

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	128MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	576KB (576K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	98K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2361e72f128laakxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

16/32-Bit

Architecture

XC2361E, XC2367E

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance XC2000 Family Derivatives / Premium Line

Data Sheet V1.3 2014-06

Microcontrollers

Key to Pin Definitions

Ctrl.: The output signal for a port pin is selected by bit field PC in the associated • register Px_IOCRy. Output O0 is selected by setting the respective bit field PC to $1x00_{\rm P}$, output O1 is selected by $1x01_{\rm P}$, etc.

Output signal OH is controlled by hardware.

- **Type**: Indicates the pad type and its power supply domain (A, B, M, 1). •
 - St: Standard pad
 - Sp: Special pad e.g. XTALx
 - DP: Double pad can be used as standard or high speed pad
 - In: Input only pad
 - PS: Power supply pad

TUDI			io una	i unotionis
Pin	Symbol	Ctrl.	Туре	Function
3	TESTM	I	In/B	Testmode Enable Enables factory test modes, must be held HIGH for normal operation (connect to V_{DDPB}). An internal pull-up device will hold this pin high when nothing is driving it.
4	P7.2	O0 / I	St/B	Bit 2 of Port 7, General Purpose Input/Output
	EMUX0	01	St/B	External Analog MUX Control Output 0 (ADC1)
	CCU62_CCP OS0A	I	St/B	CCU62 Position Input 0
	TDI_C	IH	St/B	JTAG Test Data Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.
5	TRST	1	In/B	Test-System Reset Input For normal system operation, pin TRST should be held low. A high level at this pin at the rising edge of PORST activates the XC236xE's debug system. In this case, pin TRST must be driven low once to reset the debug system. An internal pull-down device will hold this pin low

Pin Definitions and Functions Table 6

when nothing is driving it.

Table 6 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function	
24	P5.3	1	In/A	Bit 3 of Port 5, General Purpose Input	
	ADC0_CH3	1	In/A	Analog Input Channel 3 for ADC0	
	T3INA	I	In/A	GPT12E Timer T3 Count/Gate Input	
28	P5.4	I	In/A	Bit 4 of Port 5, General Purpose Input	
	ADC0_CH4	1	In/A	Analog Input Channel 4 for ADC0	
	CCU63_T12 HRB	I	In/A	External Run Control Input for T12 of CCU63	
	T3EUDA	I	In/A	GPT12E Timer T3 External Up/Down Control Input	
	TMS_A	1	In/A	JTAG Test Mode Selection Input	
29	P5.5	I	In/A	Bit 5 of Port 5, General Purpose Input	
	ADC0_CH5	I	In/A	Analog Input Channel 5 for ADC0	
	CCU60_T12 HRB	I	In/A	External Run Control Input for T12 of CCU60	
30	P5.8	I	In/A	Bit 8 of Port 5, General Purpose Input	
	ADC0_CH8	1	In/A	Analog Input Channel 8 for ADC0	
	ADC1_CH8	I	In/A	Analog Input Channel 8 for ADC1	
	CCU6x_T12H RC	I	In/A	External Run Control Input for T12 of CCU60/1/2/3	
	CCU6x_T13H RC	I	In/A	External Run Control Input for T13 of CCU60/1/2/3	
	U2C0_DX0F	1	In/A	USIC2 Channel 0 Shift Data Input	
31	P5.9	1	In/A	Bit 9 of Port 5, General Purpose Input	
	ADC0_CH9	I	In/A	Analog Input Channel 9 for ADC0	
	ADC1_CH9	I	In/A	Analog Input Channel 9 for ADC1	
	CC2_T7IN	1	In/A	CAPCOM2 Timer T7 Count Input	

Pin	Symbol	Ctrl.	Туре	Function
41	P2.2	00/1	-	Bit 2 of Port 2, General Purpose Input/Output
	TxDC1	01	St/B	CAN Node 1 Transmit Data Output
	CCU63_CC6 2	O2	St/B	CCU63 Channel 2 Output
	AD15	OH / IH	St/B	External Bus Interface Address/Data Line 15
	CCU63_CC6 2INB	I	St/B	CCU63 Channel 2 Input
	ESR2_5	I	St/B	ESR2 Trigger Input 5
	ERU_1A0	I	St/B	External Request Unit Channel 1 Input A0
42	P4.0	O0 / I	St/B	Bit 0 of Port 4, General Purpose Input/Output
	CC2_CC24	O3 / I	St/B	CAPCOM2 CC24IO Capture Inp./ Compare Out.
	CS0	ОН	St/B	External Bus Interface Chip Select 0 Output
43	P2.3	O0 / I	St/B	Bit 3 of Port 2, General Purpose Input/Output
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output
	CCU63_COU T63	O2	St/B	CCU63 Channel 3 Output
	CC2_CC16	O3 / I	St/B	CAPCOM2 CC16IO Capture Inp./ Compare Out.
	A16	OH	St/B	External Bus Interface Address Line 16
	ESR2_0	I	St/B	ESR2 Trigger Input 0
	U0C0_DX0E	I	St/B	USIC0 Channel 0 Shift Data Input
	U0C1_DX0D	I	St/B	USIC0 Channel 1 Shift Data Input
	RxDC0A	I	St/B	CAN Node 0 Receive Data Input
44	P4.1	O0 / I	St/B	Bit 1 of Port 4, General Purpose Input/Output
	TxDC2	02	St/B	CAN Node 2 Transmit Data Output
	CC2_CC25	O3 / I	St/B	CAPCOM2 CC25IO Capture Inp./ Compare Out.
	CS1	ОН	St/B	External Bus Interface Chip Select 1 Output
	CCU62_CCP OS0B	I	St/B	CCU62 Position Input 0
	T4EUDB	I	St/B	GPT12E Timer T4 External Up/Down Control Input
	ESR1_8	1	St/B	ESR1 Trigger Input 8

Table	e 6 Pin De	Functions (cont'd)		
Pin	Symbol	Ctrl.	Туре	Function
66	P2.10	O0 / I	St/B	Bit 10 of Port 2, General Purpose Input/Output
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output
	U0C0_SELO 3	O2	St/B	USIC0 Channel 0 Select/Control 3 Output
	CC2_CC23	O3 / I	St/B	CAPCOM2 CC23IO Capture Inp./ Compare Out.
	A23	ОН	St/B	External Bus Interface Address Line 23
	U0C1_DX0E	I	St/B	USIC0 Channel 1 Shift Data Input
	CAPINA	I	St/B	GPT12E Register CAPREL Capture Input
67	P10.3	O0 / I	St/B	Bit 3 of Port 10, General Purpose Input/Output
	CCU60_COU T60	O2	St/B	CCU60 Channel 0 Output
	AD3	OH / IH	St/B	External Bus Interface Address/Data Line 3
	U0C0_DX2A	I	St/B	USIC0 Channel 0 Shift Control Input
	U0C1_DX2A	I	St/B	USIC0 Channel 1 Shift Control Input
68	P0.5	O0 / I	St/B	Bit 5 of Port 0, General Purpose Input/Output
	U1C1_SCLK OUT	O1	St/B	USIC1 Channel 1 Shift Clock Output
	U1C0_SELO 2	O2	St/B	USIC1 Channel 0 Select/Control 2 Output
	CCU61_COU T62	O3	St/B	CCU61 Channel 2 Output
	A5	ОН	St/B	External Bus Interface Address Line 5
	U1C1_DX1A	I	St/B	USIC1 Channel 1 Shift Clock Input
	U1C0_DX1C	I	St/B	USIC1 Channel 0 Shift Clock Input

Pin	Symbol	Ctrl.	Туре	Function
78	P1.0	00/1		Bit 0 of Port 1, General Purpose Input/Output
	U1C0_MCLK OUT	01	St/B	USIC1 Channel 0 Master Clock Output
	U1C0_SELO 4	O2	St/B	USIC1 Channel 0 Select/Control 4 Output
	A8	ОН	St/B	External Bus Interface Address Line 8
	ESR1_3	I	St/B	ESR1 Trigger Input 3
	ERU_0B0	I	St/B	External Request Unit Channel 0 Input B0
	CCU62_CTR APB	I	St/B	CCU62 Emergency Trap Input
	T6INB	I	St/B	GPT12E Timer T6 Count/Gate Input
79	P10.8	O0 / I	St/B	Bit 8 of Port 10, General Purpose Input/Output
	U0C0_MCLK OUT	01	St/B	USIC0 Channel 0 Master Clock Output
	U0C1_SELO 0	O2	St/B	USIC0 Channel 1 Select/Control 0 Output
	U2C1_DOUT	O3	St/B	USIC2 Channel 1 Shift Data Output
	AD8	OH / IH	St/B	External Bus Interface Address/Data Line 8
	CCU60_CCP OS1A	I	St/B	CCU60 Position Input 1
	U0C0_DX1C	I	St/B	USIC0 Channel 0 Shift Clock Input
	BRKIN_B	I	St/B	OCDS Break Signal Input
	T3EUDB	I	St/B	GPT12E Timer T3 External Up/Down Control Input
	ESR2_11	I	St/B	ESR2 Trigger Input 11

3.2 External Bus Controller

All external memory access operations are performed by a special on-chip External Bus Controller (EBC). The EBC also controls access to resources connected to the on-chip LXBus (MultiCAN and the USIC modules). The LXBus is an internal representation of the external bus that allows access to integrated peripherals and modules in the same way as to external components.

The EBC can be programmed either to Single Chip Mode, when no external memory is required, or to an external bus mode with the following selections¹⁾:

- Address Bus Width with a range of 0 ... 24-bit
- Data Bus Width 8-bit or 16-bit
- Bus Operation Multiplexed or Demultiplexed

The bus interface uses Port 10 and Port 2 for addresses and data. In the demultiplexed bus modes, the lower addresses are output separately on Port 0 and Port 1. The number of active segment address lines is selectable, restricting the external address space to 8 Mbytes ... 64 Kbytes. This is required when interface lines shall be assigned to Port 2.

External \overline{CS} signals (address windows plus default) can be generated and output on Port 4 in order to save external glue logic. External modules can be directly connected to the common address/data bus and their individual select lines.

Important timing characteristics of the external bus interface are programmable (with registers TCONCSx/FCONCSx) to allow the user to adapt it to a wide range of different types of memories and external peripherals.

Access to very slow memories or modules with varying access times is supported by a special 'Ready' function. The active level of the control input signal is selectable.

In addition, up to four independent address windows may be defined (using registers ADDRSELx) to control access to resources with different bus characteristics. These address windows are arranged hierarchically where window 4 overrides window 3, and window 2 overrides window 1. All accesses to locations not covered by these four address windows are controlled by TCONCS0/FCONCS0. The currently active window can generate a chip select signal.

The external bus timing is based on the rising edge of the reference clock output CLKOUT. The external bus protocol is compatible with that of the standard C166 Family.

¹⁾ Bus modes are switched dynamically if several address windows with different mode settings are used.

Compare Modes	Function
Mode 2	Interrupt-only compare mode; Only one compare interrupt per timer period is generated
Mode 3	Pin set '1' on match; pin reset '0' on compare timer overflow; Only one compare event per timer period is generated
Double Register Mode	Two registers operate on one pin; Pin toggles on each compare match; Several compare events per timer period are possible
Single Event Mode	Generates single edges or pulses; Can be used with any compare mode

Table 9Compare Modes (cont'd)

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the compare mode selected.

Figure 4 CCU6 Block Diagram

Timer T12 can work in capture and/or compare mode for its three channels. The modes can also be combined. Timer T13 can work in compare mode only. The multi-channel control unit generates output patterns that can be modulated by timer T12 and/or timer T13. The modulation sources can be selected and combined for signal modulation.

MultiCAN Features

- CAN functionality conforming to CAN specification V2.0 B active for each CAN node (compliant to ISO 11898)
- Independent CAN nodes
- Set of independent message objects (shared by the CAN nodes)
- Dedicated control registers for each CAN node
- Data transfer rate up to 1 Mbit/s, individually programmable for each node
- Flexible and powerful message transfer control and error handling capabilities
- Full-CAN functionality for message objects:
 - Can be assigned to one of the CAN nodes
 - Configurable as transmit or receive objects, or as message buffer FIFO
 - Handle 11-bit or 29-bit identifiers with programmable acceptance mask for filtering
 - Remote Monitoring Mode, and frame counter for monitoring
- Automatic Gateway Mode support
- 16 individually programmable interrupt nodes
- Analyzer mode for CAN bus monitoring

3.15 System Timer

The System Timer consists of a programmable prescaler and two concatenated timers (10 bits and 6 bits). Both timers can generate interrupt requests. The clock source can be selected and the timers can also run during power reduction modes.

Therefore, the System Timer enables the software to maintain the current time for scheduling functions or for the implementation of a clock.

3.16 Watchdog Timer

The Watchdog Timer is one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after an application reset of the chip. It can be disabled and enabled at any time by executing the instructions DISWDT and ENWDT respectively. The software has to service the Watchdog Timer before it overflows. If this is not the case because of a hardware or software failure, the Watchdog Timer overflows, generating a prewarning interrupt and then a reset request.

The Watchdog Timer is a 16-bit timer clocked with the system clock divided by 16,384 or 256. The Watchdog Timer register is set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the Watchdog Timer is reloaded and the prescaler is cleared.

Time intervals between 3.2 μ s and 13.4 s can be monitored (@ 80 MHz).

Time intervals between 2.0 μ s and 8.39 s can be monitored (@ 128 MHz).

3.19 Instruction Set Summary

Table 11 lists the instructions of the XC236xE.

The addressing modes that can be used with a specific instruction, the function of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the "**Instruction Set Manual**".

This document also provides a detailed description of each instruction.

Mnemonic	Description	Bytes		
ADD(B)	Add word (byte) operands	2/4		
ADDC(B)	Add word (byte) operands with Carry			
SUB(B)	Subtract word (byte) operands	2/4		
SUBC(B)	Subtract word (byte) operands with Carry	2/4		
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16- \times 16-bit)	2		
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2		
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2		
CPL(B)	Complement direct word (byte) GPR	2		
NEG(B)	Negate direct word (byte) GPR	2		
AND(B)	Bitwise AND, (word/byte operands)	2/4		
OR(B)	Bitwise OR, (word/byte operands)	2/4		
XOR(B)	Bitwise exclusive OR, (word/byte operands)	2/4		
BCLR/BSET	Clear/Set direct bit			
BMOV(N)	Move (negated) direct bit to direct bit			
BAND/BOR/BXOR	AND/OR/XOR direct bit with direct bit	4		
BCMP	Compare direct bit to direct bit	4		
BFLDH/BFLDL	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data			
CMP(B)	Compare word (byte) operands	2/4		
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2			
CMPI1/2	Compare word data to GPR and increment GPR by 1/2			
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR			
SHL/SHR	Shift left/right direct word GPR	2		

Table 11 Instruction Set Summary

Table 11Instruction Set Summary (cont'd)

 The Enter Power Down Mode instruction is not used in the XC236xE, due to the enhanced power control scheme. PWRDN will be correctly decoded, but will trigger no action.

Pullup/Pulldown Device Behavior

Most pins of the XC236xE feature pullup or pulldown devices. For some special pins these are fixed; for the port pins they can be selected by the application.

The specified current values indicate how to load the respective pin depending on the intended signal level. **Figure 10** shows the current paths.

The shaded resistors shown in the figure may be required to compensate system pull currents that do not match the given limit values.

Figure 10 Pullup/Pulldown Current Definition

4.2.3 Power Consumption

The power consumed by the XC236xE depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components:

- The switching current $I_{\rm S}$ depends on the device activity
- The leakage current I_{LK} depends on the device temperature

To determine the actual power consumption, always both components, switching current $I_{\rm S}$ and leakage current $I_{\rm LK}$ must be added:

 $I_{\text{DDP}} = I_{\text{S}} + I_{\text{LK}}.$

Note: The power consumption values are not subject to production test. They are verified by design/characterization.

To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered.

The given power consumption parameters and their values refer to specific operating conditions:

Active mode:

Regular operation, i.e. peripherals are active, code execution out of Flash.

Stopover mode:

Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped.

Note: The maximum values cover the complete specified operating range of all manufactured devices.

The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity.

After a power reset, the decoupling capacitors for $V_{\rm DDIM}$ and $V_{\rm DDI1}$ are charged with the maximum possible current.

For additional information, please refer to Section 5.2, Thermal Considerations.

Note: Operating Conditions apply.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Power supply current (active) with all peripherals active and EVVRs on	I _{SACT} CC	_	10 + 1.0 x f _{SYS} ¹⁾	15 + 1.5 x f _{SYS} ¹⁾	mA	2)3)
Power supply current in stopover mode, EVVRs on	$I_{\rm SSO}$ CC	-	1.6	4	mA	

Table 18 Switching Power Consumption

1) $f_{\rm SYS}$ in MHz.

- 2) The pad supply voltage pins (V_{DDPB}) provide the input current for the on-chip EVVRs and the current consumed by the pin output drivers. A small current is consumed because the drivers input stages are switched.
 - In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to $3 + 1.0 \text{ x} f_{SYS}$.
- 3) Please consider the additional conditions described in section "Active Mode Power Supply Current".

Active Mode Power Supply Current

The actual power supply current in active mode not only depends on the system frequency but also on the configuration of the XC236xE's subsystem.

Besides the power consumed by the device logic the power supply pins also provide the current that flows through the pin output drivers.

A small current is consumed because the drivers' input stages are switched.

The IO power domains can be supplied separately. Power domain A ($V_{\rm DDPA}$) supplies the A/D converters and Port 6. Power domain B ($V_{\rm DDPB}$) supplies the on-chip EVVRs and all other ports.

During operation domain A draws a maximum current of 1.5 mA for each active A/D converter module from V_{DDPA} .

In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to $(3 + 1.0 \times f_{SYS})$ mA.

Sample time and conversion time of the XC236xE's A/D converters are programmable. The timing above can be calculated using Table 23.

The limit values for f_{ADCI} must not be exceeded when selecting the prescaler value.

GLOBCTR.5-0 (DIVA)	A/D Converter Analog Clock f_{ADCI}	INPCRx.7-0 (STC)	Sample Time ¹⁾ t _S	
000000 _B	f _{SYS}	00 _H	$t_{ADCI} \times 2$	
000001 _B	f _{SYS} / 2	01 _H	$t_{ADCI} \times 3$	
000010 _B	f _{SYS} / 3	02 _H	$t_{ADCI} \times 4$	
:	$f_{\rm SYS}$ / (DIVA+1)	:	$t_{ADCI} \times (STC+2)$	
111110 _B	f _{SYS} / 63	FE _H	$t_{ADCI} \times 256$	
111111 _B	f _{SYS} / 64	FF _H	$t_{ADCI} \times 257$	

 Table 23
 A/D Converter Computation Table

1) The selected sample time is doubled if broken wire detection is active (due to the presampling phase).

Converter Timing Example A:

Assumptions:	$f_{\rm SYS}$	= 128 MHz (i.e. t_{SYS} = 7.8 ns), DIVA = 06 _H , STC = 00 _H		
Analog clock	$f_{\rm ADCI}$	$= f_{SYS} / 7 = 18.3 \text{ MHz}$, i.e. $t_{ADCI} = 54.7 \text{ ns}$		
Sample time	t _S	$= t_{ADCI} \times 2 = 109.4 \text{ ns}$		
Conversion 12-b	oit:			
	<i>t</i> _{C10}	= $16 \times t_{ADCI}$ + 2 × t_{SYS} = 16 × 54.7 ns + 2 × 7.8 ns = 0.891 µs		
Conversion 10-bit:				
	t _{C8}	= $12 \times t_{ADCI}$ + $2 \times t_{SYS}$ = 12×54.7 ns + 2×7.8 ns = 0.672 μ s		
Converter Timing Example B:				

Assumptions:	$f_{\rm SYS}$	= 40 MHz (i.e. t_{SYS} = 25 ns), DIVA = 02 _H , STC = 03 _H			
Analog clock	$f_{\rm ADCI}$	$= f_{SYS} / 3 = 13.3 \text{ MHz}$, i.e. $t_{ADCI} = 75 \text{ ns}$			
Sample time	t _S	$= t_{ADCI} \times 5 = 375 \text{ ns}$			
Conversion 12-	bit:				
	<i>t</i> _{C10}	= $19 \times t_{ADCI}$ + $2 \times t_{SYS}$ = 19×75 ns + 2×25 ns = 1.475 μ s			
Conversion 10-bit:					
	t _{C8}	= $15 \times t_{ADCI}$ + 2 × t_{SYS} = 15 × 75 ns + 2 × 25 ns = 1.175 µs			

4.6.2 Definition of Internal Timing

The internal operation of the XC236xE is controlled by the internal system clock f_{SYS} .

Because the system clock signal $f_{\rm SYS}$ can be generated from a number of internal and external sources using different mechanisms, the duration of the system clock periods (TCSs) and their variation (as well as the derived external timing) depend on the mechanism used to generate $f_{\rm SYS}$. This must be considered when calculating the timing for the XC236xE.

Figure 16 Generation Mechanisms for the System Clock

Note: The example of PLL operation shown in **Figure 16** uses a PLL factor of 1:4; the example of prescaler operation uses a divider factor of 2:1.

The specification of the external timing (AC Characteristics) depends on the period of the system clock (TCS).

4.6.4 Pad Properties

The output pad drivers of the XC236xE can operate in several user-selectable modes. Strong driver mode allows controlling external components requiring higher currents such as power bridges or LEDs. Reducing the driving power of an output pad reduces electromagnetic emissions (EME). In strong driver mode, selecting a slower edge reduces EME.

The dynamic behavior, i.e. the rise time and fall time, depends on the applied external capacitance that must be charged and discharged. Timing values are given for a capacitance of 20 pF, unless otherwise noted.

In general, the performance of a pad driver depends on the available supply voltage V_{DDP} . Therefore the following tables list the pad parameters for the upper voltage range and the lower voltage range, respectively.

- Note: These parameters are not subject to production test but verified by design and/or characterization.
- Note: Operating Conditions apply.

Table 39 USIC SSC Slave Mode Timing for Lower Voltage Range

	0			•	0	
Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Select input DX2 setup to first clock input DX1 transmit edge ¹⁾	<i>t</i> ₁₀ SR	7	-	-	ns	
Select input DX2 hold after last clock input DX1 receive edge ¹⁾	<i>t</i> ₁₁ SR	7	-	-	ns	
Receive data input setup time to shift clock receive edge ¹⁾	<i>t</i> ₁₂ SR	7	-	-	ns	
Data input DX0 hold time from clock input DX1 receive edge ¹⁾	<i>t</i> ₁₃ SR	5	-	-	ns	
Data output DOUT valid time	<i>t</i> ₁₄ CC	8	-	41	ns	

1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
TCK clock period	t ₁ SR	50 ¹⁾	_	-	ns	
TCK high time	$t_2 \mathrm{SR}$	16	-	-	ns	
TCK low time	t ₃ SR	16	-	-	ns	
TCK clock rise time	t ₄ SR	-	_	8	ns	
TCK clock fall time	t ₅ SR	-	-	8	ns	
TDI/TMS setup to TCK rising edge	t ₆ SR	6	-	-	ns	
TDI/TMS hold after TCK rising edge	t ₇ SR	6	-	-	ns	
TDO valid from TCK falling edge (propagation delay) ²⁾	t ₈ CC	-	32	36	ns	
TDO high impedance to valid output from TCK falling edge ³⁾²⁾	t ₉ CC	-	32	36	ns	
TDO valid output to high impedance from TCK falling edge ²⁾	<i>t</i> ₁₀ CC	-	32	36	ns	
TDO hold after TCK falling edge ²⁾	<i>t</i> ₁₈ CC	5	-	-	ns	

Table 43 Interface Timing for Lower Voltage Range

1) The debug interface cannot operate faster than the overall system, therefore $t_1 \ge t_{SYS}$.

2) The falling edge on TCK is used to generate the TDO timing.

3) The setup time for TDO is given implicitly by the TCK cycle time.