2 P136 H13 K21 920

VCCO 2 - VCCO 
Bank 2*

VCCO 
Bank 2*

-

GND - P137 GND* GND* -

I/O 2 P138 G14 K22 923

I/O 2 P139 G15 J21 926

XC2S200 Device Pinouts (Continued)
XC2S200 Pad Name

PQ208 FG256 FG456
Bndry 
ScanFunction Bank

I/O 2 - - K18 929

I/O 2 - - J20 932

I/O 2 P140 G12 J18 935

GND - - GND* GND* -

I/O 2 - F16 J22 938

I/O 2 - - J19 941

I/O 2 - - H21 944

I/O 2 P141 G13 H19 947

I/O (D2) 2 P142 F15 H20 950

VCCINT - P143 VCCINT* VCCINT* -

VCCO 2 P144 VCCO 
Bank 2*

VCCO 
Bank 2*

-

GND - P145 GND* GND* -

I/O (D1) 2 P146 E16 H22 953

I/O, VREF 2 P147 F14 H18 956

I/O 2 - - G21 962

I/O 2 P148 D16 G18 965

GND - - GND* GND* -

I/O 2 - F12 G20 968

I/O 2 - - G19 971

I/O 2 - - F22 974

I/O 2 P149 E15 F19 977

I/O, VREF 2 P150 F13 F21 980

VCCO 2 - VCCO 
Bank 2*

VCCO 
Bank 2*

-

GND - - GND* GND* -

I/O 2 P151 E14 F20 983

I/O 2 - C16 F18 986

GND - - GND* GND* -

I/O 2 - - E22 989

I/O 2 - - E21 995

I/O, VREF 2 P152 E13 D22 998

GND - - GND* GND* -

I/O 2 - B16 E20 1001

I/O 2 - - D21 1004

I/O 2 - - C22 1007

I/O (DIN, D0) 2 P153 D14 D20 1013

I/O (DOUT, 
BUSY)

2 P154 C15 C21 1016

CCLK 2 P155 D15 B22 1019

VCCO 2 P156 VCCO 
Bank 2*

VCCO 
Bank 2*

-

XC2S200 Device Pinouts (Continued)
XC2S200 Pad Name

PQ208 FG256 FG456
Bndry 
ScanFunction Bank
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