E: Lattice Semiconductor Corporation - <u>LC4064ZE-4TN100C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	4.7 ns
Voltage Supply - Internal	1.7V ~ 1.9V
Number of Logic Elements/Blocks	4
Number of Macrocells	64
Number of Gates	-
Number of I/O	64
Operating Temperature	0°C ~ 90°C (TJ)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4064ze-4tn100c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Product Term Allocator

The product term allocator assigns product terms from a cluster to either logic or control applications as required by the design being implemented. Product terms that are used as logic are steered into a 5-input OR gate associated with the cluster. Product terms that used for control are steered either to the macrocell or I/O cell associated with the cluster. Table 2 shows the available functions for each of the five product terms in the cluster.

Product Term	Logic	Control
PT <i>n</i>	Logic PT	Single PT for XOR/OR
PT <i>n</i> +1	Logic PT	Individual Clock (PT Clock)
PT <i>n</i> +2	Logic PT	Individual Initialization or Individual Clock Enable (PT Initialization/CE)
PT <i>n</i> +3	Logic PT	Individual Initialization (PT Initialization)
PT <i>n</i> +4	Logic PT	Individual OE (PTOE)

Cluster Allocator

The cluster allocator allows clusters to be steered to neighboring macrocells, thus allowing the creation of functions with more product terms. Table 3 shows which clusters can be steered to which macrocells. Used in this manner, the cluster allocator can be used to form functions of up to 20 product terms. Additionally, the cluster allocator accepts inputs from the wide steering logic. Using these inputs, functions up to 80 product terms can be created.

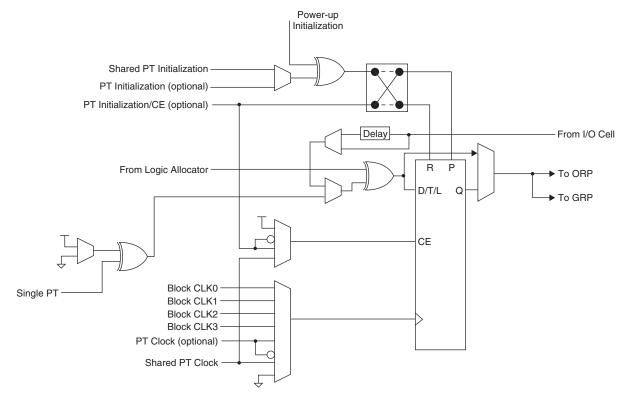
Macrocell		Available Clusters				
MO	—	C0	C1	C2		
M1	C0	C1	C2	C3		
M2	C1	C2	C3	C4		
M3	C2	C3	C4	C5		
M4	C3	C4	C5	C6		
M5	C4	C5	C6	C7		
M6	C5	C6	C7	C8		
M7	C6	C7	C8	C9		
M8	C7	C8	C9	C10		
M9	C8	C9	C10	C11		
M10	C9	C10	C11	C12		
M11	C10	C11	C12	C13		
M12	C11	C12	C13	C14		
M13	C12	C13	C14	C15		
M14	C13	C14	C15	—		
M15	C14	C15	_	_		

Table 3. Available Clusters for Each Macrocell

Wide Steering Logic

The wide steering logic allows the output of the cluster allocator n to be connected to the input of the cluster allocator n+4. Thus, cluster chains can be formed with up to 80 product terms, supporting wide product term functions and allowing performance to be increased through a single GLB implementation. Table 4 shows the product term chains.

Expansion Chains	Macrocells Associated with Expansion Chain (with Wrap Around)	Max PT/ Macrocell
Chain-0	M0 Õ M4 Õ M8 Õ M12 Õ M0	75
Chain-1	M1 Õ M5 Õ M9 Õ M13 Õ M1	80
Chain-2	M2 Õ M6 Õ M10 Õ M14 Õ M2	75
Chain-3	M3 Õ M7 Õ M11 Õ M15 Õ M3	70


Table 4. Product Term Expansion Capability

Every time the super cluster allocator is used, there is an incremental delay of t_{EXP} . When the super cluster allocator is used, all destinations other than the one being steered to, are given the value of ground (i.e., if the super cluster is steered to M (n+4), then M (n) is ground).

Macrocell

The 16 macrocells in the GLB are driven by the 16 outputs from the logic allocator. Each macrocell contains a programmable XOR gate, a programmable register/latch, along with routing for the logic and control functions. Figure 5 shows a graphical representation of the macrocell. The macrocells feed the ORP and GRP. A direct input from the I/O cell allows designers to use the macrocell to construct high-speed input registers. A programmable delay in this path allows designers to choose between the fastest possible set-up time and zero hold time.

Figure 5. Macrocell

Enhanced Clock Multiplexer

The clock input to the flip-flop can select any of the four block clocks along with the shared PT clock, and true and complement forms of the optional individual term clock. An 8:1 multiplexer structure is used to select the clock. The eight sources for the clock multiplexer are as follows:

- Block CLK0
- Block CLK1

Absolute Maximum Ratings^{1, 2, 3, 4}

Supply Voltage (V_CC) \ldots
Output Supply Voltage (V_{CCO})
Input or I/O Tristate Voltage Applied ^{5, 6}
Storage Temperature65 to 150°C
Junction Temperature (Tj) with Power Applied55 to 150°C

- 1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
- 2. Compliance with Lattice Thermal Management document is required.
- 3. All voltages referenced to GND.
- 4. Please refer to the Lattice ispMACH 4000V/B/C/ZC/ZE Product Family Qualification Summary for complete data, including the ESD performance data.
- 5. Undershoot of -2V and overshoot of (V_{IH} (MAX) + 2V), up to a total pin voltage of 6V is permitted for a duration of <20ns.
- 6. Maximum of 64 I/Os per device with VIN > 3.6V is allowed.

Recommended Operating Conditions

Symbol	Parameter			Max.	Units
		Standard Voltage Operation	1.7	1.9	V
V _{CC}	Supply Voltage	Extended Voltage Operation	1.6 ¹	1.9	V
т	Junction Temperature (Commercial)		0	90	°C
۱j	Junction Temperature (Industrial)		-40	105	°C

1. Devices operating at 1.6V can expect performance degradation up to 35%.

Erase Reprogram Specifications

Parameter	Min.	Max.	Units
Erase/Reprogram Cycle	1,000		Cycles

Note: Valid over commercial temperature range.

Hot Socketing Characteristics^{1,2,3}

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I	Input or I/O Leakage Current	$0 \le V_{IN} \le 3.0V$, Tj = 105°C		±30	±150	μΑ
DK	Input of I/O Leakage Current	$0 \le V_{IN} \le 3.0V$, Tj = $130^{\circ}C$	_	±30	±200	μA

1. Insensitive to sequence of V_{CC} or V_{CCO.} However, assumes monotonic rise/fall rates for V_{CC} and V_{CCO,} provided (V_{IN} - V_{CCO}) \leq 3.6V.

2. $0 < V_{CC} < V_{CC}$ (MAX), $0 < V_{CCO} < V_{CCO}$ (MAX).

3. I_{DK} is additive to I_{PU} , I_{PD} or I_{BH} . Device defaults to pull-up until fuse circuitry is active.

ispMACH 4000ZE Internal Timing Parameters (Cont.)

Over Recommended Operating Conditions

			LC40	32ZE	LC40	64ZE	
			-	4	-	4	
Parameter	Description		Min.	Max.	Min.	Max.	Units
LVCMOS15_out	Output Configured as 1.5V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns
LVCMOS18_out	Output Configured as 1.8V Buffer	t _{EN} , t _{DIS} , t _{BUF}	—	0.00	_	0.00	ns
LVCMOS25_out	Output Configured as 2.5V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.10	_	0.10	ns
LVCMOS33_out	Output Configured as 3.3V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns
PCI_out	Output Configured as PCI Compati- ble Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns
Slow Slew	Output Configured for Slow Slew Rate	t _{EN} , t _{BUF}	_	1.00	_	1.00	ns

Note: Internal Timing Parameters are not tested and are for reference only. Refer to the timing model in this data sheet for further details. Timing v.0.8

ispMACH 4000ZE Internal Timing Parameters (Cont.)

		All Devices				
		-5		-7]
Parameter	Description		Max.	Min.	Max.	Units
In/Out Delays						
t _{IN}	Input Buffer Delay	—	1.05	—	1.90	ns
t _{GCLK_IN}	Global Clock Input Buffer Delay	_	1.95	—	2.15	ns
t _{GOE}	Global OE Pin Delay		3.00	—	4.30	ns
t _{BUF}	Delay through Output Buffer	_	1.10	—	1.30	ns
t _{EN}	Output Enable Time		2.50	—	2.70	ns
t _{DIS}	Output Disable Time		2.50	—	2.70	ns
t _{PGSU}	Input Power Guard Setup Time	_	4.30	—	5.60	ns
t _{PGH}	Input Power Guard Hold Time		0.00	—	0.00	ns
t _{PGPW}	Input Power Guard BIE Minimum Pulse Width	_	6.00	—	8.00	ns
t _{PGRT}	Input Power Guard Recovery Time Following BIE Dis- sertation	_	5.00	—	7.00	ns
Routing Delays						1
t _{ROUTE}	Delay through GRP	_	2.25	—	2.50	ns
t _{PDi}	Macrocell Propagation Delay	_	0.45	—	0.50	ns
t _{MCELL}	Macrocell Delay	_	0.65	_	1.00	ns
t _{INREG}	Input Buffer to Macrocell Register Delay	_	1.00	—	1.00	ns
t _{FBK}	Internal Feedback Delay	_	0.75	_	0.30	ns
t _{ORP}	Output Routing Pool Delay	_	0.30	_	0.30	ns
Register/Latch						
t _S	D-Register Setup Time (Global Clock)	0.90	_	1.25		ns
t _{S_PT}	D-Register Setup Time (Product Term Clock)	2.00	_	2.35		ns
t _H	D-Register Hold Time	2.00	_	3.25		ns
t _{ST}	T-Register Setup Time (Global Clock)	1.10	_	1.45		ns
t _{ST_PT}	T-register Setup Time (Product Term Clock)	2.20	<u> </u>	2.65		ns
<u>t_{HT}</u>	T-Resister Hold Time	2.00	_	3.25		ns
t _{SIR}	D-Input Register Setup Time (Global Clock)	1.20	_	0.65		ns
t _{SIR_PT}	D-Input Register Setup Time (Product Term Clock)	1.45	_	1.45		ns
t _{HIR}	D-Input Register Hold Time (Global Clock)	1.40	_	2.05		ns
t _{HIR_PT}	D-Input Register Hold Time (Product Term Clock)	1.10	_	1.20		ns
t _{COi}	Register Clock to Output/Feedback MUX Time	_	0.45	_	0.75	ns
t _{CES}	Clock Enable Setup Time	2.00	_	2.00	_	ns
t _{CEH}	Clock Enable Hold Time	0.00	_	0.00	_	ns
t _{SL}	Latch Setup Time (Global Clock)	0.90		1.55		ns
t _{SL_PT}	Latch Setup Time (Product Term Clock)	2.00		2.05		ns
t _{HL}	Latch Hold Time	2.00		1.17		ns
	Latch Gate to Output/Feedback MUX Time		0.35		0.33	ns
t _{GOi}	Propagation Delay through Transparent Latch to Output/					
t _{PDLi}	Feedback MUX		0.25		0.25	ns
t _{SRi}	Asynchronous Reset or Set to Output/Feedback MUX Delay	_	0.95	—	0.28	ns

Power Consumption

Power Estimation Coefficients¹

Device	Α	В
ispMACH 4032ZE	0.010	0.009
ispMACH 4064ZE	0.011	0.009
ispMACH 4128ZE	0.012	0.009
ispMACH 4256ZE	0.013	0.009

1. For further information about the use of these coefficients, refer to TN1187, <u>Power Esti-</u> mation in ispMACH 4000ZE Devices.

Switching Test Conditions

Figure 17 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 13.

Figure 17. Output Test Load, LVTTL and LVCMOS Standards

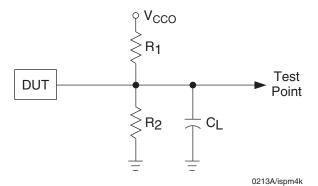


Table 13. Test Fixture Required Components

Test Condition	R ₁	R ₂	CL1	Timing Ref.	V _{cco}
				LVCMOS 3.3 = 1.5V	LVCMOS 3.3 = 3.0V
				LVCMOS 2.5 = $\frac{V_{CCO}}{2}$	LVCMOS 2.5 = 2.3V
LVCMOS I/O, (L -> H, H -> L)	106Ω	106Ω	35pF	LVCMOS 1.8 = $\frac{V_{CCO}}{2}$	LVCMOS 1.8 = 1.65V
				LVCMOS 1.5 = $\frac{V_{CCO}}{2}$	LVCMOS 1.5 = 1.4V
LVCMOS I/O (Z -> H)	∞	106Ω	35pF	1.5V	3.0V
LVCMOS I/O (Z -> L)	106Ω	×	35pF	1.5V	3.0V
LVCMOS I/O (H -> Z)	∞	106Ω	5pF	V _{OH} - 0.3	3.0V
LVCMOS I/O (L -> Z)	106Ω	8	5pF	V _{OL} + 0.3	3.0V

1. C_L includes test fixtures and probe capacitance.

Signal Descriptions

Signal Names	Desci	ription			
TMS	Input – This pin is the IEEE 1149.1 Test M the state machine.	Input – This pin is the IEEE 1149.1 Test Mode Select input, which is used to control the state machine.			
тск	Input – This pin is the IEEE 1149.1 Test C state machine.	lock input pin, used to clock through the			
TDI	Input – This pin is the IEEE 1149.1 Test D	ata In pin, used to load data.			
TDO	Output – This pin is the IEEE 1149.1 Test	Data Out pin used to shift data out.			
GOE0/IO, GOE1/IO	These pins are configured to be either Glo pins.	These pins are configured to be either Global Output Enable Input or as general I/O pins.			
GND	Ground				
NC	Not Connected				
V _{CC}	The power supply pins for logic core and J	The power supply pins for logic core and JTAG port.			
CLK0/I, CLK1/I, CLK2/I, CLK3/I	These pins are configured to be either CLI	K input or as an input.			
V _{CCO0} , V _{CCO1}	The power supply pins for each I/O bank.				
	Input/Output ¹ – These are the general pur reference (alpha) and z is macrocell reference				
	ispMACH 4032ZE	y: A-B			
yzz	ispMACH 4064ZE	y: A-D			
	ispMACH 4128ZE	y: A-H			
	ispMACH 4256ZE	y: A-P			

1. In some packages, certain I/Os are only available for use as inputs. See the Logic Signal Connections tables for details.

ORP Reference Table

	4032ZE		4064ZE		412	8ZE		4256ZE	
Number of I/Os	32	32	48	64	64	96	64	96	108
Number of GLBs	2	4	4	4	8	8	16	16	16
Number of I/Os per GLB	16	8	Mixture of 9, 10, 14, 15	16	8	12	4	6	Mixture of 6, 7, 8
Reference ORP Table (I/Os per GLB)	16	8	9, 10, 14, 15	16	8	12	4	6	6, 7, 8

ispMACH 4032ZE and 4064ZE Logic Signal Connections: 48 TQFP (Cont.)

		ispMACH 4032ZE	ispMACH 4064ZE
Pin Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad
43	0	CLK0/I	CLK0/I
44	0	A0/GOE0	A0/GOE0
45	0	A1	A1
46	0	A2	A2
47	0	A3	A4
48	0	A4	A6

ispMACH 4064ZE Logic Signal Connections: 64 ucBGA

Ball Number	Bank Number	GLB/MC/Pad
A1	-	TDI
B1	0	A8
B2	0	A10
B3	0	A11
GND*	0	GND (Bank 0)
C1	0	A12
C3	0	VCCO (Bank 0)
C2	0	B15
D1	0	B14
D2	0	B13
D3	0	B12
E1	0	B11
E2	0	B10
E3	0	В9
F1	0	B8
F2	-	ТСК
E4	-	VCC
GND*	-	GND
H2	0	B6
H1	0	B5
G1	0	B4
GND*	0	GND (Bank 0)
F3	0	VCCO (Bank 0)
G2	0	B3
G3	0	B2
H3	0	B0
G4	0	CLK1/I
F4	1	CLK2/I
H4	1	C0
H5	1	C1
G5	1	C2
H6	1	C4
H7	1	C5
H8	1	C6
G8	-	TMS
G7	1	C8
G6	1	C10
F8	1	C11
GND*	1	GND (Bank 1)
F7	1	C12
F6	1	VCCO (Bank 1)
F5	1	D15
E8	1	D14

ispMACH 4064ZE Logic Signal Connections: 64 ucBGA (Cont.)

Ball Number	Bank Number	GLB/MC/Pad
E7	1	D13
E6	1	D12
D8	1	D11
D7	1	D10
D6	1	D9
C8	1	D8
C7	-	TDO
D5	-	VCC
GND*	-	GND
B8	1	D7
A8	1	D6
B7	1	D5
A7	1	D4
GND*	1	GND (Bank 1)
A6	1	VCCO (Bank 1)
B6	1	D3
C6	1	D2
A5	1	D0/GOE1
B5	1	CLK3/I
C5	0	CLK0/I
A4	0	A0/GOE0
B4	0	A1
C4	0	A2
A3	0	A4
A2	0	A6

* All bonded grounds are connected to the following two balls, D4 and E5.

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 100 TQFP

Pin Bank		LC4064ZE	LC4128ZE	LC4256ZE
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad
1	-	GND	GND	GND
2	-	TDI	TDI	TDI
3	0	A8	B0	C12
4	0	A9	B2	C10
5	0	A10	B4	C6
6	0	A11	B6	C2
7	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
8	0	A12	B8	D12
9	0	A13	B10	D10
10	0	A14	B12	D6
11	0	A15	B13	D4
12*	0		I	I
13	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)
14	0	B15	C14	E4
15	0	B14	C12	E6
16	0	B13	C10	E10
17	0	B12	C8	E12
18	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
19	0	B11	C6	F2
20	0	B10	C5	F6
21	0	B9	C4	F10
22	0	B8	C2	F12
23*	0		I	I
24	-	TCK	ТСК	ТСК
25	-	VCC	VCC	VCC
26	-	GND	GND	GND
27*	0		I	
28	0	B7	D13	G12
29	0	B6	D12	G10
30	0	B5	D10	G6
31	0	B4	D8	G2
32	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
33	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)
34	0	B3	D6	H12
35	0	B2	D4	H10
36	0	B1	D2	H6
37	0	B0	D0	H2
38	0	CLK1/I	CLK1/I	CLK1/I
39	1	CLK2/I	CLK2/I	CLK2/I
40	-	VCC	VCC	VCC
41	1	CO	E0	12

ispMACH 4128ZE Logic Signal Connections: 132 ucBGA

Ball Number	Bank Number	GLB/MC/Pad
GND*	-	GND
A1	-	TDI
B1	0	VCCO (Bank 0)
D3	0	B0
C1	0	B1
D2	0	B2
D1	0	B4
E4	0	B5
F3	0	B6
E2	0	GND (Bank 0)
E1	0	B8
E3	0	B9
F4	0	B10
G4	0	B12
F2	0	B13
G3	0	B14
H4	0	VCCO (Bank 0)
F1	0	C14
G2	0	C13
G1	0	C12
H3	0	C10
J4	0	C9
H1	0	C8
H2	0	GND (Bank 0)
J3	0	C6
J1	0	C5
J2	0	C4
K3	0	C2
K2	0	C1
K1	0	CO
L2	0	VCCO (Bank 0)
L1	-	ТСК
M1	-	VCC
GND*	-	GND
L3	0	D14
M2	0	D13
K4	0	D12
M3	0	D10
K5	0	D9
L4	0	D8
M4	0	GND (Bank 0)
J5	0	VCCO (Bank 0)
L5	0	D6

ispMACH 4128ZE Logic Signal Connections: 132 ucBGA (Cont.)

Ball Number	Bank Number	GLB/MC/Pad
M5	0	D5
J6	0	D4
K6	0	D2
L6	0	D1
M6	0	D0
K7	0	CLK1/I
L7	1	GND (Bank 1)
J7	1	CLK2/I
M7	-	VCC
K8	1	E0
L8	1	E1
M8	1	E2
J8	1	E4
L9	1	E5
M9	1	E6
K9	1	VCCO (Bank 1)
J9	1	GND (Bank 1)
L10	1	E8
K10	1	E9
M10	1	E10
L11	1	E12
K12	1	E13
M11	1	E14
GND*	-	GND
M12	-	TMS
L12	1	VCCO (Bank 1)
K11	1	F0
J10	1	F1
H9	1	F2
J12	1	F4
J11	1	F5
H10	1	F6
H12	1	GND (Bank 1)
G9	1	F8
H11	1	F9
F9	1	F10
G12	1	F12
G11	1	F13
G10	1	F14
F12	1	VCCO (Bank 1)
F10	1	G14
F11	1	G13
E11	1	G12
E10	1	G10

ispMACH 4128ZE Logic Signal Connections: 132 ucBGA (Cont.)

Ball Number	Bank Number	GLB/MC/Pad
A2	0	A14

* All bonded core grounds are connected to the following four balls, E5, E8, H5 and H8.

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA

Ball Bank		LC4064ZE	LC4128ZE	LC4256ZE
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad
F6	-	GND	GND	GND
A1	-	TDI	TDI	TDI
E4	0	NC Ball	VCCO (Bank 0)	VCCO (Bank 0)
B2	0	NC Ball	B0	C12
B1	0	NC Ball	B1	C10
C3	0	A8	B2	C8
C2	0	A9	B4	C6
C1	0	A10	B5	C4
D1	0	A11	B6	C2
G5	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
D2	0	NC Ball	NC Ball	D14
D3	0	NC Ball	NC Ball	D12
E1	0	NC Ball	B8	D10
E2	0	A12	B9	D8
F2	0	A13	B10	D6
D4	0	A14	B12	D4
F1	0	A15	B13	D2
F3*	0		B14	D0
F4	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)
G1	0	B15	C14	E0
E3	0	B14	C13	E2
G2	0	B13	C12	E4
G3	0	B12	C10	E6
H1	0	NC Ball	C9	E8
H3	0	NC Ball	C8	E10
H2	0	NC Ball	NC Ball	E12
H4	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
J1	0	B11	C6	F2
J3	0	B10	C5	F4
J2	0	B9	C4	F6
K1	0	B8	C2	F8
K2*	0		C1	F10
L1	0	NC Ball	CO	F12
G4	0	NC Ball	VCCO (Bank 0)	VCCO (Bank 0)
L2	-	ТСК	ТСК	ТСК
H5	-	VCC	VCC	VCC
G6	-	GND	GND	GND
M1	0	NC Ball	NC Ball	G14
K3	0	NC Ball	NC Ball	G12
M2	0	NC Ball	D14	G10
L3*	0		D13	G8

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA (Cont.)

Ball Number	Bank	LC4064ZE	LC4128ZE	LC4256ZE		
	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad		
C7	1	CLK3/I	CLK3/I	CLK3/I		
E6	0	NC Ball	GND (Bank 0)	GND (Bank 0)		
A7	0	CLK0/I	CLK0/I	CLK0/I		
E5	-	VCC	VCC	VCC		
D6	0	A0/GOE0	A0/GOE0	A2/GOE0		
B6	0	A1	A1	A4		
A6	0	A2	A2	A6		
C6	0	A3	A4	A8		
B5	0	NC Ball	A5	A10		
A5	0	NC Ball	A6	A12		
D5	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)		
F5	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)		
A4	0	A4	A8	B2		
B4	0	A5	A9	B4		
C5	0	A6	A10	B6		
A3	0	A7	A12	B8		
C4	0	NC Ball	A13	B10		
B3	0	NC Ball	A14	B12		
A2	0	NC Ball	NC Ball	B14		

* This pin is input only for the LC4064ZE.

ispMACH 4128ZE and 4256ZE Logic Signal Connections: 144 TQFP (Cont.)

		LC4128ZE	LC4256ZE GLB/MC/Pad	
Pin Number	Bank Number	GLB/MC/Pad		
43	0	D9	G4	
44	0	D8	G2	
45*	0	NC	I	
46	0	GND (Bank 0)	GND (Bank 0)	
47	0	VCCO (Bank 0)	VCCO (Bank 0)	
48	0	D6	H12	
49	0	D5	H10	
50	0	D4	H8	
51	0	D2	H6	
52	0	D1	H4	
53	0	D0	H2	
54	0	CLK1/I	CLK1/I	
55	1	GND (Bank 1)	GND (Bank 1)	
56	1	CLK2/I	CLK2/I	
57	-	VCC	VCC	
58	1	E0	12	
59	1	E1	14	
60	1	E2	16	
61	1	E4	18	
62	1	E5	110	
63	1	E6	112	
64	1	VCCO (Bank 1)	VCCO (Bank 1)	
65	1	GND (Bank 1)	GND (Bank 1)	
66	1	E8	J2	
67	1	E9	J4	
68	1	E10	J6	
69	1	E12	J8	
70	1	E13	J10	
71	1	E14	J12	
72*	1	NC	I	
73	-	GND	GND	
74	-	TMS	TMS	
75	1	VCCO (Bank 1)	VCCO (Bank 1)	
76	1	F0	K12	
77	1	F1	K10	
78	1	F2	K8	
79	1	F4	K6	
80	1	F5	K4	
81	1	F6	K2	
82	1	GND (Bank 1)	GND (Bank 1)	
83	1	F8	L14	
84	1	F9	L12	
85	1	F10	L10	

Figure 20. Mark Format for 64 ucBGA and 132 ucBGA Packages

LC4064ZE 4UN-5I Datecode	LC4128ZE 7UN Datecode
Dual Mark	Single Mar

Lead-Free Packaging

Commercial

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
LC4032ZE	LC4032ZE-4TN48C	32	1.8	4.4	Lead-Free TQFP	48	32	С
	LC4032ZE-5TN48C	32	1.8	5.8	Lead-Free TQFP	48	32	С
	LC4032ZE-7TN48C	32	1.8	7.5	Lead-Free TQFP	48	32	С
	LC4032ZE-4MN64C	32	1.8	4.4	Lead-Free csBGA	64	32	С
	LC4032ZE-5MN64C	32	1.8	5.8	Lead-Free csBGA	64	32	С
	LC4032ZE-7MN64C	32	1.8	7.5	Lead-Free csBGA	64	32	С
	LC4064ZE-4TN48C	64	1.8	4.7	Lead-Free TQFP	48	32	С
	LC4064ZE-5TN48C	64	1.8	5.8	Lead-Free TQFP	48	32	С
	LC4064ZE-7TN48C	64	1.8	7.5	Lead-Free TQFP	48	32	С
	LC4064ZE-4TN100C	64	1.8	4.7	Lead-Free TQFP	100	64	С
	LC4064ZE-5TN100C	64	1.8	5.8	Lead-Free TQFP	100	64	С
LC4064ZE	LC4064ZE-7TN100C	64	1.8	7.5	Lead-Free TQFP	100	64	С
LC40042E	LC4064ZE-4MN64C	64	1.8	4.7	Lead-Free csBGA	64	48	С
	LC4064ZE-5MN64C	64	1.8	5.8	Lead-Free csBGA	64	48	С
	LC4064ZE-7MN64C	64	1.8	7.5	Lead-Free csBGA	64	48	С
	LC4064ZE-4MN144C	64	1.8	4.7	Lead-Free csBGA	144	64	С
	LC4064ZE-5MN144C	64	1.8	5.8	Lead-Free csBGA	144	64	С
	LC4064ZE-7MN144C	64	1.8	7.5	Lead-Free csBGA	144	64	С
	LC4128ZE-5TN100C	128	1.8	5.8	Lead-Free TQFP	100	64	С
	LC4128ZE-7TN100C	128	1.8	7.5	Lead-Free TQFP	100	64	С
	LC4128ZE-5TN144C	128	1.8	5.8	Lead-Free TQFP	144	96	С
LC4128ZE	LC4128ZE-7TN144C	128	1.8	7.5	Lead-Free TQFP	144	96	С
LU41202E	LC4128ZE-5UMN132C	128	1.8	5.8	Lead-Free ucBGA	132	96	С
	LC4128ZE-7UMN132C	128	1.8	7.5	Lead-Free ucBGA	132	96	С
	LC4128ZE-5MN144C	128	1.8	5.8	Lead-Free csBGA	144	96	С
	LC4128ZE-7MN144C	128	1.8	7.5	Lead-Free csBGA	144	96	С
LC4256ZE	LC4256ZE-5TN100C	256	1.8	5.8	Lead-Free TQFP	100	64	С
	LC4256ZE-7TN100C	256	1.8	7.5	Lead-Free TQFP	100	64	С
	LC4256ZE-5TN144C	256	1.8	5.8	Lead-Free TQFP	144	96	С
	LC4256ZE-7TN144C	256	1.8	7.5	Lead-Free TQFP	144	96	С
	LC4256ZE-5MN144C	256	1.8	5.8	Lead-Free csBGA	144	108	С
	LC4256ZE-7MN144C	256	1.8	7.5	Lead-Free csBGA	144	108	С

Industrial									
Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade	
LC4032ZE	LC4032ZE-5TN48I	32	1.8	5.8	Lead-Free TQFP	48	32	Ι	
	LC4032ZE-7TN48I	32	1.8	7.5	Lead-Free TQFP	48	32	Ι	
	LC4032ZE-5MN64I	32	1.8	5.8	Lead-Free csBGA	64	32	Ι	
	LC4032ZE-7MN64I	32	1.8	7.5	Lead-Free csBGA	64	32	Ι	
	LC4064ZE-5TN48I	64	1.8	5.8	Lead-Free TQFP	48	32	Ι	
	LC4064ZE-7TN48I	64	1.8	7.5	Lead-Free TQFP	48	32	Ι	
	LC4064ZE-5TN100I	64	1.8	5.8	Lead-Free TQFP	100	64	Ι	
	LC4064ZE-7TN100I	64	1.8	7.5	Lead-Free TQFP	100	64	Ι	
	LC4064ZE-5MN64I	64	1.8	5.8	Lead-Free csBGA	64	48	Ι	
LC4064ZE	LC4064ZE-7MN64I	64	1.8	7.5	Lead-Free csBGA	64	48	Ι	
	LC4064ZE-5UMN64I	64	1.8	5.8	Lead-Free ucBGA	64	48	Ι	
	LC4064ZE-7UMN64I	64	1.8	7.5	Lead-Free ucBGA	64	48	Ι	
	LC4064ZE-5MN144I	64	1.8	5.8	Lead-Free csBGA	144	64	Ι	
	LC4064ZE-7MN144I	64	1.8	7.5	Lead-Free csBGA	144	64	Ι	
LC4128ZE	LC4128ZE-7TN100I	128	1.8	7.5	Lead-Free TQFP	100	64	I	
	LC4128ZE-7UMN132I	128	1.8	7.5	Lead-Free ucBGA	132	96	Ι	
	LC4128ZE-7TN144I	128	1.8	7.5	Lead-Free TQFP	144	96	Ι	
	LC4128ZE-7MN144I	128	1.8	7.5	Lead-Free csBGA	144	96	Ι	
	LC4256ZE-7TN100I	256	1.8	7.5	Lead-Free TQFP	100	64	Ι	
LC4256ZE	LC4256ZE-7TN144I	256	1.8	7.5	Lead-Free TQFP	144	96	Ι	
	LC4256ZE-7MN144I	256	1.8	7.5	Lead-Free csBGA	144	108	I	

1. Contact factory for product availability.

For Further Information

In addition to this data sheet, the following technical notes may be helpful when designing with the ispMACH 4000ZE family:

- TN1168, ispMACH 4000ZE Timing Model Design and Usage Guidelines
- TN1174, Advanced Features of the ispMACH 4000ZE Family
- TN1187, Power Estimation in ispMACH 4000ZE Devices
- Package Diagrams

Technical Support Assistance

- Hotline: 1-800-LATTICE (North America)
 - +1-503-268-8001 (Outside North America)
- e-mail: techsupport@latticesemi.com
- Internet: <u>www.latticesemi.com</u>