

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

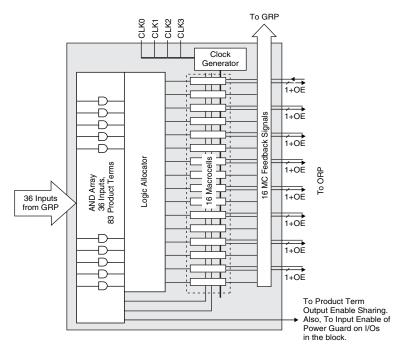
Details

Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	5.8 ns
Voltage Supply - Internal	1.7V ~ 1.9V
Number of Logic Elements/Blocks	2
Number of Macrocells	32
Number of Gates	-
Number of I/O	32
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4032ze-5tn48i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The I/Os in the ispMACH 4000ZE are split into two banks. Each bank has a separate I/O power supply. Inputs can support a variety of standards independent of the chip or bank power supply. Outputs support the standards compatible with the power supply provided to the bank. Support for a variety of standards helps designers implement designs in mixed voltage environments. In addition, 5V tolerant inputs are specified within an I/O bank that is connected to a V_{CCO} of 3.0V to 3.6V for LVCMOS 3.3, LVTTL and PCI interfaces.

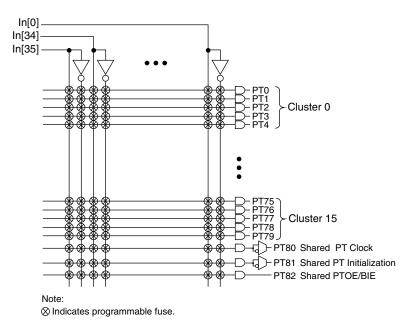

Architecture

There are a total of two GLBs in the ispMACH 4032ZE, increasing to 16 GLBs in the ispMACH 4256ZE. Each GLB has 36 inputs. All GLB inputs come from the GRP and all outputs from the GLB are brought back into the GRP to be connected to the inputs of any other GLB on the device. Even if feedback signals return to the same GLB, they still must go through the GRP. This mechanism ensures that GLBs communicate with each other with consistent and predictable delays. The outputs from the GLB are also sent to the ORP. The ORP then sends them to the associated I/O cells in the I/O block.

Generic Logic Block

The ispMACH 4000ZE GLB consists of a programmable AND array, logic allocator, 16 macrocells and a GLB clock generator. Macrocells are decoupled from the product terms through the logic allocator and the I/O pins are decoupled from macrocells through the ORP. Figure 2 illustrates the GLB.

Figure 2. Generic Logic Block

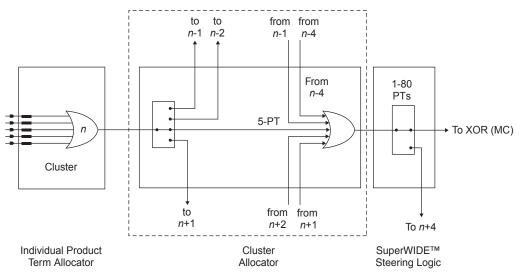

AND Array

The programmable AND Array consists of 36 inputs and 83 output product terms. The 36 inputs from the GRP are used to form 72 lines in the AND Array (true and complement of the inputs). Each line in the array can be connected to any of the 83 output product terms via a wired-AND. Each of the 80 logic product terms feed the logic allocator with the remaining three control product terms feeding the Shared PT Clock, Shared PT Initialization and Shared PT OE. The Shared PT Clock and Shared PT Initialization signals can optionally be inverted before being fed to the macrocells.

Every set of five product terms from the 80 logic product terms forms a product term cluster starting with PT0. There is one product term cluster for every macrocell in the GLB. Figure 3 is a graphical representation of the AND Array.

Figure 3. AND Array

Enhanced Logic Allocator


Within the logic allocator, product terms are allocated to macrocells in product term clusters. Each product term cluster is associated with a macrocell. The cluster size for the ispMACH 4000ZE family is 4+1 (total 5) product terms. The software automatically considers the availability and distribution of product term clusters as it fits the functions within a GLB. The logic allocator is designed to provide two speed paths: 20-PT Speed Locking path and an up to 80-PT path. The availability of these two paths lets designers trade timing variability for increased performance.

The enhanced Logic Allocator of the ispMACH 4000ZE family consists of the following blocks:

- Product Term Allocator
- Cluster Allocator
- Wide Steering Logic

Figure 4 shows a macrocell slice of the Logic Allocator. There are 16 such slices in the GLB.

Figure 4. Macrocell Slice

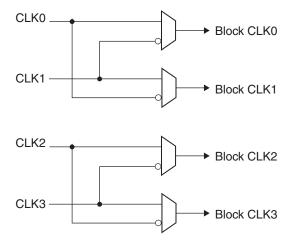
- Block CLK2
- Block CLK3
- PT Clock
- PT Clock Inverted
- Shared PT Clock
- Ground

Clock Enable Multiplexer

Each macrocell has a 4:1 clock enable multiplexer. This allows the clock enable signal to be selected from the following four sources:

- PT Initialization/CE
- PT Initialization/CE Inverted
- Shared PT Clock
- Logic High

Initialization Control


The ispMACH 4000ZE family architecture accommodates both block-level and macrocell-level set and reset capability. There is one block-level initialization term that is distributed to all macrocell registers in a GLB. At the macrocell level, two product terms can be "stolen" from the cluster associated with a macrocell to be used for set/reset functionality. A reset/preset swapping feature in each macrocell allows for reset and preset to be exchanged, providing flexibility.

Note that the reset/preset swapping selection feature affects power-up reset as well. All flip-flops power up to a known state for predictable system initialization. If a macrocell is configured to SET on a signal from the block-level initialization, then that macrocell will be SET during device power-up. If a macrocell is configured to RESET on a signal from the block-level initialization or is not configured for set/reset, then that macrocell will RESET on power-up. To guarantee initialization values, the V_{CC} rise must be monotonic, and the clock must be inactive until the reset delay time has elapsed.

GLB Clock Generator

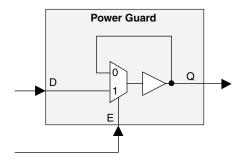
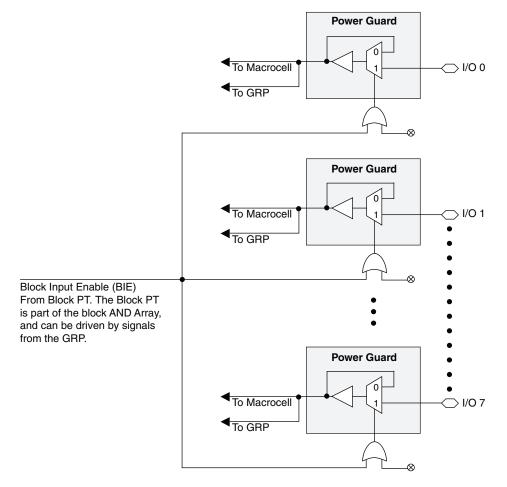

Each ispMACH 4000ZE device has up to four clock pins that are also routed to the GRP to be used as inputs. These pins drive a clock generator in each GLB, as shown in Figure 6. The clock generator provides four clock signals that can be used anywhere in the GLB. These four GLB clock signals can consist of a number of combinations of the true and complement edges of the global clock signals.

Figure 6. GLB Clock Generator

Figure 9. Power Guard



All the I/O pins in a block share a common Power Guard Enable signal. For a block of I/Os, this signal is called a Block Input Enable (BIE) signal. BIE can be internally generated using MC logic, or could come from external sources using one of the user I/O or input pins.

Any I/O pin in the block can be programmed to ignore the BIE signal. Thus, the feature can be enabled or disabled on a pin-by-pin basis.

Figure 10 shows Power Guard and BIE across multiple I/Os in a block that has eight I/Os.

Figure 10. Power Guard and BIE in a Block with 8 I/Os

The number of BIE inputs, thus the number of Power Guard "Blocks" that can exist in a device, depends on the device size. Table 8 shows the number of BIE signals available in the ispMACH 4000ZE family. The number of I/Os available in each block is shown in the Ordering Information section of this data sheet.

Device	Number of Logic Blocks, Power Guard Blocks and BIE Signals
ispMACH 4032ZE	Two (Blocks: A and B)
ispMACH 4064ZE	Four (Blocks: A, B, C and D)
ispMACH 4128ZE	Eight (Blocks: A, B, C,, H)
ispMACH 4256ZE	Sixteen (Blocks: A, B, C,, P)

Table 8. Number of BIE Signals Available in ispMACH 4000ZE Devices

Power Guard for Dedicated Inputs

Power Guard can optionally be applied to the dedicated inputs. The dedicated inputs and clocks are controlled by the BIE of the logic blocks shown in Tables 9 and 10.

Table 9. Dedicated Clock Inputs to BIE Association

CLK/I	32 MC Block	64MC Block	128MC Block	256MC Block
CLK0 / I	A	A	A	A
CLK1 / I	A	В	D	Н
CLK2 / I	В	С	E	I
CLK3 / I	В	D	Н	Р

Table 10. Dedicated Inputs to BIE Association

Dedicated Input	4064ZE Block	4128ZE Block	4256ZE Block
0	A	В	D
1	В	С	E
2	В	D	G
3	С	F	G
4	D	G	J
5	D	Н	L
6	—	—	М
7	_	—	0
8	_	—	0
9		—	В

For more information on the Power Guard function refer to TN1174, <u>Advanced Features of the ispMACH 4000ZE</u> <u>Family</u>.

Global OE (GOE) and Block Input Enable (BIE) Generation

Most ispMACH 4000ZE family devices have a 4-bit wide Global OE (GOE) Bus (Figure 11), except the ispMACH 4032 device that has a 2-bit wide Global OE Bus (Figure 12). This bus is derived from a 4-bit internal global OE (GOE) PT bus and two dual purpose I/O or GOE pins. Each signal that drives the bus can optionally be inverted.

Each GLB has a block-level OE PT that connects to all bits of the Global OE PT bus with four fuses. Hence, for a 256-macrocell device (with 16 blocks), each line of the bus is driven from 16 OE product terms. Figures 9 and 10 show a graphical representation of the global OE generation.

The block-level OE PT of each GLB is also tied to Block Input Enable (BIE) of that block. Hence, for a 256-macrocell device (with 16 blocks), each block's BIE signal is driven by block-level OE PT from each block.

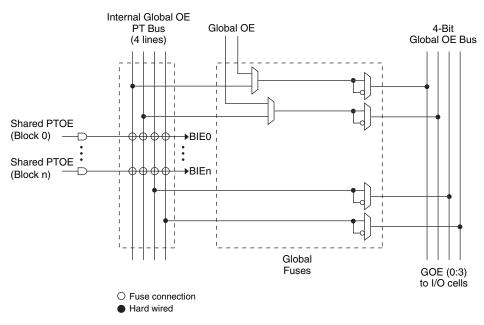
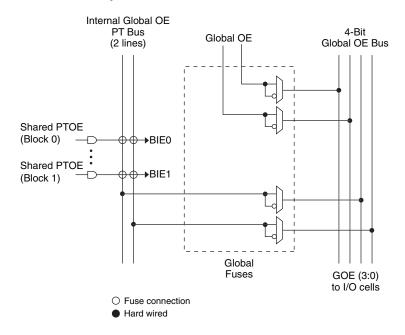
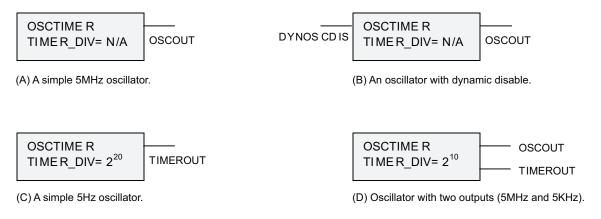



Figure 12. Global OE Generation for ispMACH 4032ZE

On-Chip Oscillator and Timer


An internal oscillator is provided for use in miscellaneous housekeeping functions such as watchdog heartbeats, digital de-glitch circuits and control state machines. The oscillator is disabled by default to save power. Figure 13 shows the block diagram of the oscillator and timer block.

Some Simple Use Scenarios

The following diagrams show a few simple examples that omit optional signals for the OSCTIMER block:

- A. An oscillator giving 5MHz nominal clock
- B. An oscillator that can be disabled with an external signal (5MHz nominal clock)
- C. An oscillator giving approximately 5 Hz nominal clock (TIMER_DIV = 2^{20} (1,048,576))
- D. An oscillator giving two output clocks: ~5MHz and ~5KHz (TIMER_DIV= 2¹⁰ (1,024))

OSCTIMER Integration With CPLD Fabric

The OSCTIMER is integrated into the CPLD fabric using the Global Routing Pool (GRP). The macrocell (MC) feedback path for two macrocells is augmented with a programmable multiplexer, as shown in Figure 15. The OSC-TIMER outputs (OSCOUT and TIMEROUT) can optionally drive the GRP lines, whereas the macrocell outputs can drive the optional OSCTIMER inputs TIMERRES and DYNOSCDIS.

Figure 15. OSCTIMER Integration With CPLD Fabric

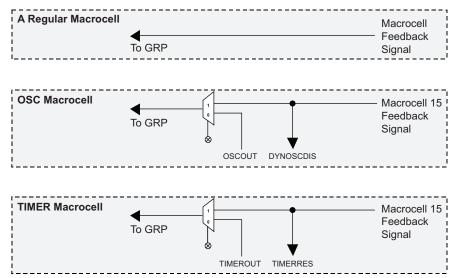


Table 12 shows how these two MCs are designated in each of the ispMACH4000ZE device.

I/O Recommended Operating Conditions

	V _{CCO} (V) ¹				
Standard	Min.	Max.			
LVTTL	3.0	3.6			
LVCMOS 3.3	3.0	3.6			
Extended LVCMOS 3.3	2.7	3.6			
LVCMOS 2.5	2.3	2.7			
LVCMOS 1.8	1.65	1.95			
LVCMOS 1.5	1.4	1.6			
PCI 3.3	3.0	3.6			

1. Typical values for V_{CCO} are the average of the min. and max. values.

DC Electrical Characteristics

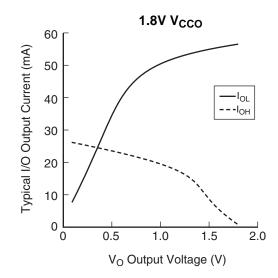
Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
$I_{\rm IL}, I_{\rm IH}^{1,2}$	Input Leakage Current	$0 \le V_{IN} < V_{CCO}$	—	0.5	1	μΑ
I _{IH} ¹	Input High Leakage Current	$V_{CCO} < V_{IN} \le 5.5V$	—		10	μΑ
I _{PU}	I/O Weak Pull-up Resistor Current	$0 \le V_{IN} \le 0.7 V_{CCO}$	-20		-150	μΑ
I _{PD}	I/O Weak Pull-down Resistor Current	V_{IL} (MAX) $\leq V_{IN} \leq V_{IH}$ (MAX)	30		150	μA
I _{BHLS}	Bus Hold Low Sustaining Current	$V_{IN} = V_{IL} (MAX)$	30		—	μΑ
I _{BHHS}	Bus Hold High Sustaining Current	$V_{IN} = 0.7 V_{CCO}$	-20		—	μΑ
I _{BHLO}	Bus Hold Low Overdrive Current	$0V \le V_{IN} \le V_{BHT}$	—		150	μΑ
I _{BHHO}	Bus Hold High Overdrive Current	$V_{BHT} \le V_{IN} \le V_{CCO}$	—		-150	μΑ
V _{BHT}	Bus Hold Trip Points	—	V _{CCO} * 0.35		V _{CCO} * 0.65	V
C ₁	I/O Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V, 1.5V	—	8	—	pf
01	1/O Capacitance	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	—	0	—	рі
C ₂	Clock Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V, 1.5V	—	6	—	nf
02	Clock Capacitance	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	—	0	—	pf
C Global Inni	Global Input Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V, 1.5V	—	6	—	pf
C ₃		V_{CC} = 1.8V, V_{IO} = 0 to V_{IH} (MAX)	—	0	—	Ы

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tristated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

 I_{IH} excursions of up to 1.5µA maximum per pin above the spec limit may be observed for certain voltage conditions on no more than 10% of the device's I/O pins.

3. Measured $T_A = 25^{\circ}C$, f = 1.0MHz.


I/O DC Electrical Characteristics

	Over Recommended Operating Conditions							
		V _{IL}	V _{IH}		V _{OL}	V _{OH}	I _{OL} ¹	I _{OH} ¹
Standard	Min (V)	Max (V)	Min (V)	Max (V)	Max (V)	Min (V)	(mĀ)	(mÅ)
LVTTL	-0.3	0.80	2.0	5.5	0.40	V _{CCO} - 0.40	8.0	-4.0
	-0.3	0.80	2.0	5.5	0.20	V _{CCO} - 0.20	0.1	-0.1
LVCMOS 3.3	-0.3	0.80	2.0	5.5	0.40	V _{CCO} - 0.40	8.0	-4.0
LV 010100 0.0	-0.5	0.00	2.0	5.5	0.20	V _{CCO} - 0.20	0.1	-0.1
LVCMOS 2.5	-0.3	0.70	1.70	3.6	0.40	V _{CCO} - 0.40	8.0	-4.0
2000002.5	-0.0	0.70	1.70	0.0	0.20	V _{CCO} - 0.20	0.1	-0.1
LVCMOS 1.8	-0.3	0.35 * V _{CC}	0.65 * V _{CC}	3.6	0.40	V _{CCO} - 0.45	2.0	-2.0
	-0.5	0.33 V _{CC}	0.03 V _{CC}	5.0	0.20	V _{CCO} - 0.20	0.1	-0.1
LVCMOS 1.5 ²	-0.3	0.35 * V _{CC}	0.65 * V _{CC}	3.6	0.40	V _{CCO} - 0.45	2.0	-2.0
	-0.5	0.00 VCC	0.00 VCC	0.0	0.20	V _{CCO} - 0.20	0.1	-0.1
PCI 3.3	-0.3	0.3 * 3.3 * (V _{CC} / 1.8)	0.5 * 3.3 * (V _{CC} / 1.8)	5.5	0.1 V _{CCO}	0.9 V _{CCO}	1.5	-0.5

Over Recommended Operating Conditions

 The average DC current drawn by I/Os between adjacent bank GND connections, or between the last GND in an I/O bank and the end of the I/O bank, as shown in the logic signals connection table, shall not exceed n*8mA. Where n is the number of I/Os between bank GND connections or between the last GND in a bank and the end of a bank.

2. For 1.5V inputs, there may be an additional DC current drawn from V_{CC} , if the ispMACH 4000ZE V_{CC} and the V_{CC} of the driving device (V_{CC} d-d; that determines steady state V_{IH}) are in the extreme range of their specifications. Typically, DC current drawn from V_{CC} will be 2µA per input.

ispMACH 4000ZE Internal Timing Parameters

		LC40)32ZE	LC40	64ZE	
			-4	-4		
Parameter	Description		Max.	Min.	Max.	Units
In/Out Delays	•					
t _{IN}	Input Buffer Delay	_	0.85	_	0.90	ns
t _{GCLK_IN}	Global Clock Input Buffer Delay	_	1.60	—	1.60	ns
t _{GOE}	Global OE Pin Delay	_	2.25	—	2.25	ns
t _{BUF}	Delay through Output Buffer	_	0.75	—	0.90	ns
t _{EN}	Output Enable Time	_	2.25	—	2.25	ns
t _{DIS}	Output Disable Time		1.35	_	1.35	ns
t _{PGSU}	Input Power Guard Setup Time		3.30	_	3.55	ns
t _{PGH}	Input Power Guard Hold Time		0.00	_	0.00	ns
t _{PGPW}	Input Power Guard BIE Minimum Pulse Width	_	5.00	—	5.00	ns
t _{PGRT}	Input Power Guard Recovery Time Following BIE Dissertation	_	5.00	_	5.00	ns
Routing Delays					1	1
t _{ROUTE}	Delay through GRP	—	1.60	—	1.70	ns
t _{PDi}	Macrocell Propagation Delay	_	0.25	—	0.25	ns
t _{MCELL}	Macrocell Delay	_	0.65	—	0.65	ns
t _{INREG}	Input Buffer to Macrocell Register Delay		0.90	_	1.00	ns
t _{FBK}	Internal Feedback Delay	_	0.55	—	0.55	ns
t _{ORP}	Output Routing Pool Delay	_	0.30	—	0.30	ns
Register/Latcl	h Delays					l
t _S	D-Register Setup Time (Global Clock)	0.70	_	0.85	_	ns
t _{S_PT}	D-Register Setup Time (Product Term Clock)	1.25		1.85	_	ns
t _H	D-Register Hold Time	1.50		1.65		ns
t _{ST}	T-Register Setup Time (Global Clock)	0.90		1.05		ns
t _{ST_PT}	T-register Setup Time (Product Term Clock)	1.45		1.65	_	ns
t _{HT}	T-Resister Hold Time	1.50		1.65		ns
t _{SIR}	D-Input Register Setup Time (Global Clock)	0.85		0.80		ns
t _{SIR_PT}	D-Input Register Setup Time (Product Term Clock)	1.45		1.45		ns
t _{HIR}	D-Input Register Hold Time (Global Clock)	1.15		1.30		ns
t _{HIR_PT}	D-Input Register Hold Time (Product Term Clock)	0.90		1.10		ns
t _{COi}	Register Clock to Output/Feedback MUX Time		0.35		0.40	ns
t _{CES}	Clock Enable Setup Time	1.00		2.00		ns
t _{CEH}	Clock Enable Hold Time	0.00		0.00		ns
t _{SL}	Latch Setup Time (Global Clock)	0.70		0.95		ns
t _{SL_PT}	Latch Setup Time (Product Term Clock)	1.45		1.85		ns
t _{HL}	Latch Hold Time	1.40	<u> </u>	1.80		ns
t _{GOi}	Latch Gate to Output/Feedback MUX Time		0.40		0.35	ns
t _{PDLi}	Propagation Delay through Transparent Latch to Output/ Feedback MUX	_	0.30	_	0.25	ns
t _{SRi}	Asynchronous Reset or Set to Output/Feedback MUX Delay		0.30	—	0.30	ns

ispMACH 4000ZE Internal Timing Parameters (Cont.)

Over Recommended Operating Conditions

			LC40)32ZE	LC40	64ZE	
			-	-4	-4		
Parameter	Description		Min.	Max.	Min.	Max.	Units
t _{SRR}	Asynchronous Reset or Set Recover	ery Delay		2.00		1.70	ns
Control Delays							
t _{BCLK}	GLB PT Clock Delay		—	1.20	_	1.30	ns
t _{PTCLK}	Macrocell PT Clock Delay			1.40	—	1.50	ns
t _{BSR}	Block PT Set/Reset Delay		—	1.10	—	1.85	ns
t _{PTSR}	Macrocell PT Set/Reset Delay			1.20	—	1.90	ns
t _{BIE}	Power Guard Block Input Enable D	elay		1.60	—	1.70	ns
t _{PTOE}	Macrocell PT OE Delay		—	2.30	—	3.15	ns
t _{GPTOE}	Global PT OE Delay			1.80	—	2.15	ns
Internal Oscillat	or				•	•	
toscsu	Oscillator DYNOSCDIS Setup Time)	5.00	—	5.00	—	ns
t _{OSCH}	Oscillator DYNOSCDIS Hold Time		5.00	—	5.00	—	ns
t _{OSCEN}	Oscillator OSCOUT Enable Time (7	Fo Stable)	—	5.00	—	5.00	ns
toscod	Oscillator Output Delay			4.00	—	4.00	ns
t _{OSCNOM}	Oscillator OSCOUT Nominal Frequ	ency		5.00		5.00	MHz
t _{OSCvar}	Oscillator Variation of Nominal Free	luency		30	—	30	%
t _{TMRCO20}	Oscillator TIMEROUT Clock (Nega (20-Bit Divider)	tive Edge) to Out	_	12.50	_	12.50	ns
t _{TMRCO10}	Oscillator TIMEROUT Clock (Nega (10-Bit Divider)	tive Edge) to Out		7.50	_	7.50	ns
t _{TMRCO7}	Oscillator TIMEROUT Clock (Nega (7-Bit Divider)	tive Edge) to Out		6.00	_	6.00	ns
t _{TMRRSTO}	Oscillator TIMEROUT Reset to Out	(Going Low)		5.00		5.00	ns
t _{TMRRR}	Oscillator TIMEROUT Asynchronou Delay	us Reset Recovery		4.00	_	4.00	ns
t _{TMRRSTPW}	Oscillator TIMEROUT Reset Minim	um Pulse Width	3.00	—	3.00	—	ns
Optional Delay	Adjusters	Base Parameter					
t _{INDIO}	Input Register Delay	t _{INREG}		1.00		1.00	ns
t _{EXP}	Product Term Expander Delay	t _{MCELL}	_	0.40	—	0.40	ns
t _{BLA}	Additional Block Loading Adders	t _{ROUTE}		0.04		0.05	ns
t _{IOI} Input Buffer	Delays						
LVTTL_in	Using LVTTL Standard with Hysteresis	$t_{IN}, t_{GCLK_IN}, t_{GOE}$		0.60	_	0.60	ns
LVCMOS15_in	Using LVCMOS 1.5 Standard	t _{IN} , t _{GCLK_IN} , t _{GOE}		0.20	_	0.20	ns
LVCMOS18_in	Using LVCMOS 1.8 Standard	t _{IN} , t _{GCLK_IN} , t _{GOE}		0.00	_	0.00	ns
LVCMOS25_in	Using LVCMOS 2.5 Standard with Hysteresis	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.80	_	0.80	ns
LVCMOS33_in	Using LVCMOS 3.3 Standard with Hysteresis	$t_{\text{IN}}, t_{\text{GCLK}_{\text{IN}}}, t_{\text{GOE}}$		0.80	—	0.80	ns
PCI_in	Using PCI Compatible Input with Hysteresis	$t_{\text{IN}}, t_{\text{GCLK}_{\text{IN}}}, t_{\text{GOE}}$	_	0.80	_	0.80	ns
t _{IOO} Output Buff	-	1	I	I	1	1	1
LVTTL_out	Output Configured as TTL Buffer	t _{EN} , t _{DIS} , t _{BUF}		0.20	_	0.20	ns

ispMACH 4032ZE and 4064ZE Logic Signal Connections: 48 TQFP

		ispMACH 4032ZE	ispMACH 4064ZE	
Pin Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad	
1	-	TDI	TDI	
2	0	A5	A8	
3	0	A6	A10	
4	0	A7	A11	
5	0	GND (Bank 0)	GND (Bank 0)	
6	0	VCCO (Bank 0)	VCCO (Bank 0)	
7	0	A8	B15	
8	0	A9	B12	
9	0	A10	B10	
10	0	A11	B8	
11	-	ТСК	TCK	
12	-	VCC	VCC	
13	-	GND	GND	
14	0	A12	B6	
15	0	A13	B4	
16	0	A14	B2	
17	0	A15	B0	
18	0	CLK1/I	CLK1/I	
19	1	CLK2/I	CLK2/I	
20	1	B0	CO	
21	1	B1	C1	
22	1	B2	C2	
23	1	B3	C4	
24	1	B4	C6	
25	-	TMS	TMS	
26	1	B5	C8	
27	1	B6	C10	
28	1	B7	C11	
29	1	GND (Bank 1)	GND (Bank 1)	
30	1	VCCO (Bank 1)	VCCO (Bank 1)	
31	1	B8	D15	
32	1	B9	D12	
33	1	B10	D10	
34	1	B11	D8	
35	-	TDO	TDO	
36	-	VCC	VCC	
37	-	GND	GND	
38	1	B12	D6	
39	1	B13	D4	
40	1	B14	D2	
41	1	B15/GOE1	D0/GOE1	
42	1	CLK3/I	CLK3/I	

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 100 TQFP

Pin	Bank	nk LC4064ZE	LC4128ZE	LC4256ZE
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad
1	-	GND	GND	GND
2	-	TDI	TDI	TDI
3	0	A8	B0	C12
4	0	A9	B2	C10
5	0	A10	B4	C6
6	0	A11	B6	C2
7	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
8	0	A12	B8	D12
9	0	A13	B10	D10
10	0	A14	B12	D6
11	0	A15	B13	D4
12*	0		I	I
13	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)
14	0	B15	C14	E4
15	0	B14	C12	E6
16	0	B13	C10	E10
17	0	B12	C8	E12
18	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
19	0	B11	C6	F2
20	0	B10	C5	F6
21	0	B9	C4	F10
22	0	B8	C2	F12
23*	0		I	I
24	-	TCK	ТСК	ТСК
25	-	VCC	VCC	VCC
26	-	GND	GND	GND
27*	0		I	
28	0	B7	D13	G12
29	0	B6	D12	G10
30	0	B5	D10	G6
31	0	B4	D8	G2
32	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
33	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)
34	0	B3	D6	H12
35	0	B2	D4	H10
36	0	B1	D2	H6
37	0	B0	D0	H2
38	0	CLK1/I	CLK1/I	CLK1/I
39	1	CLK2/I	CLK2/I	CLK2/I
40	-	VCC	VCC	VCC
41	1	CO	E0	12

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 100 TQFP (Cont.)

Pin	Bank	LC4064ZE	LC4128ZE	LC4256ZE
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad
42	1	C1	E2	16
43	1	C2	E4	110
44	1	C3	E6	112
45	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
46	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
47	1	C4	E8	J2
48	1	C5	E10	J6
49	1	C6	E12	J10
50	1	C7	E14	J12
51	-	GND	GND	GND
52	-	TMS	TMS	TMS
53	1	C8	F0	K12
54	1	C9	F2	K10
55	1	C10	F4	K6
56	1	C11	F6	K2
57	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
58	1	C12	F8	L12
59	1	C13	F10	L10
60	1	C14	F12	L6
61	1	C15	F13	L4
62*	1	I	I	I
63	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
64	1	D15	G14	M4
65	1	D14	G12	M6
66	1	D13	G10	M10
67	1	D12	G8	M12
68	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
69	1	D11	G6	N2
70	1	D10	G5	N6
71	1	D9	G4	N10
72	1	D8	G2	N12
73*	1	I	l	
74	-	TDO	TDO	TDO
75	-	VCC	VCC	VCC
76	-	GND	GND	GND
77*	1	I	I	I
78	1	D7	H13	012
79	1	D6	H12	O10
80	1	D5	H10	O6
81	1	D4	H8	O2
82	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)

ispMACH 4128ZE Logic Signal Connections: 132 ucBGA

Ball Number	Bank Number	GLB/MC/Pad
GND*	-	GND
A1	-	TDI
B1	0	VCCO (Bank 0)
D3	0	B0
C1	0	B1
D2	0	B2
D1	0	B4
E4	0	B5
F3	0	B6
E2	0	GND (Bank 0)
E1	0	B8
E3	0	B9
F4	0	B10
G4	0	B12
F2	0	B13
G3	0	B14
H4	0	VCCO (Bank 0)
F1	0	C14
G2	0	C13
G1	0	C12
H3	0	C10
J4	0	C9
H1	0	C8
H2	0	GND (Bank 0)
J3	0	C6
J1	0	C5
J2	0	C4
K3	0	C2
K2	0	C1
K1	0	CO
L2	0	VCCO (Bank 0)
L1	-	ТСК
M1	-	VCC
GND*	-	GND
L3	0	D14
M2	0	D13
K4	0	D12
M3	0	D10
K5	0	D9
L4	0	D8
M4	0	GND (Bank 0)
J5	0	VCCO (Bank 0)
L5	0	D6

ispMACH 4128ZE Logic Signal Connections: 132 ucBGA (Cont.)

Ball Number	Bank Number	GLB/MC/Pad
D10	1	G9
E12	1	G8
E9	1	GND (Bank 1)
D12	1	G6
D11	1	G5
C12	1	G4
C10	1	G2
C11	1	G1
B11	1	G0
D9	1	VCCO (Bank 1)
B12	-	TDO
A12	-	VCC
GND*	-	GND
A10	1	H14
A11	1	H13
B10	1	H12
C9	1	H10
D8	1	H9
C8	1	Н8
A9	1	GND (Bank 1)
C7	1	VCCO (Bank 1)
B9	1	H6
B8	1	H5
D7	1	H4
A8	1	H2
A7	1	H1
B6	1	H0/GOE1
C6	1	CLK3/I
B7	0	GND (Bank 0)
D6	0	CLK0/I
B5	-	VCC
A6	0	A0/GOE0
C5	0	A1
B4	0	A2
A5	0	A4
C4	0	A5
D5	0	A6
A4	0	VCCO (Bank 0)
B3	0	GND (Bank 0)
D4	0	A8
A3	0	A9
C3	0	A10
B2	0	A12
C2	0	A13

ispMACH 4128ZE Logic Signal Connections: 132 ucBGA (Cont.)

Ball Number	Bank Number	GLB/MC/Pad	
A2	0	A14	

* All bonded core grounds are connected to the following four balls, E5, E8, H5 and H8.

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA (Cont.)

Ball	Bank	LC4064ZE	LC4128ZE	LC4256ZE
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad
J4	0	B7	D12	G6
K4	0	B6	D10	G4
M3	0	B5	D9	G2
L4	0	B4	D8	G0
H6	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
J5	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)
M4	0	NC Ball	D6	H12
L5	0	NC Ball	D5	H10
K5	0	B3	D4	H8
J6	0	B2	D2	H6
M5	0	B1	D1	H4
K6	0	B0	D0	H2
L6	0	CLK1/I	CLK1/I	CLK1/I
H7	1	NC Ball	GND (Bank 1)	GND (Bank 1)
M6	1	CLK2/I	CLK2/I	CLK2/I
H8	-	VCC	VCC	VCC
K7	1	C0	E0	12
M7	1	C1	E1	14
L7	1	C2	E2	16
J7	1	C3	E4	18
L8	1	NC Ball	E5	110
M8	1	NC Ball	E6	12
J8	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
J9	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
M9	1	C4	E8	J2
L9	1	C5	E9	J4
K8	1	C6	E10	J6
M10	1	C7	E12	J8
L10	1	NC Ball	E13	J10
K9	1	NC Ball	E14	J12
M11	1	NC Ball	NC Ball	J14
G7	-	GND	GND	GND
M12	-	TMS	TMS	TMS
H9	1	NC Ball	VCCO (Bank 1)	VCCO (Bank 1)
L12	1	NC Ball	F0	K12
L11	1	NC Ball	F1	K10
K10	1	C8	F2	K8
K12	1	C9	F4	K6
J10	1	C10	F5	K4
K11	1	C11	F6	K2
G8	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA (Cont.)

Ball	Bank	LC4064ZE	LC4128ZE	LC4256ZE
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad
J12	1	NC Ball	NC Ball	L14
J11	1	NC Ball	NC Ball	L12
H10	1	NC Ball	F8	L10
H12	1	C12	F9	L8
G11	1	C13	F10	L6
H11	1	C14	F12	L4
G12	1	C15	F13	L2
G10*	1	Ι	F14	LO
G9	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
F12	1	D15	G14	M0
F11	1	D14	G13	M2
E11	1	D13	G12	M4
E12	1	D12	G10	M6
D10	1	NC Ball	G9	M8
F10	1	NC Ball	G8	M10
D12	1	NC Ball	NC Ball	M12
F8	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
E10	1	D11	G6	N2
D11	1	D10	G5	N4
E9	1	D9	G4	N6
C12	1	D8	G2	N8
C11*	1	I	G1	N10
B12	1	NC Ball	G0	N12
F9	1	NC Ball	VCCO (Bank 1)	VCCO (Bank 1)
B11	-	TDO	TDO	TDO
E8	-	VCC	VCC	VCC
F7	-	GND	GND	GND
A12	1	NC Ball	NC Ball	O14
C10	1	NC Ball	NC Ball	012
B10	1	NC Ball	H14	O10
A11*	1	I	H13	O8
D9	1	D7	H12	O6
B9	1	D6	H10	O4
C9	1	D5	H9	02
A10	1	D4	H8	O0
E7	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
D8	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
A9	1	NC Ball	H6	P12
B8	1	NC Ball	H5	P10
C8	1	D3	H4	P8
A8	1	D2	H2	P6
D7	1	D1	H1	P4
B7	1			

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA (Cont.)

Ball Number	Bank	LC4064ZE GLB/MC/Pad	LC4128ZE	LC4256ZE GLB/MC/Pad
	Number		GLB/MC/Pad	
C7	1	CLK3/I	CLK3/I	CLK3/I
E6	0	NC Ball	GND (Bank 0)	GND (Bank 0)
A7	0	CLK0/I	CLK0/I	CLK0/I
E5	-	VCC	VCC	VCC
D6	0	A0/GOE0	A0/GOE0	A2/GOE0
B6	0	A1	A1	A4
A6	0	A2	A2	A6
C6	0	A3	A4	A8
B5	0	NC Ball	A5	A10
A5	0	NC Ball	A6	A12
D5	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)
F5	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
A4	0	A4	A8	B2
B4	0	A5	A9	B4
C5	0	A6	A10	B6
A3	0	A7	A12	B8
C4	0	NC Ball	A13	B10
B3	0	NC Ball	A14	B12
A2	0	NC Ball	NC Ball	B14

* This pin is input only for the LC4064ZE.