

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

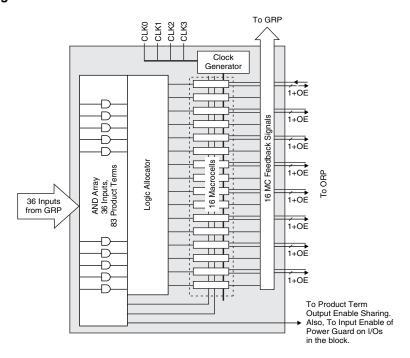
Applications of Embedded - CPLDs

Details	
Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
/oltage Supply - Internal	1.7V ~ 1.9V
Number of Logic Elements/Blocks	2
lumber of Macrocells	32
lumber of Gates	-
lumber of I/O	32
perating Temperature	-40°C ~ 105°C (TJ)
Nounting Type	Surface Mount
ackage / Case	48-LQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4032ze-7tn48i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The I/Os in the ispMACH 4000ZE are split into two banks. Each bank has a separate I/O power supply. Inputs can support a variety of standards independent of the chip or bank power supply. Outputs support the standards compatible with the power supply provided to the bank. Support for a variety of standards helps designers implement designs in mixed voltage environments. In addition, 5V tolerant inputs are specified within an I/O bank that is connected to a V_{CCO} of 3.0V to 3.6V for LVCMOS 3.3, LVTTL and PCI interfaces.


Architecture

There are a total of two GLBs in the ispMACH 4032ZE, increasing to 16 GLBs in the ispMACH 4256ZE. Each GLB has 36 inputs. All GLB inputs come from the GRP and all outputs from the GLB are brought back into the GRP to be connected to the inputs of any other GLB on the device. Even if feedback signals return to the same GLB, they still must go through the GRP. This mechanism ensures that GLBs communicate with each other with consistent and predictable delays. The outputs from the GLB are also sent to the ORP. The ORP then sends them to the associated I/O cells in the I/O block.

Generic Logic Block

The ispMACH 4000ZE GLB consists of a programmable AND array, logic allocator, 16 macrocells and a GLB clock generator. Macrocells are decoupled from the product terms through the logic allocator and the I/O pins are decoupled from macrocells through the ORP. Figure 2 illustrates the GLB.

Figure 2. Generic Logic Block

AND Array

The programmable AND Array consists of 36 inputs and 83 output product terms. The 36 inputs from the GRP are used to form 72 lines in the AND Array (true and complement of the inputs). Each line in the array can be connected to any of the 83 output product terms via a wired-AND. Each of the 80 logic product terms feed the logic allocator with the remaining three control product terms feeding the Shared PT Clock, Shared PT Initialization and Shared PT OE. The Shared PT Clock and Shared PT Initialization signals can optionally be inverted before being fed to the macrocells.

Every set of five product terms from the 80 logic product terms forms a product term cluster starting with PT0. There is one product term cluster for every macrocell in the GLB. Figure 3 is a graphical representation of the AND Array.

Product Term Allocator

The product term allocator assigns product terms from a cluster to either logic or control applications as required by the design being implemented. Product terms that are used as logic are steered into a 5-input OR gate associated with the cluster. Product terms that used for control are steered either to the macrocell or I/O cell associated with the cluster. Table 2 shows the available functions for each of the five product terms in the cluster.

Table 2. Individual PT Steering

Product Term	Logic	Control
PT <i>n</i>	Logic PT	Single PT for XOR/OR
PT <i>n</i> +1	Logic PT	Individual Clock (PT Clock)
PTn+2	Logic PT	Individual Initialization or Individual Clock Enable (PT Initialization/CE)
PTn+3	Logic PT	Individual Initialization (PT Initialization)
PT <i>n</i> +4	Logic PT	Individual OE (PTOE)

Cluster Allocator

The cluster allocator allows clusters to be steered to neighboring macrocells, thus allowing the creation of functions with more product terms. Table 3 shows which clusters can be steered to which macrocells. Used in this manner, the cluster allocator can be used to form functions of up to 20 product terms. Additionally, the cluster allocator accepts inputs from the wide steering logic. Using these inputs, functions up to 80 product terms can be created.

Table 3. Available Clusters for Each Macrocell

Macrocell		Available	Clusters	
MO	_	C0	C1	C2
M1	C0	C1	C2	C3
M2	C1	C2	C3	C4
M3	C2	C3	C4	C5
M4	C3	C4	C5	C6
M5	C4	C5	C6	C7
M6	C5	C6	C7	C8
M7	C6	C7	C8	C9
M8	C7	C8	C9	C10
M9	C8	C9	C10	C11
M10	C9	C10	C11	C12
M11	C10	C11	C12	C13
M12	C11	C12	C13	C14
M13	C12	C13	C14	C15
M14	C13	C14	C15	_
M15	C14	C15	_	_

Wide Steering Logic

The wide steering logic allows the output of the cluster allocator n to be connected to the input of the cluster allocator n+4. Thus, cluster chains can be formed with up to 80 product terms, supporting wide product term functions and allowing performance to be increased through a single GLB implementation. Table 4 shows the product term chains.

- Block CLK2
- Block CLK3
- PT Clock
- PT Clock Inverted
- Shared PT Clock
- Ground

Clock Enable Multiplexer

Each macrocell has a 4:1 clock enable multiplexer. This allows the clock enable signal to be selected from the following four sources:

- PT Initialization/CE
- PT Initialization/CE Inverted
- Shared PT Clock
- Logic High

Initialization Control

The ispMACH 4000ZE family architecture accommodates both block-level and macrocell-level set and reset capability. There is one block-level initialization term that is distributed to all macrocell registers in a GLB. At the macrocell level, two product terms can be "stolen" from the cluster associated with a macrocell to be used for set/reset functionality. A reset/preset swapping feature in each macrocell allows for reset and preset to be exchanged, providing flexibility.

Note that the reset/preset swapping selection feature affects power-up reset as well. All flip-flops power up to a known state for predictable system initialization. If a macrocell is configured to SET on a signal from the block-level initialization, then that macrocell will be SET during device power-up. If a macrocell is configured to RESET on a signal from the block-level initialization or is not configured for set/reset, then that macrocell will RESET on power-up. To guarantee initialization values, the V_{CC} rise must be monotonic, and the clock must be inactive until the reset delay time has elapsed.

GLB Clock Generator

Each ispMACH 4000ZE device has up to four clock pins that are also routed to the GRP to be used as inputs. These pins drive a clock generator in each GLB, as shown in Figure 6. The clock generator provides four clock signals that can be used anywhere in the GLB. These four GLB clock signals can consist of a number of combinations of the true and complement edges of the global clock signals.

Figure 6. GLB Clock Generator

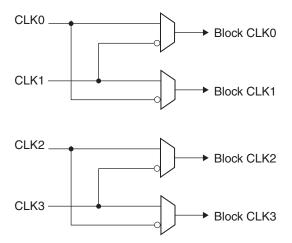
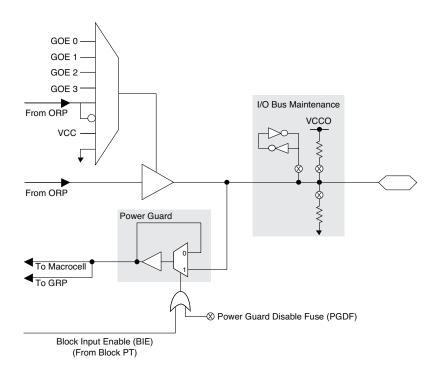



Figure 8. I/O Cell

Each output supports a variety of output standards dependent on the V_{CCO} supplied to its I/O bank. Outputs can also be configured for open drain operation. Each input can be programmed to support a variety of standards, independent of the V_{CCO} supplied to its I/O bank. The I/O standards supported are:

- LVTTL
 LVCMOS 1.8
 LVCMOS 1.5
- LVCMOS 2.5 3.3V PCI Compatible

All of the I/Os and dedicated inputs have the capability to provide a bus-keeper latch, pull-up resistor or pull-down resistor selectable on a "per-pin" basis. A fourth option is to provide none of these. The default in both hardware and software is such that when the device is erased or if the user does not specify, the input structure is configured to be a Pull-down Resistor.

Each ispMACH 4000ZE device I/O has an individually programmable output slew rate control bit. Each output can be individually configured for fast slew or slow slew. The typical edge rate difference between fast and slow slew setting is 20%. For high-speed designs with long, unterminated traces, the slow-slew rate will introduce fewer reflections, less noise and keep ground bounce to a minimum. For designs with short traces or well terminated lines, the fast slew rate can be used to achieve the highest speed.

The ispMACH 4000ZE family has an always on, 200mV typical hysteresis for each input operational at 3.3V and 2.5V. This provides improved noise immunity for slow transitioning signals.

Power Guard

Power Guard allows easier achievement of standby current in the system. As shown in Figure 9, this feature consists of an enabling multiplexer between an I/O pin and input buffer, and its associated circuitry inside the device.

If the enable signal (E) is held low, all inputs (D) can be optionally isolated (guarded), such that, if any of these were toggled, it would not cause any toggle on internal pins (Q), thus, a toggling I/O pin will not cause any internal dynamic power consumption.

mated test equipment. This equipment can then be used to program ispMACH 4000ZE devices during the testing of a circuit board.

User Electronic Signature

The User Electronic Signature (UES) allows the designer to include identification bits or serial numbers inside the device, stored in E²CMOS memory. The ispMACH 4000ZE device contains 32 UES bits that can be configured by the user to store unique data such as ID codes, revision numbers or inventory control codes.

Security Bit

A programmable security bit is provided on the ispMACH 4000ZE devices as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. Programming and verification are also defeated by the security bit. The bit can only be reset by erasing the entire device.

Hot Socketing

The ispMACH 4000ZE devices are well-suited for applications that require hot socketing capability. Hot socketing a device requires that the device, during power-up and down, can tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of I/O pin loading be minimal on active signals. The isp-MACH 4000ZE devices provide this capability for input voltages in the range 0V to 3.0V.

Density Migration

The ispMACH 4000ZE family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted for a high density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

ispMACH 4000ZE External Switching Characteristics

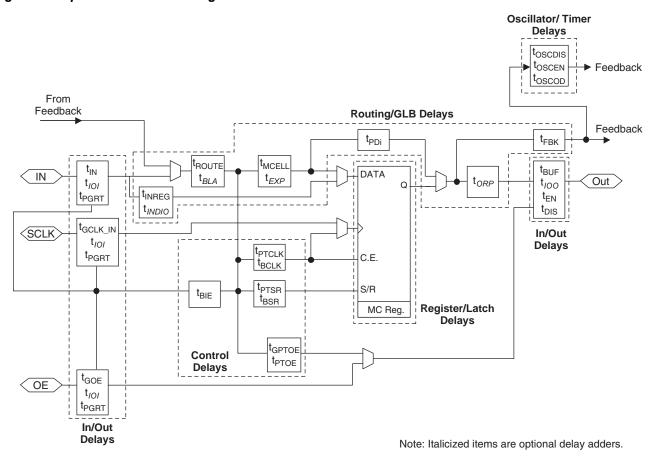
Over Recommended Operating Conditions

		LC4032ZE LC4064ZE			All De	vices				
		-	4	-	4	•	5	-	7	
Parameter	Description ^{1, 2}	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PD}	20-PT combinatorial propagation delay	_	4.4	_	4.7		5.8	_	7.5	ns
t _S	GLB register setup time before clock	2.2	_	2.5	_	2.9	_	4.5	_	ns
t _{ST}	GLB register setup time before clock with T-type register	2.4	_	2.7	_	3.1	_	4.7	_	ns
t _{SIR}	GLB register setup time before clock, input register path	1.0	_	1.1	_	1.3	_	1.4	_	ns
t _{SIRZ}	GLB register setup time before clock with zero hold	2.0	_	2.1	_	2.9	_	4.0	_	ns
t _H	GLB register hold time after clock	0.0	_	0.0	_	0.0	_	0.0	_	ns
t _{HT}	GLB register hold time after clock with T-type register	0.0	_	0.0	_	0.0	_	0.0	_	ns
t _{HIR}	GLB register hold time after clock, input register path	1.0	_	1.0	_	1.3	_	1.3	_	ns
t _{HIRZ}	GLB register hold time after clock, input register path with zero hold	0.0	_	0.0	_	0.0	_	0.0	_	ns
t _{CO}	GLB register clock-to-output delay	_	3.0	_	3.2	_	3.8	_	4.5	ns
t _R	External reset pin to output delay		5.0	_	6.0	_	7.5	_	9.0	ns
t _{RW}	External reset pulse duration	1.5	_	1.7	_	2.0	_	4.0	_	ns
t _{PTOE/DIS}	Input to output local product term output enable/disable	_	7.0	_	8.0	_	8.2		9.0	ns
t _{GPTOE/DIS}	Input to output global product term output enable/disable	_	6.5	_	7.0	_	10.0	_	10.5	ns
t _{GOE/DIS}	Global OE input to output enable/disable	_	4.5	_	4.5	_	5.5	_	7.0	ns
t _{CW}	Global clock width, high or low	1.0	_	1.5	_	1.8	_	2.8	_	ns
t _{GW}	Global gate width low (for low transparent) or high (for high transparent)	1.0	_	1.5	_	1.8	_	2.8	_	ns
t _{WIR}	Input register clock width, high or low	1.0	_	1.5	_	1.8	_	2.8	_	ns
f _{MAX} (Int.) ³	Clock frequency with internal feedback	_	260	_	241		200	_	172	MHz
f _{MAX} (Ext.)	clock frequency with external feedback, $[1 / (t_S + t_{CO})]$	_	192		175	_	149	_	111	MHz

^{1.} Timing numbers are based on default LVCMOS 1.8 I/O buffers. Use timing adjusters provided to calculate other standards.

Timing v.0.8

^{2.} Measured using standard switching GRP loading of 1 and 1 output switching.


^{3.} Standard 16-bit counter using GRP feedback.

Timing Model

The task of determining the timing through the ispMACH 4000ZE family, like any CPLD, is relatively simple. The timing model provided in Figure 16 shows the specific delay paths. Once the implementation of a given function is determined either conceptually or from the software report file, the delay path of the function can easily be determined from the timing model. The Lattice design tools report the timing delays based on the same timing model for a particular design. Note that the internal timing parameters are given for reference only, and are not tested. The external timing parameters are tested and guaranteed for every device. For more information on the timing model and usage, refer to TN1168, ispMACH 4000ZE Timing Model Design and Usage Guidelines.

Figure 16. ispMACH 4000ZE Timing Model

Over Recommended Operating Conditions

			LC40	32ZE	LC40	64ZE	
			-	4	-4		
Parameter	Description		Min.	Max.	Min.	Max.	Units
LVCMOS15_out	Output Configured as 1.5V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns
LVCMOS18_out	Output Configured as 1.8V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.00	_	0.00	ns
LVCMOS25_out	Output Configured as 2.5V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.10	_	0.10	ns
LVCMOS33_out	Output Configured as 3.3V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns
PCI_out	Output Configured as PCI Compatible Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns
Slow Slew	Output Configured for Slow Slew Rate	t _{EN} , t _{BUF}	_	1.00	_	1.00	ns

Note: Internal Timing Parameters are not tested and are for reference only. Refer to the timing model in this data sheet for further details. Timing v.0.8

Over Recommended Operating Conditions

			All De	evices		
			-5	-	7	
Parameter	Description	Min.	Max.	Min.	Max.	Units
In/Out Delays	·					
t _{IN}	Input Buffer Delay	_	1.05	_	1.90	ns
t _{GCLK_IN}	Global Clock Input Buffer Delay	_	1.95	_	2.15	ns
t _{GOE}	Global OE Pin Delay	_	3.00	_	4.30	ns
t _{BUF}	Delay through Output Buffer	_	1.10	_	1.30	ns
t _{EN}	Output Enable Time	_	2.50	_	2.70	ns
t _{DIS}	Output Disable Time	_	2.50	_	2.70	ns
t _{PGSU}	Input Power Guard Setup Time	_	4.30	_	5.60	ns
t _{PGH}	Input Power Guard Hold Time	_	0.00	_	0.00	ns
t _{PGPW}	Input Power Guard BIE Minimum Pulse Width	_	6.00	_	8.00	ns
t _{PGRT}	Input Power Guard Recovery Time Following BIE Dissertation	_	5.00	_	7.00	ns
Routing Delays	; ;					
t _{ROUTE}	Delay through GRP	_	2.25	_	2.50	ns
t _{PDi}	Macrocell Propagation Delay	_	0.45	_	0.50	ns
t _{MCELL}	Macrocell Delay	_	0.65	_	1.00	ns
t _{INREG}	Input Buffer to Macrocell Register Delay	_	1.00	_	1.00	ns
t _{FBK}	Internal Feedback Delay	_	0.75	_	0.30	ns
t _{ORP}	Output Routing Pool Delay	_	0.30	_	0.30	ns
Register/Latc						
t _S	D-Register Setup Time (Global Clock)	0.90	_	1.25	_	ns
t _{S_PT}	D-Register Setup Time (Product Term Clock)	2.00	_	2.35	_	ns
t _H	D-Register Hold Time	2.00	_	3.25	_	ns
t _{ST}	T-Register Setup Time (Global Clock)	1.10	_	1.45	_	ns
t _{ST_PT}	T-register Setup Time (Product Term Clock)	2.20	_	2.65	_	ns
t _{HT}	T-Resister Hold Time	2.00	_	3.25	_	ns
t _{SIR}	D-Input Register Setup Time (Global Clock)	1.20	_	0.65	_	ns
t _{SIR_PT}	D-Input Register Setup Time (Product Term Clock)	1.45	_	1.45	_	ns
t _{HIR}	D-Input Register Hold Time (Global Clock)	1.40	_	2.05	_	ns
t _{HIR_PT}	D-Input Register Hold Time (Product Term Clock)	1.10	_	1.20	_	ns
t _{COi}	Register Clock to Output/Feedback MUX Time	_	0.45	_	0.75	ns
t _{CES}	Clock Enable Setup Time	2.00	_	2.00	_	ns
t _{CEH}	Clock Enable Hold Time	0.00	_	0.00	_	ns
t _{SL}	Latch Setup Time (Global Clock)	0.90	_	1.55	_	ns
t _{SL_PT}	Latch Setup Time (Product Term Clock)	2.00	_	2.05	_	ns
t _{HL}	Latch Hold Time	2.00	_	1.17	_	ns
t _{GOi}	Latch Gate to Output/Feedback MUX Time		0.35	_	0.33	ns
t _{PDLi}	Propagation Delay through Transparent Latch to Output/ Feedback MUX	_	0.25	_	0.25	ns
t _{SRi}	Asynchronous Reset or Set to Output/Feedback MUX Delay	_	0.95	_	0.28	ns

Over Recommended Operating Conditions

				All Devices				
				·5	-	7		
Parameter	Description		Min.	Max.	Min.	Max.	Units	
t _{SRR}	Asynchronous Reset or Set Recover	ery Delay	_	1.80	_	1.67	ns	
Control Delays								
t _{BCLK}	GLB PT Clock Delay		_	1.45	_	0.95	ns	
t _{PTCLK}	Macrocell PT Clock Delay		_	1.45	_	1.15	ns	
t _{BSR}	Block PT Set/Reset Delay		_	1.85	_	1.83	ns	
t _{PTSR}	Macrocell PT Set/Reset Delay		_	1.85	_	2.72	ns	
t _{BIE}	Power Guard Block Input Enable D	elay	_	1.75	_	1.95	ns	
t _{PTOE}	Macrocell PT OE Delay		_	2.40	_	1.90	ns	
t _{GPTOE}	Global PT OE Delay		_	4.20	_	3.40	ns	
Internal Oscillat	or							
toscsu	Oscillator DYNOSCDIS Setup Time	9	5.00	_	5.00	_	ns	
tosch	Oscillator DYNOSCDIS Hold Time		5.00	_	5.00	_	ns	
t _{OSCEN}	Oscillator OSCOUT Enable Time (To Stable)	_	5.00	_	5.00	ns	
t _{OSCOD}	Oscillator Output Delay		_	4.00	_	4.00	ns	
toscnom	Oscillator OSCOUT Nominal Frequency	iency		5.00		5.00	MHz	
t _{OSCvar}	Oscillator Variation of Nominal Fred	quency	_	30	_	30	%	
t _{TMRCO20}	Oscillator TIMEROUT Clock (Negative Edge) to Out (20-Bit Divider)		_	12.50	_	14.50	ns	
t _{TMRCO10}	Oscillator TIMEROUT Clock (Nega (10-Bit Divider)	tive Edge) to Out	_	7.50	_	9.50	ns	
t _{TMRCO7}	Oscillator TIMEROUT Clock (Nega (7-Bit Divider)	tive Edge) to Out	_	6.00	_	8.00	ns	
t _{TMRRSTO}	Oscillator TIMEROUT Reset to Out	t (Going Low)	_	5.00	_	7.00	ns	
t _{TMRRR}	Oscillator TIMEROUT Asynchronol Delay	us Reset Recovery	_	4.00	_	6.00	ns	
t _{TMRRSTPW}	Oscillator TIMEROUT Reset Minim	um Pulse Width	3.00	_	5.00	_	ns	
Optional Delay	Adjusters	Base Parameter						
t _{INDIO}	Input Register Delay	t _{INREG}	_	1.60	_	2.60	ns	
t _{EXP}	Product Term Expander Delay	t _{MCELL}	_	0.45	_	0.50	ns	
t _{BLA}	Additional Block Loading Adders	t _{ROUTE}	_	0.05	_	0.05	ns	
t _{IOI} Input Buffer	Delays		I				I	
LVTTL_in	Using LVTTL Standard with Hysteresis	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.60	_	0.60	ns	
LVCMOS15_in	Using LVCMOS 1.5 Standard	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.20	_	0.20	ns	
LVCMOS18_in	Using LVCMOS 1.8 Standard	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.00	_	0.00	ns	
LVCMOS25_in	Using LVCMOS 2.5 Standard with Hysteresis $t_{\text{IN}}, t_{\text{GCLK_IN}}, t_{\text{GOE}}$		_	0.80	_	0.80	ns	
LVCMOS33_in	Using LVCMOS 3.3 Standard with Hysteresis	Using LVCMOS 3.3 Standard with		0.80	_	0.80	ns	
PCI_in	Using PCI Compatible Input with Hysteresis	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.80	_	0.80	ns	
t _{IOO} Output Buff	er Delays	l		1	1			
LVTTL_out	Output Configured as TTL Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns	

Over Recommended Operating Conditions

			-	5	-	7	
Parameter	Description		Min.	Max.	Min.	Max.	Units
LVCMOS15_out	Output Configured as 1.5V Buffer	t _{EN} , t _{DIS} , t _{BUF}		0.20	_	0.20	ns
LVCMOS18_out	Output Configured as 1.8V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.00	_	0.00	ns
LVCMOS25_out	Output Configured as 2.5V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.10	_	0.10	ns
LVCMOS33_out	Output Configured as 3.3V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns
PCI_out	Output Configured as PCI Compatible Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns
Slow Slew	Output Configured for Slow Slew Rate	t _{EN} , t _{BUF}	_	1.00	_	1.00	ns

Note: Internal Timing Parameters are not tested and are for reference only. Refer to the timing model in this data sheet for further details. Timing v.0.8

Switching Test Conditions

Figure 17 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 13.

Figure 17. Output Test Load, LVTTL and LVCMOS Standards

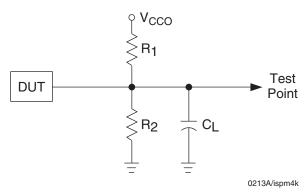


Table 13. Test Fixture Required Components

Test Condition	R ₁	R ₂	C _L ¹	Timing Ref.	V _{cco}
				LVCMOS 3.3 = 1.5V	LVCMOS 3.3 = 3.0V
				LVCMOS $2.5 = \frac{V_{CCO}}{2}$	LVCMOS 2.5 = 2.3V
LVCMOS I/O, (L -> H, H -> L)	106Ω	106Ω	35pF	LVCMOS 1.8 = $\frac{V_{CCO}}{2}$	LVCMOS 1.8 = 1.65V
				LVCMOS 1.5 = $\frac{V_{CCO}}{2}$	LVCMOS 1.5 = 1.4V
LVCMOS I/O (Z -> H)	∞	106Ω	35pF	1.5V	3.0V
LVCMOS I/O (Z -> L)	106Ω	∞	35pF	1.5V	3.0V
LVCMOS I/O (H -> Z)	∞	106Ω	5pF	V _{OH} - 0.3	3.0V
LVCMOS I/O (L -> Z)	106Ω	8	5pF	V _{OL} + 0.3	3.0V

^{1.} C_L includes test fixtures and probe capacitance.

ispMACH 4000ZE Power Supply and NC Connections¹

Signal	48 TQFP ²	64 csBGA ^{3, 4}	64 ucBGA ^{3, 4}	100 TQFP ²
VCC	12, 36	E4, D5	E4, D5	25, 40, 75, 90
VCCO0 VCCO (Bank 0)	6	4032ZE : E3 4064ZE : E3, F4	C3, F3	13, 33, 95
VCCO1 VCCO (Bank 1)	30	4032ZE : D6 4064ZE : D6, C6	F6, A6	45, 63, 83
GND	13, 37	D4, E5	D4, D5	1, 26, 51, 76
GND (Bank 0)	5	D4, E5	D4, D5	7, 18, 32, 96
GND (Bank 1)	29	D4, E5	D4, D5	46, 57, 68, 82
NC	_	_	_	<u> </u>

^{1.} All grounds must be electrically connected at the board level. However, for the purposes of I/O current loading, grounds are associated with the bank shown.

^{2.} Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.

^{3.} Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.

^{4.} All bonded grounds are connected to the following two balls, D4 and E5.

ispMACH 4064ZE Logic Signal Connections: 64 ucBGA (Cont.)

Ball Number	Bank Number	GLB/MC/Pad
E7	1	D13
E6	1	D12
D8	1	D11
D7	1	D10
D6	1	D9
C8	1	D8
C7	-	TDO
D5	-	VCC
GND*	-	GND
B8	1	D7
A8	1	D6
B7	1	D5
A7	1	D4
GND*	1	GND (Bank 1)
A6	1	VCCO (Bank 1)
B6	1	D3
C6	1	D2
A5	1	D0/GOE1
B5	1	CLK3/I
C5	0	CLK0/I
A4	0	A0/GOE0
B4	0	A1
C4	0	A2
A3	0	A4
A2	0	A6

^{*} All bonded grounds are connected to the following two balls, D4 and E5.

ispMACH 4128ZE Logic Signal Connections: 132 ucBGA

Ball Number	Bank Number	GLB/MC/Pad
GND*	-	GND
A1	-	TDI
B1	0	VCCO (Bank 0)
D3	0	В0
C1	0	B1
D2	0	B2
D1	0	B4
E4	0	B5
F3	0	B6
E2	0	GND (Bank 0)
E1	0	B8
E3	0	В9
F4	0	B10
G4	0	B12
F2	0	B13
G3	0	B14
H4	0	VCCO (Bank 0)
F1	0	C14
G2	0	C13
G1	0	C12
H3	0	C10
J4	0	C9
H1	0	C8
H2	0	GND (Bank 0)
J3	0	C6
J1	0	C5
J2	0	C4
КЗ	0	C2
K2	0	C1
K1	0	C0
L2	0	VCCO (Bank 0)
L1	-	TCK
M1	-	VCC
GND*	-	GND
L3	0	D14
M2	0	D13
K4	0	D12
M3	0	D10
K5	0	D9
L4	0	D8
M4	0	GND (Bank 0)
J5	0	VCCO (Bank 0)
L5	0	D6

ispMACH 4128ZE Logic Signal Connections: 132 ucBGA (Cont.)

Ball Number	Bank Number	GLB/MC/Pad
M5	0	D5
J6	0	D4
K6	0	D2
L6	0	D1
M6	0	D0
K7	0	CLK1/I
L7	1	GND (Bank 1)
J7	1	CLK2/I
M7	-	VCC
K8	1	E0
L8	1	E1
M8	1	E2
J8	1	E4
L9	1	E5
M9	1	E6
K9	1	VCCO (Bank 1)
J9	1	GND (Bank 1)
L10	1	E8
K10	1	E9
M10	1	E10
L11	1	E12
K12	1	E13
M11	1	E14
GND*	-	GND
M12	-	TMS
L12	1	VCCO (Bank 1)
K11	1	F0
J10	1	F1
H9	1	F2
J12	1	F4
J11	1	F5
H10	1	F6
H12	1	GND (Bank 1)
G9	1	F8
H11	1	F9
F9	1	F10
G12	1	F12
G11	1	F13
G10	1	F14
F12	1	VCCO (Bank 1)
F10	1	G14
F11	1	G13
E11	1	G12
E10	1	G10

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA

Ball Bank	Rank	LC4064ZE	LC4128ZE	LC4256ZE
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad
F6	-	GND	GND	GND
A1	-	TDI	TDI	TDI
E4	0	NC Ball	VCCO (Bank 0)	VCCO (Bank 0)
B2	0	NC Ball	В0	C12
B1	0	NC Ball	B1	C10
C3	0	A8	B2	C8
C2	0	A9	B4	C6
C1	0	A10	B5	C4
D1	0	A11	B6	C2
G5	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
D2	0	NC Ball	NC Ball	D14
D3	0	NC Ball	NC Ball	D12
E1	0	NC Ball	B8	D10
E2	0	A12	B9	D8
F2	0	A13	B10	D6
D4	0	A14	B12	D4
F1	0	A15	B13	D2
F3*	0	I	B14	D0
F4	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)
G1	0	B15	C14	E0
E3	0	B14	C13	E2
G2	0	B13	C12	E4
G3	0	B12	C10	E6
H1	0	NC Ball	C9	E8
H3	0	NC Ball	C8	E10
H2	0	NC Ball	NC Ball	E12
H4	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
J1	0	B11	C6	F2
J3	0	B10	C5	F4
J2	0	B9	C4	F6
K1	0	B8	C2	F8
K2*	0	I	C1	F10
L1	0	NC Ball	C0	F12
G4	0	NC Ball	VCCO (Bank 0)	VCCO (Bank 0)
L2	-	TCK	TCK	TCK
H5	-	VCC	VCC	VCC
G6	-	GND	GND	GND
M1	0	NC Ball	NC Ball	G14
K3	0	NC Ball	NC Ball	G12
M2	0	NC Ball	D14	G10
L3*	0	I	D13	G8

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA (Cont.)

Ball Bank Number Number	Bank	LC4064ZE	LC4128ZE	LC4256ZE
		GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad
J4	0	В7	D12	G6
K4	0	B6	D10	G4
М3	0	B5	D9	G2
L4	0	B4	D8	G0
H6	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
J5	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)
M4	0	NC Ball	D6	H12
L5	0	NC Ball	D5	H10
K5	0	B3	D4	H8
J6	0	B2	D2	H6
M5	0	B1	D1	H4
K6	0	В0	D0	H2
L6	0	CLK1/I	CLK1/I	CLK1/I
H7	1	NC Ball	GND (Bank 1)	GND (Bank 1)
M6	1	CLK2/I	CLK2/I	CLK2/I
H8	-	VCC	VCC	VCC
K7	1	C0	E0	12
M7	1	C1	E1	14
L7	1	C2	E2	16
J7	1	C3	E4	18
L8	1	NC Ball	E5	l10
M8	1	NC Ball	E6	l12
J8	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
J9	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
M9	1	C4	E8	J2
L9	1	C5	E9	J4
K8	1	C6	E10	J6
M10	1	C7	E12	J8
L10	1	NC Ball	E13	J10
K9	1	NC Ball	E14	J12
M11	1	NC Ball	NC Ball	J14
G7	-	GND	GND	GND
M12	-	TMS	TMS	TMS
H9	1	NC Ball	VCCO (Bank 1)	VCCO (Bank 1)
L12	1	NC Ball	F0	K12
L11	1	NC Ball	F1	K10
K10	1	C8	F2	K8
K12	1	C9	F4	K6
J10	1	C10	F5	K4
K11	1	C11	F6	K2
G8	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA (Cont.)

J12 J11 H10 H12 G11 H11 G12 G10* G9 F12	Bank Number	GLB/MC/Pad NC Ball NC Ball NC Ball C12 C13 C14 C15	GLB/MC/Pad NC Ball NC Ball F8 F9 F10 F12	GLB/MC/Pad L14 L12 L10 L8 L6 L4
J11 H10 H12 G11 H11 G12 G10* G9 F12	1 1 1 1 1 1 1	NC Ball NC Ball C12 C13 C14 C15	NC Ball F8 F9 F10 F12	L12 L10 L8 L6
H10 H12 G11 H11 G12 G10* G9 F12	1 1 1 1 1	NC Ball C12 C13 C14 C15	F8 F9 F10 F12	L10 L8 L6
H12 G11 H11 G12 G10* G9 F12	1 1 1 1	C12 C13 C14 C15	F9 F10 F12	L8 L6
G11 H11 G12 G10* G9 F12	1 1 1	C13 C14 C15	F10 F12	L6
H11 G12 G10* G9 F12	1 1 1	C14 C15	F12	
G12 G10* G9 F12	1 1	C15		Ι /
G10* G9 F12	1		E40	L 4
G9 F12		ı	F13	L2
F12	1	I .	F14	LO
		VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
	1	D15	G14	MO
F11	1	D14	G13	M2
E11	1	D13	G12	M4
E12	1	D12	G10	M6
D10	1	NC Ball	G9	M8
F10	1	NC Ball	G8	M10
D12	1	NC Ball	NC Ball	M12
F8	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
E10	1	D11	G6	N2
D11	1	D10	G5	N4
E9	1	D9	G4	N6
C12	1	D8	G2	N8
C11*	1	<u> </u>	G1	N10
B12	1	NC Ball	G0	N12
F9	1	NC Ball	VCCO (Bank 1)	VCCO (Bank 1)
B11	-	TDO	TDO	TDO
E8	-	VCC	VCC	VCC
F7	-	GND	GND	GND
A12	1	NC Ball	NC Ball	014
C10	1	NC Ball	NC Ball	012
B10	1	NC Ball	H14	O10
A11*	1	I	H13	O8
D9	1	D7	H12	O6
B9	1	D6	H10	04
C9	1	D5	H9	02
A10	1	D4	H8	00
E7	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
D8	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
A9	1	NC Ball	H6	P12
B8	1	NC Ball	H5	P10
C8	1	D3	H4	P8
A8	1	D2	H2	P6
D7	1	D1	H1	P4
B7	1	D0/G0F1	H0/G0F1	P2/GOF1

Revision History

Date	Version	Change Summary
April 2008	01.0	Initial release.
July 2008 01.1		Updated Features bullets.
		Updated typical Hysteresis voltage.
		Updated Power Guard for Dedicated Inputs section.
		Updated DC Electrical Characteristics table.
		Updated Supply Current table.
		Updated I/O DC Electrical Characteristics table and note 2.
		Updated ispMACH 4000ZE Timing Model.
		Added new parameters for the Internal Oscillator.
		Updated ORP Reference table.
		Updated Power Supply and NC Connections table.
		Updated 100 TQFP Logic Signal Connections table with LC4128ZE and 4256ZE.
		Updated 144 csBGA Logic Signal Connections table with LC4128ZE and 4256ZE.
		Added 144 TQFP Logic Signal Connections table.
August 2008	01.2	Data sheet status changed from advance to final.
		Updated Supply Current table.
		Updated External Switching Characteristics.
		Updated Internal Timing Parameters.
		Updated Power Consumption graph and Power Estimation Coefficients table.
		Updated Ordering Information mark format example.
December 2008	01.3	Updated ispMACH 4000ZE Family Selection Guide table to include 64-ball ucBGA and 132-ball ucBGA packages.
		Updated ispMACH 4000ZE Power Supply and NC Connections table to include 64-ball ucBGA and 132-ball ucBGA packages.
		Added Logic Signal Connections tables for 64-ball ucBGA and 132-ball ucBGA packages.
		Updated Part Number Description diagram for 64-ball ucBGA and 132-ball ucBGA packages.
		Updated Ordering Information tables for 64-ball ucBGA and 132-ball ucBGA packages.
May 2009	01.4	Correction to t _{CW} , t _{GW} , t _{WIR} and f _{MAX} parameters in External Switching Characteristics table.
June 2011	01.5	Added copper bond package part numbers.
		Added footnote 4 to Absolute Maximum Ratings.
February 2012	01.6	Updated document with new corporate logo.
February 2012	01.7	Removed copper bond packaging information. Refer to PCN 04A-12 for further information.
		Updated topside marks with new logos in the Ordering Information section.