E·XFL

AMD Xilinx - XC2S50-5PQ208I Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

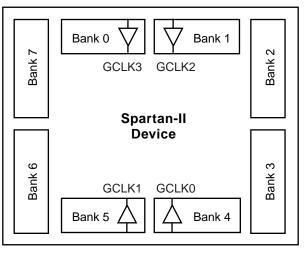
Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	384
Number of Logic Elements/Cells	1728
Total RAM Bits	32768
Number of I/O	140
Number of Gates	50000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc2s50-5pq208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


drivers are disabled. Maintaining a valid logic level in this way helps eliminate bus chatter.

Because the weak-keeper circuit uses the IOB input buffer to monitor the input level, an appropriate V_{REF} voltage must be provided if the signaling standard requires one. The provision of this voltage must comply with the I/O banking rules.

I/O Banking

Some of the I/O standards described above require V_{CCO} and/or V_{REF} voltages. These voltages are externally connected to device pins that serve groups of IOBs, called banks. Consequently, restrictions exist about which I/O standards can be combined within a given bank.

Eight I/O banks result from separating each edge of the FPGA into two banks (see Figure 3). Each bank has multiple V_{CCO} pins which must be connected to the same voltage. Voltage is determined by the output standards in use.

DS001_03_060100

Figure 3: Spartan-II I/O Banks

Within a bank, output standards may be mixed only if they use the same V_{CCO} . Compatible standards are shown in Table 4. GTL and GTL+ appear under all voltages because their open-drain outputs do not depend on V_{CCO} .

Table 4: Compatible Output Standards

V _{cco}	Compatible Standards
3.3V	PCI, LVTTL, SSTL3 I, SSTL3 II, CTT, AGP, GTL, GTL+
2.5V	SSTL2 I, SSTL2 II, LVCMOS2, GTL, GTL+
1.5V	HSTL I, HSTL III, HSTL IV, GTL, GTL+

Some input standards require a user-supplied threshold voltage, V_{REF} In this case, certain user-I/O pins are

automatically configured as inputs for the V_{REF} voltage. About one in six of the I/O pins in the bank assume this role.

 V_{REF} pins within a bank are interconnected internally and consequently only one V_{REF} voltage can be used within each bank. All V_{REF} pins in the bank, however, must be connected to the external voltage source for correct operation.

In a bank, inputs requiring V_{REF} can be mixed with those that do not but only one V_{REF} voltage may be used within a bank. Input buffers that use V_{REF} are not 5V tolerant. LVTTL, LVCMOS2, and PCI are 5V tolerant. The V_{CCO} and V_{REF} pins for each bank appear in the device pinout tables.

Within a given package, the number of V_{REF} and V_{CCO} pins can vary depending on the size of device. In larger devices, more I/O pins convert to V_{REF} pins. Since these are always a superset of the V_{REF} pins used for smaller devices, it is possible to design a PCB that permits migration to a larger device. All V_{REF} pins for the largest device anticipated must be connected to the V_{REF} voltage, and not used for I/O.

Independent Banks Available

Package	VQ100	CS144	FG256
	PQ208	TQ144	FG456
Independent Banks	1	4	8

Configurable Logic Block

The basic building block of the Spartan-II FPGA CLB is the logic cell (LC). An LC includes a 4-input function generator, carry logic, and storage element. Output from the function generator in each LC drives the CLB output and the D input of the flip-flop. Each Spartan-II FPGA CLB contains four LCs, organized in two similar slices; a single slice is shown in Figure 4.

In addition to the four basic LCs, the Spartan-II FPGA CLB contains logic that combines function generators to provide functions of five or six inputs.

Look-Up Tables

Spartan-II FPGA function generators are implemented as 4-input look-up tables (LUTs). In addition to operating as a function generator, each LUT can provide a 16 x 1-bit synchronous RAM. Furthermore, the two LUTs within a slice can be combined to create a 16 x 2-bit or 32 x 1-bit synchronous RAM, or a 16 x 1-bit dual-port synchronous RAM.

The Spartan-II FPGA LUT can also provide a 16-bit shift register that is ideal for capturing high-speed or burst-mode data. This mode can also be used to store data in applications such as Digital Signal Processing.

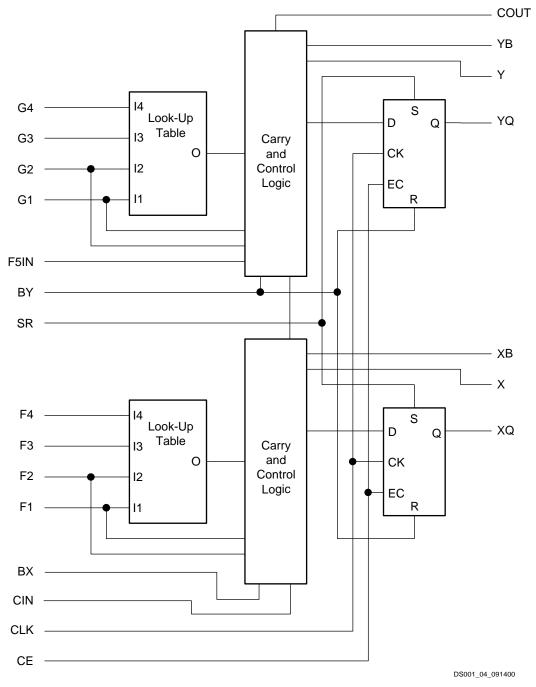
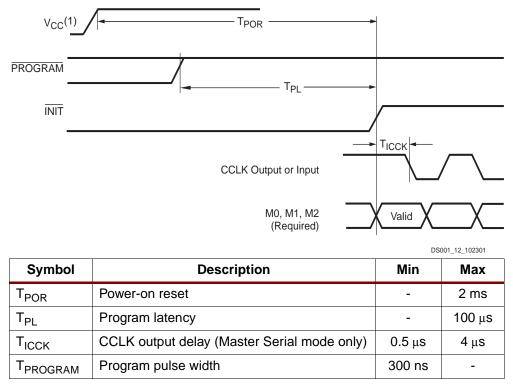


Figure 4: Spartan-II CLB Slice (two identical slices in each CLB)

Storage Elements


Storage elements in the Spartan-II FPGA slice can be configured either as edge-triggered D-type flip-flops or as level-sensitive latches. The D inputs can be driven either by function generators within the slice or directly from slice inputs, bypassing the function generators.

In addition to Clock and Clock Enable signals, each slice has synchronous set and reset signals (SR and BY). SR forces a storage element into the initialization state specified for it in the configuration. BY forces it into the opposite state. Alternatively, these signals may be configured to operate asynchronously.

All control signals are independently invertible, and are shared by the two flip-flops within the slice.

Additional Logic

The F5 multiplexer in each slice combines the function generator outputs. This combination provides either a function generator that can implement any 5-input function, a 4:1 multiplexer, or selected functions of up to nine inputs.

Notes: (referring to waveform above:)

1. Before configuration can begin, V_{CCINT} must be greater than 1.6V and V_{CCO} Bank 2 must be greater than 1.0V.

Figure 12: Configuration Timing on Power-Up

Clearing Configuration Memory

The device indicates that clearing the configuration memory is in progress by driving INIT Low. At this time, the user can delay configuration by holding either PROGRAM or INIT Low, which causes the device to remain in the memory clearing phase. Note that the bidirectional INIT line is driving a Low logic level during memory clearing. To avoid contention, use an open-drain driver to keep INIT Low.

With no delay in force, the device indicates that the memory is completely clear by driving INIT High. The FPGA samples its mode pins on this Low-to-High transition.

Loading Configuration Data

Once INIT is High, the user can begin loading configuration data frames into the device. The details of loading the configuration data are discussed in the sections treating the configuration modes individually. The sequence of operations necessary to load configuration data using the serial modes is shown in Figure 14. Loading data using the Slave Parallel mode is shown in Figure 19, page 25.

CRC Error Checking

During the loading of configuration data, a CRC value embedded in the configuration file is checked against a CRC value calculated within the FPGA. If the CRC values do not match, the FPGA drives INIT Low to indicate that a frame error has occurred and configuration is aborted.

To reconfigure the device, the PROGRAM pin should be asserted to reset the configuration logic. Recycling power also resets the FPGA for configuration. See "Clearing Configuration Memory".

Start-up

The start-up sequence oversees the transition of the FPGA from the configuration state to full user operation. A match of CRC values, indicating a successful loading of the configuration data, initiates the sequence.

During start-up, the device performs four operations:

- 1. The assertion of DONE. The failure of DONE to go High may indicate the unsuccessful loading of configuration data.
- 2. The release of the Global Three State net. This activates I/Os to which signals are assigned. The remaining I/Os stay in a high-impedance state with internal weak pull-down resistors present.
- 3. Negates Global Set Reset (GSR). This allows all flip-flops to change state.
- 4. The assertion of Global Write Enable (GWE). This allows all RAMs and flip-flops to change state.

Design Considerations

This section contains more detailed design information on the following features:

- Delay-Locked Loop . . . see page 27
- Block RAM . . . see page 32
- Versatile I/O . . . see page 36

Using Delay-Locked Loops

The Spartan-II FPGA family provides up to four fully digital dedicated on-chip Delay-Locked Loop (DLL) circuits which provide zero propagation delay, low clock skew between output clock signals distributed throughout the device, and advanced clock domain control. These dedicated DLLs can be used to implement several circuits that improve and simplify system level design.

Introduction

Quality on-chip clock distribution is important. Clock skew and clock delay impact device performance and the task of managing clock skew and clock delay with conventional clock trees becomes more difficult in large devices. The Spartan-II family of devices resolve this potential problem by providing up to four fully digital dedicated on-chip Delay-Locked Loop (DLL) circuits which provide zero propagation delay and low clock skew between output clock signals distributed throughout the device.

Each DLL can drive up to two global clock routing networks within the device. The global clock distribution network minimizes clock skews due to loading differences. By monitoring a sample of the DLL output clock, the DLL can compensate for the delay on the routing network, effectively eliminating the delay from the external input port to the individual clock loads within the device.

In addition to providing zero delay with respect to a user source clock, the DLL can provide multiple phases of the source clock. The DLL can also act as a clock doubler or it can divide the user source clock by up to 16.

Clock multiplication gives the designer a number of design alternatives. For instance, a 50 MHz source clock doubled by the DLL can drive an FPGA design operating at 100 MHz. This technique can simplify board design because the clock path on the board no longer distributes such a high-speed signal. A multiplied clock also provides designers the option of time-domain-multiplexing, using one circuit twice per clock cycle, consuming less area than two copies of the same circuit.

The DLL can also act as a clock mirror. By driving the DLL output off-chip and then back in again, the DLL can be used to de-skew a board level clock between multiple devices.

In order to guarantee the system clock establishes prior to the device "waking up," the DLL can delay the completion of the device configuration process until after the DLL achieves lock.

By taking advantage of the DLL to remove on-chip clock delay, the designer can greatly simplify and improve system level design involving high-fanout, high-performance clocks.

Library DLL Primitives

Figure 22 shows the simplified Xilinx library DLL macro, BUFGDLL. This macro delivers a quick and efficient way to provide a system clock with zero propagation delay throughout the device. Figure 23 and Figure 24 show the two library DLL primitives. These primitives provide access to the complete set of DLL features when implementing more complex applications.

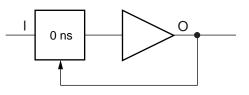
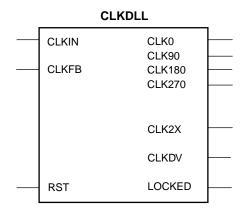
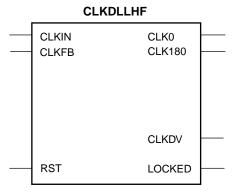




Figure 22: Simplified DLL Macro BUFGDLL

DS001_23_032300

DS001_24_032300

BUFGDLL Pin Descriptions

Use the BUFGDLL macro as the simplest way to provide zero propagation delay for a high-fanout on-chip clock from an external input. This macro uses the IBUFG, CLKDLL and BUFG primitives to implement the most basic DLL application as shown in Figure 25.

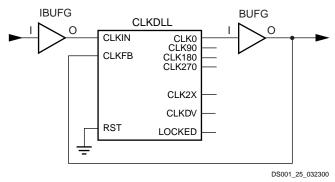


Figure 25: BUFGDLL Block Diagram

This macro does not provide access to the advanced clock domain controls or to the clock multiplication or clock division features of the DLL. This macro also does not provide access to the RST or LOCKED pins of the DLL. For access to these features, a designer must use the DLL primitives described in the following sections.

Source Clock Input — I

The I pin provides the user source clock, the clock signal on which the DLL operates, to the BUFGDLL. For the BUFGDLL macro the source clock frequency must fall in the low frequency range as specified in the data sheet. The BUFGDLL requires an external signal source clock. Therefore, only an external input port can source the signal that drives the BUFGDLL I pin.

Clock Output — O

The clock output pin O represents a delay-compensated version of the source clock (I) signal. This signal, sourced by a global clock buffer BUFG primitive, takes advantage of the dedicated global clock routing resources of the device.

The output clock has a 50/50 duty cycle unless you deactivate the duty cycle correction property.

CLKDLL Primitive Pin Descriptions

The library CLKDLL primitives provide access to the complete set of DLL features needed when implementing more complex applications with the DLL.

Source Clock Input — CLKIN

The CLKIN pin provides the user source clock (the clock signal on which the DLL operates) to the DLL. The CLKIN frequency must fall in the ranges specified in the data sheet. A global clock buffer (BUFG) driven from another CLKDLL

or one of the global clock input buffers (IBUFG) on the same edge of the device (top or bottom) must source this clock signal.

Feedback Clock Input — CLKFB

The DLL requires a reference or feedback signal to provide the delay-compensated output. Connect only the CLK0 or CLK2X DLL outputs to the feedback clock input (CLKFB) pin to provide the necessary feedback to the DLL. Either a global clock buffer (BUFG) or one of the global clock input buffers (IBUFG) on the same edge of the device (top or bottom) must source this clock signal.

If an IBUFG sources the CLKFB pin, the following special rules apply.

- 1. An external input port must source the signal that drives the IBUFG I pin.
- The CLK2X output must feed back to the device if both the CLK0 and CLK2X outputs are driving off chip devices.
- 3. That signal must directly drive only OBUFs and nothing else.

These rules enable the software to determine which DLL clock output sources the CLKFB pin.

Reset Input — RST

When the reset pin RST activates, the LOCKED signal deactivates within four source clock cycles. The RST pin, active High, must either connect to a dynamic signal or be tied to ground. As the DLL delay taps reset to zero, glitches can occur on the DLL clock output pins. Activation of the RST pin can also severely affect the duty cycle of the clock output pins. Furthermore, the DLL output clocks no longer deskew with respect to one another. The DLL must be reset when the input clock frequency changes, if the device is reconfigured in Boundary-Scan mode, if the device undergoes a hot swap, and after the device is configured if the input clock is not stable during the startup sequence.

2x Clock Output — CLK2X

The output pin CLK2X provides a frequency-doubled clock with an automatic 50/50 duty-cycle correction. Until the CLKDLL has achieved lock, the CLK2X output appears as a 1x version of the input clock with a 25/75 duty cycle. This behavior allows the DLL to lock on the correct edge with respect to source clock. This pin is not available on the CLKDLLHF primitive.

Clock Divide Output — CLKDV

The clock divide output pin CLKDV provides a lower frequency version of the source clock. The CLKDV_DIVIDE property controls CLKDV such that the source clock is divided by N where N is either 1.5, 2, 2.5, 3, 4, 5, 8, or 16.

This feature provides automatic duty cycle correction. The CLKDV output pin has a 50/50 duty cycle for all values of the

division factor N except for non-integer division in High Frequency (HF) mode. For division factor 1.5 the duty cycle in the HF mode is 33.3% High and 66.7% Low. For division factor 2.5, the duty cycle in the HF mode is 40.0% High and 60.0% Low.

1x Clock Outputs — CLK[0/90/180/270]

The 1x clock output pin CLK0 represents a delay-compensated version of the source clock (CLKIN) signal. The CLKDLL primitive provides three phase-shifted versions of the CLK0 signal while CLKDLLHF provides only the 180 degree phase-shifted version. The relationship between phase shift and the corresponding period shift appears in Table 10.

The timing diagrams in Figure 26 illustrate the DLL clock output characteristics.

Table 10: Relationship of Phase-Shifted Output Clock to Period Shift

Phase (degrees)	Period Shift (percent)
0	0%
90	25%
180	50%
270	75%

The DLL provides duty cycle correction on all 1x clock outputs such that all 1x clock outputs by default have a 50/50 duty cycle. The DUTY_CYCLE_CORRECTION property (TRUE by default), controls this feature. In order to deactivate the DLL duty cycle correction, attach the DUTY_CYCLE_CORRECTION=FALSE property to the DLL primitive. When duty cycle correction deactivates, the output clock has the same duty cycle as the source clock.

The DLL clock outputs can drive an OBUF, a BUFG, or they can route directly to destination clock pins. The DLL clock outputs can only drive the BUFGs that reside on the same edge (top or bottom).

Locked Output — LOCKED

In order to achieve lock, the DLL may need to sample several thousand clock cycles. After the DLL achieves lock the LOCKED signal activates. The "DLL Timing Parameters" section of Module 3 provides estimates for locking times.

In order to guarantee that the system clock is established prior to the device "waking up," the DLL can delay the completion of the device configuration process until after the DLL locks. The STARTUP_WAIT property activates this feature.

Until the LOCKED signal activates, the DLL output clocks are not valid and can exhibit glitches, spikes, or other

spurious movement. In particular the CLK2X output will appear as a 1x clock with a 25/75 duty cycle.

DLL Properties

Properties provide access to some of the Spartan-II family DLL features, (for example, clock division and duty cycle correction).

Duty Cycle Correction Property

The 1x clock outputs, CLK0, CLK90, CLK180, and CLK270, use the duty-cycle corrected default, such that they exhibit a 50/50 duty cycle. The DUTY_CYCLE_CORRECTION property (by default TRUE) controls this feature. To deactivate the DLL duty-cycle correction for the 1x clock outputs, attach the DUTY_CYCLE_CORRECTION=FALSE property to the DLL primitive.

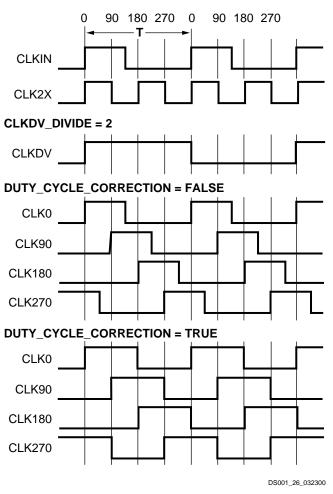


Figure 26: DLL Output Characteristics

Clock Divide Property

The CLKDV_DIVIDE property specifies how the signal on the CLKDV pin is frequency divided with respect to the CLK0 pin. The values allowed for this property are 1.5, 2, 2.5, 3, 4, 5, 8, or 16; the default value is 2.

Startup Delay Property

This property, STARTUP_WAIT, takes on a value of TRUE or FALSE (the default value). When TRUE the Startup Sequence following device configuration is paused at a user-specified point until the DLL locks. <u>XAPP176</u>: *Configuration and Readback of the Spartan-II and Spartan-IIE Families* explains how this can result in delaying the assertion of the DONE pin until the DLL locks.

DLL Location Constraints

The DLLs are distributed such that there is one DLL in each corner of the device. The location constraint LOC, attached to the DLL primitive with the numeric identifier 0, 1, 2, or 3, controls DLL location. The orientation of the four DLLs and their corresponding clock resources appears in Figure 27.

The LOC property uses the following form.

LOC = DLL2

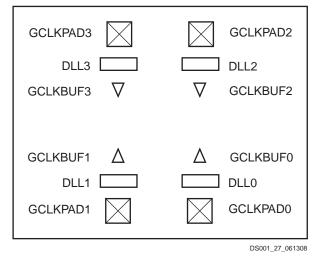


Figure 27: Orientation of DLLs

Design Considerations

Use the following design considerations to avoid pitfalls and improve success designing with Xilinx devices.

Input Clock

The output clock signal of a DLL, essentially a delayed version of the input clock signal, reflects any instability on the input clock in the output waveform. For this reason the quality of the DLL input clock relates directly to the quality of the output clock waveforms generated by the DLL. The DLL input clock requirements are specified in the "DLL Timing Parameters" section of the data sheet.

In most systems a crystal oscillator generates the system clock. The DLL can be used with any commercially available quartz crystal oscillator. For example, most crystal oscillators produce an output waveform with a frequency tolerance of 100 PPM, meaning 0.01 percent change in the clock period. The DLL operates reliably on an input waveform with a frequency drift of up to 1 ns — orders of magnitude in excess of that needed to support any crystal oscillator in the industry. However, the cycle-to-cycle jitter must be kept to less than 300 ps in the low frequencies and 150 ps for the high frequencies.

Input Clock Changes

Changing the period of the input clock beyond the maximum drift amount requires a manual reset of the CLKDLL. Failure to reset the DLL will produce an unreliable lock signal and output clock.

It is possible to stop the input clock in a way that has little impact to the DLL. Stopping the clock should be limited to less than approximately 100 μ s to keep device cooling to a minimum and maintain the validity of the current tap setting. The clock should be stopped during a Low phase, and when restored the full High period should be seen. During this time LOCKED will stay High and remain High when the clock is restored. If these conditions may not be met in the design, apply a manual reset to the DLL after re-starting the input clock, even if the LOCKED signal has not changed.

When the clock is stopped, one to four more clocks will still be observed as the delay line is flushed. When the clock is restarted, the output clocks will not be observed for one to four clocks as the delay line is filled. The most common case will be two or three clocks.

In a similar manner, a phase shift of the input clock is also possible. The phase shift will propagate to the output one to four clocks after the original shift, with no disruption to the CLKDLL control.

Output Clocks

As mentioned earlier in the DLL pin descriptions, some restrictions apply regarding the connectivity of the output pins. The DLL clock outputs can drive an OBUF, a global clock buffer BUFG, or route directly to destination clock pins. The only BUFGs that the DLL clock outputs can drive are the two on the same edge of the device (top or bottom). One DLL output can drive more than one OBUF; however, this adds skew.

Do not use the DLL output clock signals until after activation of the LOCKED signal. Prior to the activation of the LOCKED signal, the DLL output clocks are not valid and can exhibit glitches, spikes, or other spurious movement.

Creating Larger RAM Structures

The block RAM columns have specialized routing to allow cascading blocks together with minimal routing delays. This achieves wider or deeper RAM structures with a smaller timing penalty than when using normal routing channels.

Location Constraints

Block RAM instances can have LOC properties attached to them to constrain the placement. The block RAM placement locations are separate from the CLB location naming convention, allowing the LOC properties to transfer easily from array to array.

The LOC properties use the following form:

LOC = RAMB4_R#C#

RAMB4_R0C0 is the upper left RAMB4 location on the device.

Conflict Resolution

The block RAM memory is a true dual-read/write port RAM that allows simultaneous access of the same memory cell from both ports. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window. The following lists specifics of port and memory cell write conflict resolution.

- If both ports write to the same memory cell simultaneously, violating the clock-to-clock setup requirement, consider the data stored as invalid.
- If one port attempts a read of the same memory cell the other simultaneously writes, violating the clock-to-clock setup requirement, the following occurs.
 - The write succeeds
 - The data out on the writing port accurately reflects the data written.
 - The data out on the reading port is invalid.

Conflicts do not cause any physical damage.

Single Port Timing

Figure 33 shows a timing diagram for a single port of a block RAM memory. The block RAM AC switching characteristics are specified in the data sheet. The block RAM memory is initially disabled.

At the first rising edge of the CLK pin, the ADDR, DI, EN, WE, and RST pins are sampled. The EN pin is High and the WE pin is Low indicating a read operation. The DO bus contains the contents of the memory location, 0x00, as indicated by the ADDR bus.

At the second rising edge of the CLK pin, the ADDR, DI, EN, WR, and RST pins are sampled again. The EN and WE pins are High indicating a write operation. The DO bus mirrors

the DI bus. The DI bus is written to the memory location 0x0F.

At the third rising edge of the CLK pin, the ADDR, DI, EN, WR, and RST pins are sampled again. The EN pin is High and the WE pin is Low indicating a read operation. The DO bus contains the contents of the memory location 0x7E as indicated by the ADDR bus.

At the fourth rising edge of the CLK pin, the ADDR, DI, EN, WR, and RST pins are sampled again. The EN pin is Low indicating that the block RAM memory is now disabled. The DO bus retains the last value.

Dual Port Timing

Figure 34 shows a timing diagram for a true dual-port read/write block RAM memory. The clock on port A has a longer period than the clock on Port B. The timing parameter T_{BCCS} , (clock-to-clock setup) is shown on this diagram. The parameter, T_{BCCS} is violated once in the diagram. All other timing parameters are identical to the single port version shown in Figure 33.

T_{BCCS} is only of importance when the address of both ports are the same and at least one port is performing a write operation. When the clock-to-clock set-up parameter is violated for a WRITE-WRITE condition, the contents of the memory at that location will be invalid. When the clock-to-clock set-up parameter is violated for a WRITE-READ condition, the contents of the memory will be correct, but the read port will have invalid data. At the first rising edge of the CLKA, memory location 0x00 is to be written with the value 0xAAAA and is mirrored on the DOA bus. The last operation of Port B was a read to the same memory location 0x00. The DOB bus of Port B does not change with the new value on Port A, and retains the last read value. A short time later, Port B executes another read to memory location 0x00, and the DOB bus now reflects the new memory value written by Port A.

At the second rising edge of CLKA, memory location 0x7E is written with the value 0x9999 and is mirrored on the DOA bus. Port B then executes a read operation to the same memory location without violating the T_{BCCS} parameter and the DOB reflects the new memory values written by Port A.

XILINX[®]

LVTTL

LVTTL requires no termination. DC voltage specifications appears in Table 32 for the LVTTL standard. See "DC Specifications" in Module 3 for the actual FPGA characteristics.

Table	32:	LVTTL	Voltage	Specifications
-------	-----	-------	---------	----------------

Parameter	Min	Тур	Max
V _{CCO}	3.0	3.3	3.6
V _{REF}	-	-	-
V _{TT}	-	-	-
V _{IH}	2.0	-	5.5
V _{IL}	-0.5	-	0.8
V _{OH}	2.4	-	-
V _{OL}	-	-	0.4
I _{OH} at V _{OH} (mA)	-24	-	-
I _{OL} at V _{OL} (mA)	24	-	-

Notes:

1. V_{OL} and V_{OH} for lower drive currents sample tested.

LVCMOS2

LVCMOS2 requires no termination. DC voltage specifications appear in Table 33 for the LVCMOS2 standard. See "DC Specifications" in Module 3 for the actual FPGA characteristics.

Table 33: LVCMOS2 Voltage Specifications

Parameter	Min	Тур	Max
V _{CCO}	2.3	2.5	2.7
V _{REF}	-	-	-
V _{TT}	-	-	-
V _{IH}	1.7	-	5.5
V _{IL}	-0.5	-	0.7
V _{OH}	1.9	-	-
V _{OL}	-	-	0.4
I _{OH} at V _{OH} (mA)	-12	-	-
I _{OL} at V _{OL} (mA)	12	-	-

AGP-2X

The specification for the AGP-2X standard does not document a recommended termination technique. DC voltage specifications appear in Table 34 for the AGP-2X standard. See "DC Specifications" in Module 3 for the actual FPGA characteristics.

Table 34: AGP-2X Voltage Specifications

Parameter	Min	Тур	Max
V _{CCO}	3.0	3.3	3.6
$V_{REF} = N \times V_{CCO}^{(1)}$	1.17	1.32	1.48
V _{TT}	-	-	-
$V_{IH} \ge V_{REF} + 0.2$	1.37	1.52	-
$V_{IL} \le V_{REF} - 0.2$	-	1.12	1.28
$V_{OH} \ge 0.9 \times V_{CCO}$	2.7	3.0	-
$V_{OL} \le 0.1 \times V_{CCO}$	-	0.33	0.36
I _{OH} at V _{OH} (mA)	Note 2	-	-
I _{OL} at V _{OL} (mA)	Note 2	-	-

Notes:

For design examples and more information on using the I/O, see <u>XAPP179</u>, Using SelectIO Interfaces in Spartan-II and Spartan-IIE FPGAs.

^{1.} N must be greater than or equal to 0.39 and less than or equal to 0.41.

^{2.} Tested according to the relevant specification.

Recommended Operating Conditions

Symbol	Description		Min	Мах	Units
ТJ	Junction temperature ⁽¹⁾	ction temperature ⁽¹⁾ Commercial		85	°C
		Industrial	-40	100	°C
V _{CCINT}	V _{CCINT} Supply voltage relative to GND ^(2,5)		2.5 – 5%	2.5 + 5%	V
		Industrial	2.5 – 5%	2.5 + 5%	V
V _{CCO}	Supply voltage relative to GND ^(3,5)	Commercial	1.4	3.6	V
		Industrial	1.4	3.6	V
T _{IN}	Input signal transition time ⁽⁴⁾		-	250	ns

Notes:

1. At junction temperatures above those listed as Operating Conditions, all delay parameters increase by 0.35% per °C.

2. Functional operation is guaranteed down to a minimum V_{CCINT} of 2.25V (Nominal $V_{CCINT} - 10\%$). For every 50 mV reduction in V_{CCINT} below 2.375V (nominal $V_{CCINT} - 5\%$), all delay parameters increase by 3%.

3. Minimum and maximum values for V_{CCO} vary according to the I/O standard selected.

4. Input and output measurement threshold is ~50% of V_{CCO}. See "Delay Measurement Methodology," page 60 for specific levels.

5. Supply voltages may be applied in any order desired.

DC Characteristics Over Operating Conditions

Symbol	Descripti	on		Min	Тур	Max	Units
V _{DRINT}	Data Retention V _{CCINT} voltage (below may be lost)	2.0	-	-	V		
V _{DRIO}	Data Retention V _{CCO} voltage (below be lost)	1.2	-	-	V		
ICCINTQ	Quiescent V _{CCINT} supply current ⁽¹⁾	XC2S15	Commercial	-	10	30	mA
			Industrial	-	10	60	mA
		XC2S30	Commercial	-	10	30	mA
			Industrial	-	10	60	mA
		XC2S50	Commercial	-	12	50	mA
			Industrial	-	12	100	mA
	XC2S100	XC2S100	Commercial	-	12	50	mA
			Industrial	-	12	100	mA
		XC2S150	Commercial	-	15	50	mA
			Industrial	-	15	100	mA
		XC2S200	Commercial	-	15	75	mA
			Industrial	-	15	150	mA
ICCOQ	Quiescent V _{CCO} supply current ⁽¹⁾	4		-	-	2	mA
I _{REF}	V _{REF} current per V _{REF} pin			-	-	20	μA
١L	Input or output leakage current ⁽²⁾			-10	-	+10	μA
C _{IN}	Input capacitance (sample tested)	VQ, CS, TQ, PQ, FG packages		-	-	8	pF
I _{RPU}	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 3.3V$ (sample tested) ⁽³⁾			-	-	0.25	mA
I _{RPD}	Pad pull-down (when selected) @ V	_N = 3.6V (sar	mple tested) ⁽³⁾	-	-	0.15	mA

Notes:

1. With no output current loads, no active input pull-up resistors, all I/O pins 3-stated and floating.

2. The I/O leakage current specification applies only when the V_{CCINT} and V_{CCO} supply voltages have reached their respective minimum Recommended Operating Conditions.

3. Internal pull-up and pull-down resistors guarantee valid logic levels at unconnected input pins. These pull-up and pull-down resistors do not provide valid logic levels when input pins are connected to other circuits.

IOB Input Switching Characteristics⁽¹⁾

Input delays associated with the pad are specified for LVTTL levels. For other standards, adjust the delays with the values shown in "IOB Input Delay Adjustments for Different Standards," page 57.

				Speed	d Grade		
	Description		-6	-6			
Symbol		Device	Min	Max	Min	Max	Units
Propagation Delays		·					
T _{IOPI}	Pad to I output, no delay	All	-	0.8	-	1.0	ns
T _{IOPID}	Pad to I output, with delay	All	-	1.5	-	1.8	ns
T _{IOPLI}	Pad to output IQ via transparent latch, no delay	All	-	1.7	-	2.0	ns
T _{IOPLID}	Pad to output IQ via transparent latch,	XC2S15	-	3.8	-	4.5	ns
	with delay	XC2S30	-	3.8	-	4.5	ns
		XC2S50	-	3.8	-	4.5	ns
		XC2S100	-	3.8	-	4.5	ns
		XC2S150	-	4.0	-	4.7	ns
		XC2S200	-	4.0	-	4.7	ns
Sequential Delays	1	1			1		
TIOCKIQ	Clock CLK to output IQ	All	-	0.7	-	0.8	ns
Setup/Hold Times w	ith Respect to Clock CLK ⁽²⁾	I	1				
T _{IOPICK} / T _{IOICKP}	Pad, no delay	All	1.7 / 0	-	1.9/0	-	ns
TIOPICKD / TIOICKPD	Pad, with delay ⁽¹⁾	XC2S15	3.8 / 0	-	4.4 / 0	-	ns
		XC2S30	3.8 / 0	-	4.4 / 0	-	ns
		XC2S50	3.8 / 0	-	4.4 / 0	-	ns
		XC2S100	3.8 / 0	-	4.4 / 0	-	ns
		XC2S150	3.9 / 0	-	4.6 / 0	-	ns
		XC2S200	3.9 / 0	-	4.6 / 0	-	ns
TIOICECK / TIOCKICE	ICE input	All	0.9 / 0.01	-	0.9 / 0.01	-	ns
Set/Reset Delays					1	1	
T _{IOSRCKI}	SR input (IFF, synchronous)	All	-	1.1	-	1.2	ns
T _{IOSRIQ}	SR input to IQ (asynchronous)	All	-	1.5	-	1.7	ns
T _{GSRQ}	GSR to output IQ	All	-	9.9	-	11.7	ns

Notes:

1. Input timing for LVTTL is measured at 1.4V. For other I/O standards, see the table "Delay Measurement Methodology," page 60.

2. A zero hold time listing indicates no hold time or a negative hold time.

IOB Input Delay Adjustments for Different Standards⁽¹⁾

Input delays associated with the pad are specified for LVTTL. For other standards, adjust the delays by the values shown. A delay adjusted in this way constitutes a worst-case limit.

			Speed	Grade	
Symbol	Description	Standard	-6	-5	Units
Data Input I	Delay Adjustments			·	
T _{ILVTTL}	Standard-specific data input delay	LVTTL	0	0	ns
T _{ILVCMOS2}	adjustments	LVCMOS2	-0.04	-0.05	ns
T _{IPCI33_3}		PCI, 33 MHz, 3.3V	-0.11	-0.13	ns
T _{IPCI33_5}	-	PCI, 33 MHz, 5.0V	0.26	0.30	ns
T _{IPCI66_3}	-	PCI, 66 MHz, 3.3V	-0.11	-0.13	ns
T _{IGTL}	-	GTL	0.20	0.24	ns
T _{IGTLP}	-	GTL+	0.11	0.13	ns
T _{IHSTL}	-	HSTL	0.03	0.04	ns
T _{ISSTL2}	-	SSTL2	-0.08	-0.09	ns
T _{ISSTL3}	-	SSTL3	-0.04	-0.05	ns
T _{ICTT}		CTT	0.02	0.02	ns
T _{IAGP}]	AGP	-0.06	-0.07	ns

Notes:

1. Input timing for LVTTL is measured at 1.4V. For other I/O standards, see the table "Delay Measurement Methodology," page 60.

XC2S50 Device Pinouts (Continued)

XC2S50 Pad Name					Due almer
Function	Bank	TQ144	PQ208	FG256	Bndry Scan
I/O	5	P99	P63	P6	326
GND	-	P98	P64	GND*	-
V _{CCO}	5	-	P65	V _{CCO} Bank 5*	-
V _{CCINT}	-	P97	P66	V _{CCINT} *	-
I/O	5	P96	P67	R6	329
I/O	5	P95	P68	M7	332
I/O	5	-	P69	N7	338
I/O	5	-	P70	T6	341
I/O	5	-	P71	P7	344
GND	-	-	P72	GND*	-
I/O, V _{REF}	5	P94	P73	P8	347
I/O	5	-	P74	R7	350
I/O	5	-	-	T7	353
I/O	5	P93	P75	Т8	356
V _{CCINT}	-	P92	P76	V _{CCINT} *	-
I, GCK1	5	P91	P77	R8	365
V _{CCO}	5	P90	P78	V _{CCO} Bank 5*	-
V _{CCO}	4	P90	P78	V _{CCO} Bank 4*	-
GND	-	P89	P79	GND*	-
I, GCK0	4	P88	P80	N8	366
I/O	4	P87	P81	N9	370
I/O	4	P86	P82	R9	373
I/O	4	-	-	N10	376
I/O	4	-	P83	Т9	379
I/O, V _{REF}	4	P85	P84	P9	382
GND	-	-	P85	GND*	-
I/O	4	-	P86	M10	385
I/O	4	-	P87	R10	388
I/O	4	-	P88	P10	391
I/O	4	P84	P89	T10	397
I/O	4	P83	P90	R11	400
V _{CCINT}	-	P82	P91	V _{CCINT} *	-
V _{CCO}	4	-	P92	V _{CCO} Bank 4*	-
GND	-	P81	P93	GND*	-
I/O	4	P80	P94	M11	403
I/O	4	P79	P95	T11	406
I/O	4	P78	P96	N11	409
I/O	4	-	-	R12	412

XC2S50 Device Pinouts (Continued)

XC2S50 Pad Name					Bndry
Function	Bank	TQ144	PQ208	FG256	Scan
I/O	4	-	P97	P11	415
I/O, V _{REF}	4	P77	P98	T12	418
GND	-	-	-	GND*	-
I/O	4	-	P99	T13	421
I/O	4	-	-	N12	424
I/O	4	P76	P100	R13	427
I/O	4	-	-	P12	430
I/O	4	P75	P101	P13	433
I/O	4	P74	P102	T14	436
GND	-	P73	P103	GND*	-
DONE	3	P72	P104	R14	439
V _{CCO}	4	P71	P105	V _{CCO} Bank 4*	-
V _{CCO}	3	P70	P105	V _{CCO} Bank 3*	-
PROGRAM	-	P69	P106	P15	442
I/O (INIT)	3	P68	P107	N15	443
I/O (D7)	3	P67	P108	N14	446
I/O	3	-	-	T15	449
I/O	3	P66	P109	M13	452
I/O	3	-	-	R16	455
I/O	3	-	P110	M14	458
GND	-	-	-	GND*	-
I/O, V _{REF}	3	P65	P111	L14	461
I/O	3	-	P112	M15	464
I/O	3	-	-	L12	467
I/O	3	P64	P113	P16	470
I/O	3	P63	P114	L13	473
I/O (D6)	3	P62	P115	N16	476
GND	-	P61	P116	GND*	-
V _{CCO}	3	-	P117	V _{CCO} Bank 3*	-
V _{CCINT}	-	-	P118	V _{CCINT} *	-
I/O (D5)	3	P60	P119	M16	479
I/O	3	P59	P120	K14	482
I/O	3	-	-	L16	485
I/O	3	-	P121	K13	488
I/O	3	-	P122	L15	491
I/O	3	-	P123	K12	494
GND	-	-	P124	GND*	-
I/O, V _{REF}	3	P58	P125	K16	497
I/O (D4)	3	P57	P126	J16	500

Additional XC2S50 Package Pins (Continued)

PQ208

Not Connected Pins									
P55	P55 P56								
11/02/00	11/02/00								

FG256

			D' 1		
	r		_T Pins		
C3	C14	D4	D13	E5	E12
M5	M12	N4	N13	P3	P14
		V _{CCO} Ba	nk 0 Pins		
E8	F8	-	-	-	-
		V _{CCO} Ba	nk 1 Pins		
E9	F9	-	-	-	-
		V _{CCO} Ba	nk 2 Pins		
H11	H12	-	-	-	-
		V _{CCO} Ba	nk 3 Pins		
J11	J12	-	-	-	-
		V _{CCO} Ba	nk 4 Pins		
L9	M9	-	-	-	-
		V _{CCO} Ba	nk 5 Pins		
L8	M8	-	-	-	-
		V _{CCO} Ba	nk 6 Pins		
J5	J6	-	-	-	-
		V _{CCO} Ba	nk 7 Pins		
H5	H6	-	-	-	-
		GND	Pins		
A1	A16	B2	B15	F6	F7
F10	F11	G6	G7	G8	G9
G10	G11	H7	H8	H9	H10
J7	J8	J9	J10	K6	K7
K8	K9	K10	K11	L6	L7
L10	L11	R2	R15	T1	T16
	1	Not Conne	ected Pins		I
P4	R4	-	-	-	-
11/02/00	1	1	l		L]

11/02/00

XC2S100 Device Pinouts

XC2S100 Pad Name						Bndry
Function	Bank	TQ144	PQ208	FG256	FG456	Scan
GND	-	P143	P1	GND*	GND*	-
TMS	-	P142	P2	D3	D3	-
I/O	7	P141	P3	C2	B1	185
I/O	7	-	-	A2	F5	191
I/O	7	P140	P4	B1	D2	194
I/O	7	-	-	-	E3	197
I/O	7	-	-	E3	G5	200
I/O	7	-	P5	D2	F3	203
GND	-	-	-	GND*	GND*	-
V _{CCO}	7	-	-	V _{CCO} Bank 7*	V _{CCO} Bank 7*	-
I/O, V _{REF}	7	P139	P6	C1	E2	206

XC2S100 Device Pinouts (Continued)

XC2S100 Name	Pad					Bndry
Function	Bank	TQ144	PQ208	FG256	FG456	Scan
I/O	7	-	P7	F3	E1	209
I/O	7	-	-	E2	H5	215
I/O	7	P138	P8	E4	F2	218
I/O	7	-	-	-	F1	221
I/O, V _{REF}	7	P137	P9	D1	H4	224
I/O	7	P136	P10	E1	G1	227
GND	-	P135	P11	GND*	GND*	-
V _{CCO}	7	-	P12	V _{CCO} Bank 7*	V _{CCO} Bank 7*	-
V _{CCINT}	-	-	P13	V _{CCINT} *	V _{CCINT} *	-
I/O	7	P134	P14	F2	H3	230
I/O	7	P133	P15	G3	H2	233
I/O	7	-	-	F1	J5	236
I/O	7	-	P16	F4	J2	239
I/O	7	-	P17	F5	K5	245
I/O	7	-	P18	G2	K1	248
GND	-	-	P19	GND*	GND*	-
I/O, V _{REF}	7	P132	P20	H3	K3	251
I/O	7	P131	P21	G4	K4	254
I/O	7	-	-	H2	L6	257
I/O	7	P130	P22	G5	L1	260
I/O	7	-	P23	H4	L4	266
I/O, IRDY ⁽¹⁾	7	P129	P24	G1	L3	269
GND	-	P128	P25	GND*	GND*	-
V _{CCO}	7	P127	P26	V _{CCO} Bank 7*	V _{CCO} Bank 7*	-
V _{CCO}	6	P127	P26	V _{CCO} Bank 6*	V _{CCO} Bank 6*	-
I/O, TRDY ⁽¹⁾	6	P126	P27	J2	M1	272
V _{CCINT}	-	P125	P28	V_{CCINT}^{*}	V_{CCINT}^{*}	-
I/O	6	P124	P29	H1	M3	281
I/O	6	-	-	J4	M4	284
I/O	6	P123	P30	J1	M5	287
I/O, V _{REF}	6	P122	P31	J3	N2	290
GND	-	-	P32	GND*	GND*	-
I/O	6	-	P33	K5	N3	293
I/O	6	-	P34	K2	N4	296
I/O	6	-	P35	K1	P2	302
I/O	6	-	-	K3	P4	305
I/O	6	P121	P36	L1	P3	308
I/O	6	P120	P37	L2	R2	311

XC2S100 Pad Name						Bndry
Function	Bank	TQ144	PQ208	FG256	FG456	Scan
I/O, V _{REF}	4	P79	P95	T11	AB16	502
I/O	4	-	-	-	AB17	505
I/O	4	P78	P96	N11	V15	508
I/O	4	-	-	R12	Y16	511
I/O	4	-	P97	P11	AB18	517
I/O, V _{REF}	4	P77	P98	T12	AB19	520
V _{CCO}	4	-	-	V _{CCO} Bank 4*	V _{CCO} Bank 4*	-
GND	-	-	-	GND*	GND*	-
I/O	4	-	P99	T13	Y17	523
I/O	4	-	-	N12	V16	526
I/O	4	-	-	-	W17	529
I/O	4	P76	P100	R13	AB20	532
I/O	4	-	-	P12	AA19	535
I/O	4	P75	P101	P13	AA20	541
I/O	4	P74	P102	T14	W18	544
GND	-	P73	P103	GND*	GND*	-
DONE	3	P72	P104	R14	Y19	547
V _{CCO}	4	P71	P105	V _{CCO} Bank 4*	V _{CCO} Bank 4*	-
V _{CCO}	3	P70	P105	V _{CCO} Bank 3*	V _{CCO} Bank 3*	-
PROGRAM	-	P69	P106	P15	W20	550
I/O (INIT)	3	P68	P107	N15	V19	551
I/O (D7)	3	P67	P108	N14	Y21	554
I/O	3	-	-	T15	W21	560
I/O	3	P66	P109	M13	U20	563
I/O	3	-	-	-	U19	566
I/O	3	-	-	R16	T18	569
I/O	3	-	P110	M14	W22	572
GND	-	-	-	GND*	GND*	-
V _{CCO}	3	-	-	V _{CCO} Bank 3*	V _{CCO} Bank 3*	-
I/O, V _{REF}	3	P65	P111	L14	U21	575
I/O	3	-	P112	M15	T20	578
I/O	3	-	-	L12	T21	584
I/O	3	P64	P113	P16	R18	587
I/O	3	-	-	-	U22	590
I/O, V _{REF}	3	P63	P114	L13	R19	593
I/O (D6)	3	P62	P115	N16	T22	596
GND	-	P61	P116	GND*	GND*	-

XC2S100 Device Pinouts (Continued)

XC2S100 Name	Pad					Bndry
Function	Bank	TQ144	PQ208	FG256	FG456	Scan
V _{CCO}	3	-	P117	V _{CCO} Bank 3*	V _{CCO} Bank 3*	-
V _{CCINT}	-	-	P118	$V_{CCINT}^{}^{*}$	V_{CCINT}^{*}	-
I/O (D5)	3	P60	P119	M16	R21	599
I/O	3	P59	P120	K14	P18	602
I/O	3	-	-	L16	P20	605
I/O	3	-	P121	K13	P21	608
I/O	3	-	P122	L15	N18	614
I/O	3	-	P123	K12	N20	617
GND	-	-	P124	GND*	GND*	-
I/O, V _{REF}	3	P58	P125	K16	N21	620
I/O (D4)	3	P57	P126	J16	N22	623
I/O	3	-	-	J14	M19	626
I/O	3	P56	P127	K15	M20	629
V _{CCINT}	-	P55	P128	E5	V_{CCINT}^{*}	-
I/O, TRDY ⁽¹⁾	3	P54	P129	J15	M22	638
V _{CCO}	3	P53	P130	V _{CCO} Bank 3*	V _{CCO} Bank 3*	-
V _{CCO}	2	P53	P130	V _{CCO} Bank 2*	V _{CCO} Bank 2*	-
GND	-	P52	P131	GND*	GND*	-
I/O, IRDY ⁽¹⁾	2	P51	P132	H16	L20	641
I/O	2	-	P133	H14	L17	644
I/O	2	P50	P134	H15	L21	650
I/O	2	-	-	J13	L22	653
I/O (D3)	2	P49	P135	G16	K20	656
I/O, V _{REF}	2	P48	P136	H13	K21	659
GND	-	-	P137	GND*	GND*	-
I/O	2	-	P138	G14	K22	662
I/O	2	-	P139	G15	J21	665
I/O	2	-	P140	G12	J18	671
I/O	2	-	-	F16	J22	674
I/O	2	P47	P141	G13	H19	677
I/O (D2)	2	P46	P142	F15	H20	680
V _{CCINT}	-	-	P143	V_{CCINT}^{*}	V_{CCINT}^{*}	-
V _{CCO}	2	-	P144	V _{CCO} Bank 2*	V _{CCO} Bank 2*	-
GND	-	P45	P145	GND*	GND*	-
I/O (D1)	2	P44	P146	E16	H22	683
I/O, V _{REF}	2	P43	P147	F14	H18	686
I/O	2	-	-	-	G21	689
I/O	2	P42	P148	D16	G18	692

XC2S100 Device Pinouts (Continued)

XC2S100 Pad Name						Bndry
Function	Bank	TQ144	PQ208	FG256	FG456	Scan
I/O	0	-	P188	A6	C10	107
I/O, V _{REF}	0	P12	P189	B7	A9	110
GND	-	-	P190	GND*	GND*	-
I/O	0	-	P191	C8	B9	113
I/O	0	-	P192	D7	E10	116
I/O	0	-	P193	E7	A8	122
I/O	0	-	-	-	D9	125
I/O	0	P11	P194	C7	E9	128
I/O	0	P10	P195	B6	A7	131
V _{CCINT}	-	P9	P196	V _{CCINT} *	V _{CCINT} *	-
V _{CCO}	0	-	P197	V _{CCO} Bank 0*	V _{CCO} Bank 0*	-
GND	-	P8	P198	GND*	GND*	-
I/O	0	P7	P199	A5	B7	134
I/O, V _{REF}	0	P6	P200	C6	E8	137
I/O	0	-	-	-	D8	140
I/O	0	-	P201	B5	C7	143
I/O	0	-	-	D6	D7	146
I/O	0	-	P202	A4	D6	152
I/O, V _{REF}	0	P5	P203	B4	C6	155
V _{CCO}	0	-	-	V _{CCO} Bank 0*	V _{CCO} Bank 0*	-
GND	-	-	-	GND*	GND*	-
I/O	0	-	P204	E6	B5	158
I/O	0	-	-	D5	E7	161
I/O	0	-	-	-	E6	164
I/O	0	P4	P205	A3	B4	167
I/O	0	-	-	C5	A3	170
I/O	0	P3	P206	B3	C5	176
тск	-	P2	P207	C4	C4	-
V _{CCO}	0	P1	P208	V _{CCO} Bank 0*	V _{CCO} Bank 0*	-
V _{CCO}	7	P144	P208	V _{CCO} Bank 7*	V _{CCO} Bank 7*	-

^{04/18/01}

Notes:

- 1. IRDY and TRDY can only be accessed when using Xilinx PCI cores.
- Pads labelled GND*, V_{CCINT}*, V_{CCO} Bank 0*, V_{CCO} Bank 1*, V_{CCO} Bank 2*, V_{CCO} Bank 3*, V_{CCO} Bank 4*, V_{CCO} Bank 5*, V_{CCO} Bank 6*, V_{CCO} Bank 7* are internally bonded to independent ground or power planes within the package.
- 3. See "VCCO Banks" for details on V_{CCO} banking.

Additional XC2S100 Package Pins

TQ144

Not Connected Pins								
P104 P105								
11/02/00	11/02/00							

PQ208

		Not Conn	ected Pins		
P55	P56	-	-	-	-
11/02/00		I.	I.	I.	I.

FG256

V _{CCINT} Pins									
C3	C14	D4	D13	E5	E12				
M5	M12	N4	N13	P3	P14				
		V _{CCO} Ba	nk 0 Pins						
E8	F8	-	-	-	-				
		V _{CCO} Ba	nk 1 Pins						
E9	F9	-	-	-	-				
		V _{CCO} Ba	nk 2 Pins						
H11	H12	-	-	-	-				
		V _{CCO} Ba	nk 3 Pins						
J11	J12	-	-	-	-				
		V _{CCO} Ba	nk 4 Pins						
L9	M9	-	-	-	-				
		V _{CCO} Ba	nk 5 Pins						
L8	M8	-	-	-	-				
		V _{CCO} Ba	nk 6 Pins						
J5	J6	-	-	-	-				
		V _{CCO} Ba	nk 7 Pins						
H5	H6	-	-	-	-				
		GND	Pins						
A1	A16	B2	B15	F6	F7				
F10	F11	G6	G7	G8	G9				
G10	G11	H7	H8	H9	H10				
J7	J8	J9	J10	K6	K7				
K8	K9	K10	K11	L6	L7				
L10	L11	R2	R15	T1	T16				
		Not Conn	ected Pins						
P4	R4	-	-	-	-				
11/02/00									

11/02/00

FG456

V _{CCINT} Pins								
E5	E18	F6	F17	G7	G8			
G9	G14	G15	G16	H7	H16			
J7	J16	P7	P16	R7	R16			
T7	T8	Т9	T14	T15	T16			
U6	U17	V5	V18	-	-			
	V _{CCO} Bank 0 Pins							

Additional XC2S100 Package Pins (Continued)

		IUU Fach	ago i int		uou)				
F10	F7	F8	F9	G10	G11				
		V _{CCO} Bar	nk 1 Pins						
F13	F14	F15	F16	G12	G13				
		V _{CCO} Bai	nk 2 Pins						
G17	H17	J17	K16	K17	L16				
V _{CCO} Bank 3 Pins									
M16	N16	N17	P17	R17	T17				
V _{CCO} Bank 4 Pins									
T12	T13	U13	U14	U15	U16				
		V _{CCO} Bai	nk 5 Pins						
T10	T11	U10	U7	U8	U9				
		V _{CCO} Bai	nk 6 Pins						
M7	N6	N7	P6	R6	T6				
		V _{CCO} Bar	nk 7 Pins						
G6	H6	J6	K6	K7	L7				
		GND	Pins						
A1	A22	B2	B21	C3	C20				
J9	J10	J11	J12	J13	J14				
K9	K10	K11	K12	K13	K14				
L9	L10	L11	L12	L13	L14				
M9	M10	M11	M12	M13	M14				
N9	N10	N11	N12	N13	N14				
P9	P10	P11	P12	P13	P14				
Y3	Y20	AA2	AA21	AB1	AB22				
L		Not Conne	ected Pins						
A2	A4	A5	A6	A12	A13				
A14	A15	A17	B3	B6	B8				
B11	B14	B16	B19	C1	C2				
C8	C9	C12	C18	C22	D1				
D4	D5	D10	D18	D19	D21				
E4	E11	E13	E15	E16	E17				
E19	E22	F4	F11	F22	G2				
G3	G4	G19	G22	H1	H21				
J1	J3	J4	J19	J20	K2				
K18	K19	L2	L5	L18	L19				
M2	M6	M17	M18	M21	N1				
N5	N19	P1	P5	P19	P22				
R1	R3	R20	R22	T5	T19				
U3	U11	U18	V1	V2	V10				
V12	V17	V3	V4	V6	V8				
V20	V21	V22	W4	W5	W9				
W13	W14	W15	W16	W19	Y5				
Y14	Y18	Y22	AA1	AA3	AA6				
AA9	AA10	AA11	AA16	AA17	AA18				
AA22	AB3	AB4	AB7	AB8	AB12				
AB14	AB21	-	-	-	-				
11/02/00					J				

XC2S150 Device Pinouts (Continued)

XC2S150 Pad Name					Bndry
Function	Bank	PQ208	FG256	FG456	Scan
I/O	1	P174	B10	C14	72
I/O	1	-	-	B14	75
I/O	1	P175	D10	D13	81
I/O	1	P176	A10	C13	84
GND	-	P177	GND*	GND*	-
V _{cco}	1	-	V _{CCO} Bank 1*	V _{CCO} Bank 1*	-
I/O, V _{REF}	1	P178	B9	B13	87
I/O	1	P179	E10	E12	90
I/O	1	-	A9	B12	93
I/O	1	P180	D9	D12	96
I/O	1	-	-	C12	99
I/O	1	P181	A8	D11	102
I, GCK2	1	P182	C9	A11	108
GND	-	P183	GND*	GND*	-
V _{CCO}	1	P184	V _{CCO} Bank 1*	V _{CCO} Bank 1*	-
V _{CCO}	0	P184	V _{CCO} Bank 0*	V _{CCO} Bank 0*	-
I, GCK3	0	P185	B8	C11	109
V _{CCINT}	-	P186	V _{CCINT} *	V _{CCINT} *	-
I/O	0	-	-	E11	116
I/O	0	P187	A7	A10	119
I/O	0	-	D8	B10	122
I/O	0	P188	A6	C10	125
I/O, V _{REF}	0	P189	B7	A9	128
V _{CCO}	0	-	V _{CCO} Bank 0*	V _{CCO} Bank 0*	-
GND	-	P190	GND*	GND*	-
I/O	0	P191	C8	B9	131
I/O	0	P192	D7	E10	134
I/O	0	-	-	D10	140
I/O	0	P193	E7	A8	143
I/O	0	-	-	D9	146
I/O	0	-	-	B8	149
I/O	0	P194	C7	E9	155
I/O	0	P195	B6	A7	158

XC2S150 Device Pinouts (Continued)

XC2S150 Pad Name					Bndry
Function	Bank	PQ208	FG256	FG456	Scan
V _{CCINT}	-	P196	V _{CCINT} *	V _{CCINT} *	-
V _{CCO}	0	P197	V _{CCO} Bank 0*	V _{CCO} Bank 0*	-
GND	-	P198	GND*	GND*	-
I/O	0	P199	A5	B7	161
I/O, V _{REF}	0	P200	C6	E8	164
I/O	0	-	-	D8	167
I/O	0	P201	B5	C7	170
I/O	0	-	D6	D7	173
I/O	0	-	-	B6	176
I/O	0	-	-	A5	179
I/O	0	P202	A4	D6	182
I/O, V _{REF}	0	P203	B4	C6	185
V _{CCO}	0	-	V _{CCO} Bank 0*	V _{CCO} Bank 0*	-
GND	-	-	GND*	GND*	-
I/O	0	P204	E6	B5	188
I/O	0	-	D5	E7	191
I/O	0	-	-	A4	194
I/O	0	-	-	E6	197
I/O	0	P205	A3	B4	200
GND	-	-	GND*	GND*	-
I/O	0	-	C5	A3	203
I/O	0	-	-	B3	206
I/O	0	-	-	D5	209
I/O	0	P206	B3	C5	212
TCK	-	P207	C4	C4	-
V _{cco}	0	P208	V _{CCO} Bank 0*	V _{CCO} Bank 0*	-
V _{CCO}	7	P208	V _{CCO} Bank 7*	V _{CCO} Bank 7*	-

04/18/01 Notes:

- 1. IRDY and TRDY can only be accessed when using Xilinx PCI cores.
- Pads labelled GND*, V_{CCINT}*, V_{CCO} Bank 0*, V_{CCO} Bank 1*, V_{CCO} Bank 2*, V_{CCO} Bank 3*, V_{CCO} Bank 4*, V_{CCO} Bank 5*, V_{CCO} Bank 6*, V_{CCO} Bank 7* are internally bonded to independent ground or power planes within the package.
- 3. See "VCCO Banks" for details on V_{CCO} banking.

XC2S200 Device Pinouts (Continued)

XC2S200 Pad	Name				Bndry
Function	Bank	PQ208	FG256	FG456	Scan
I/O	6	-	-	T2	449
I/O	6	P43	L4	U1	452
GND	-	-	GND*	GND*	-
I/O	6	-	M2	R5	455
I/O	6	-	-	V1	458
I/O	6	-	-	T5	461
I/O	6	P44	L3	U2	464
I/O, V _{REF}	6	P45	N1	Т3	467
V _{CCO}	6	-	V _{CCO} Bank 6*	V _{CCO} Bank 6*	-
GND	-	-	GND*	GND*	-
I/O	6	P46	P1	T4	470
I/O	6	-	L5	W1	473
GND	-	-	GND*	GND*	-
I/O	6	-	-	V2	476
I/O	6	-	-	U4	482
I/O, V _{REF}	6	P47	N2	Y1	485
GND	-	-	GND*	GND*	-
I/O	6	-	M4	W2	488
I/O	6	-	-	V3	491
I/O	6	-	-	V4	494
I/O	6	P48	R1	Y2	500
I/O	6	P49	M3	W3	503
M1	-	P50	P2	U5	506
GND	-	P51	GND*	GND*	-
MO	-	P52	N3	AB2	507
V _{CCO}	6	P53	V _{CCO} Bank 6*	V _{CCO} Bank 6*	-
V _{CCO}	5	P53	V _{CCO} Bank 5*	V _{CCO} Bank 5*	-
M2	-	P54	R3	Y4	508
I/O	5	-	-	W5	518
I/O	5	-	-	AB3	521
I/O	5	-	N5	V7	524
GND	-	-	GND*	GND*	-
I/O, V _{REF}	5	P57	T2	Y6	527
I/O	5	-	-	AA4	530
I/O	5	-	-	AB4	536
I/O	5	-	P5	W6	539
I/O	5	P58	Т3	Y7	542
GND	-	-	GND*	GND*	-

XC2S200 Device Pinouts (Continued)

XC2S200 Pad Name					Bndry
Function	Bank	PQ208	FG256	FG456	Scan
V _{CCO}	5	-	V _{CCO} Bank 5*	V _{CCO} Bank 5*	-
I/O, V _{REF}	5	P59	T4	AA5	545
I/O	5	P60	M6	AB5	548
I/O	5	-	-	V8	551
I/O	5	-	-	AA6	554
I/O	5	-	T5	AB6	557
GND	-	-	GND*	GND*	-
I/O	5	P61	N6	AA7	560
I/O	5	-	-	W7	563
I/O, V _{REF}	5	P62	R5	W8	569
I/O	5	P63	P6	Y8	572
GND	-	P64	GND*	GND*	-
V _{CCO}	5	P65	V _{CCO} Bank 5*	V _{CCO} Bank 5*	-
V _{CCINT}	-	P66	V _{CCINT} *	V _{CCINT} *	-
I/O	5	P67	R6	AA8	575
I/O	5	P68	M7	V9	578
I/O	5	-	-	AB8	581
I/O	5	-	-	W9	584
I/O	5	-	-	AB9	587
GND	-	-	GND*	GND*	-
I/O	5	P69	N7	Y9	590
I/O	5	-	-	V10	593
I/O	5	-	-	AA9	596
I/O	5	P70	T6	W10	599
I/O	5	P71	P7	AB10	602
GND	-	P72	GND*	GND*	-
V _{CCO}	5	-	V _{CCO} Bank 5*	V _{CCO} Bank 5*	-
I/O, V _{REF}	5	P73	P8	Y10	605
I/O	5	P74	R7	V11	608
I/O	5	-	-	AA10	614
I/O	5	-	T7	W11	617
I/O	5	P75	Т8	AB11	620
I/O	5	-	-	U11	623
V _{CCINT}	-	P76	V _{CCINT} *	V _{CCINT} *	-
I, GCK1	5	P77	R8	Y11	635
V _{CCO}	5	P78	V _{CCO} Bank 5*	V _{CCO} Bank 5*	-
V _{CCO}	4	P78	V _{CCO} Bank 4*	V _{CCO} Bank 4*	-
GND	-	P79	GND*	GND*	-

XC2S200 Device Pinouts (Continued)

XC2S200 Pac	d Name				Bndry
Function	Bank	PQ208	FG256	FG456	Scan
V _{CCO}	3	P117	V _{CCO} Bank 3*	V _{CCO} Bank 3*	-
V _{CCINT}	-	P118	V _{CCINT} *	V _{CCINT} *	-
I/O (D5)	3	P119	M16	R21	833
I/O	3	P120	K14	P18	836
I/O	3	-	-	R22	839
I/O	3	-	-	P19	842
I/O	3	-	L16	P20	845
GND	-	-	GND*	GND*	-
I/O	3	P121	K13	P21	848
I/O	3	-	-	N19	851
I/O	3	-	-	P22	854
I/O	3	P122	L15	N18	857
I/O	3	P123	K12	N20	860
GND	-	P124	GND*	GND*	-
V _{CCO}	3	-	V _{CCO} Bank 3*	V _{CCO} Bank 3*	-
I/O, V _{REF}	3	P125	K16	N21	863
I/O (D4)	3	P126	J16	N22	866
I/O	3	-	-	M17	872
I/O	3	-	J14	M19	875
I/O	3	P127	K15	M20	878
I/O	3	-	-	M18	881
V _{CCINT}	-	P128	V _{CCINT} *	V _{CCINT} *	-
I/O, TRDY ⁽¹⁾	3	P129	J15	M22	890
V _{CCO}	3	P130	V _{CCO} Bank 3*	V _{CCO} Bank 3*	-
V _{CCO}	2	P130	V _{CCO} Bank 2*	V _{CCO} Bank 2*	-
GND	-	P131	GND*	GND*	-
I/O, IRDY ⁽¹⁾	2	P132	H16	L20	893
I/O	2	P133	H14	L17	896
I/O	2	-	-	L18	902
I/O	2	P134	H15	L21	905
I/O	2	-	J13	L22	908
I/O	2	-	-	K19	911
I/O (D3)	2	P135	G16	K20	917
I/O, V _{REF}	2	P136	H13	K21	920
V _{CCO}	2	-	V _{CCO} Bank 2*	V _{CCO} Bank 2*	-
GND	-	P137	GND*	GND*	-
I/O	2	P138	G14	K22	923
I/O	2	P139	G15	J21	926

XC2S200 Device Pinouts (Continued)

XC2S200 Pad	l Name				Bndry
Function	Bank	PQ208	FG256	FG456	Scan
I/O	2	-	-	K18	929
I/O	2	-	-	J20	932
I/O	2	P140	G12	J18	935
GND	-	-	GND*	GND*	-
I/O	2	-	F16	J22	938
I/O	2	-	-	J19	941
I/O	2	-	-	H21	944
I/O	2	P141	G13	H19	947
I/O (D2)	2	P142	F15	H20	950
V _{CCINT}	-	P143	V _{CCINT} *	V _{CCINT} *	-
V _{CCO}	2	P144	V _{CCO} Bank 2*	V _{CCO} Bank 2*	-
GND	-	P145	GND*	GND*	-
I/O (D1)	2	P146	E16	H22	953
I/O, V _{REF}	2	P147	F14	H18	956
I/O	2	-	-	G21	962
I/O	2	P148	D16	G18	965
GND	-	-	GND*	GND*	-
I/O	2	-	F12	G20	968
I/O	2	-	-	G19	971
I/O	2	-	-	F22	974
I/O	2	P149	E15	F19	977
I/O, V _{REF}	2	P150	F13	F21	980
V _{CCO}	2	-	V _{CCO} Bank 2*	V _{CCO} Bank 2*	-
GND	-	-	GND*	GND*	-
I/O	2	P151	E14	F20	983
I/O	2	-	C16	F18	986
GND	-	-	GND*	GND*	-
I/O	2	-	-	E22	989
I/O	2	-	-	E21	995
I/O, V _{REF}	2	P152	E13	D22	998
GND	-	-	GND*	GND*	-
I/O	2	-	B16	E20	1001
I/O	2	-	-	D21	1004
I/O	2	-	-	C22	1007
I/O (DIN, D0)	2	P153	D14	D20	1013
I/O (DOUT, BUSY)	2	P154	C15	C21	1016
CCLK	2	P155	D15	B22	1019
V _{CCO}	2	P156	V _{CCO} Bank 2*	V _{CCO} Bank 2*	-