

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	5.8 ns
/oltage Supply - Internal	1.7V ~ 1.9V
Number of Logic Elements/Blocks	4
lumber of Macrocells	64
lumber of Gates	-
lumber of I/O	32
perating Temperature	-40°C ~ 105°C (TJ)
Nounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4064ze-5tn48i

Email: info@E-XFL.COM

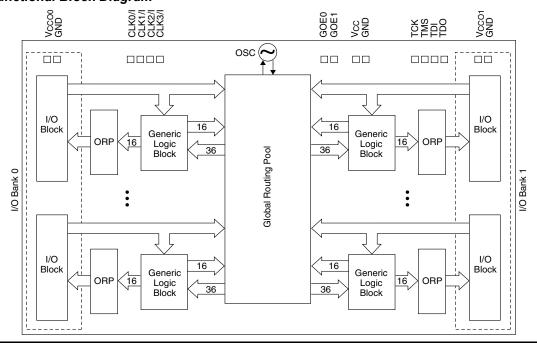
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

The high performance ispMACH 4000ZE family from Lattice offers an ultra low power CPLD solution. The new family is based on Lattice's industry-leading ispMACH 4000 architecture. Retaining the best of the previous generation, the ispMACH 4000ZE architecture focuses on significant innovations to combine high performance with low power in a flexible CPLD family. For example, the family's new Power Guard feature minimizes dynamic power consumption by preventing internal logic toggling due to unnecessary I/O pin activity.

The ispMACH 4000ZE combines high speed and low power with the flexibility needed for ease of design. With its robust Global Routing Pool and Output Routing Pool, this family delivers excellent First-Time-Fit, timing predictability, routing, pin-out retention and density migration.

The ispMACH 4000ZE family offers densities ranging from 32 to 256 macrocells. There are multiple density-I/O combinations in Thin Quad Flat Pack (TQFP), Chip Scale BGA (csBGA), and Ultra Chip Scale BGA (ucBGA) packages ranging from 32 to 144 pins/balls. Table 1 shows the macrocell, package and I/O options, along with other key parameters.


A user programmable internal oscillator and a timer are included in the device for tasks like LED control, keyboard scanner and similar housekeeping type state machines. This feature can be optionally disabled to save power.

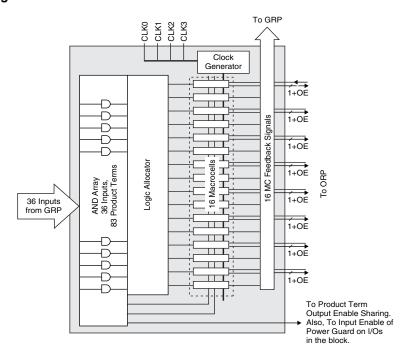
The ispMACH 4000ZE family has enhanced system integration capabilities. It supports a 1.8V supply voltage and 3.3V, 2.5V, 1.8V and 1.5V interface voltages. Additionally, inputs can be safely driven up to 5.5V when an I/O bank is configured for 3.3V operation, making this family 5V tolerant. The ispMACH 4000ZE also offers enhanced I/O features such as slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a "per-pin" basis. The ispMACH 4000ZE family members are 1.8V in-system programmable through the IEEE Standard 1532 interface. IEEE Standard 1149.1 boundary scan testing capability also allows product testing on automated test equipment. The 1532 interface signals TCK, TMS, TDI and TDO are referenced to V_{CC} (logic core).

Overview

The ispMACH 4000ZE devices consist of multiple 36-input, 16-macrocell Generic Logic Blocks (GLBs) interconnected by a Global Routing Pool (GRP). Output Routing Pools (ORPs) connect the GLBs to the I/O Blocks (IOBs), which contain multiple I/O cells. This architecture is shown in Figure 1.

Figure 1. Functional Block Diagram

The I/Os in the ispMACH 4000ZE are split into two banks. Each bank has a separate I/O power supply. Inputs can support a variety of standards independent of the chip or bank power supply. Outputs support the standards compatible with the power supply provided to the bank. Support for a variety of standards helps designers implement designs in mixed voltage environments. In addition, 5V tolerant inputs are specified within an I/O bank that is connected to a V_{CCO} of 3.0V to 3.6V for LVCMOS 3.3, LVTTL and PCI interfaces.

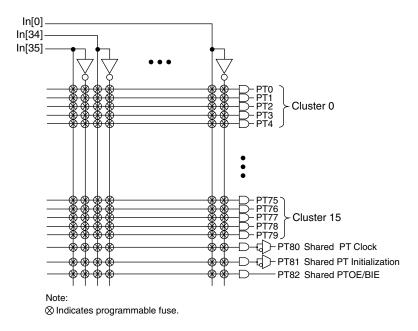

Architecture

There are a total of two GLBs in the ispMACH 4032ZE, increasing to 16 GLBs in the ispMACH 4256ZE. Each GLB has 36 inputs. All GLB inputs come from the GRP and all outputs from the GLB are brought back into the GRP to be connected to the inputs of any other GLB on the device. Even if feedback signals return to the same GLB, they still must go through the GRP. This mechanism ensures that GLBs communicate with each other with consistent and predictable delays. The outputs from the GLB are also sent to the ORP. The ORP then sends them to the associated I/O cells in the I/O block.

Generic Logic Block

The ispMACH 4000ZE GLB consists of a programmable AND array, logic allocator, 16 macrocells and a GLB clock generator. Macrocells are decoupled from the product terms through the logic allocator and the I/O pins are decoupled from macrocells through the ORP. Figure 2 illustrates the GLB.

Figure 2. Generic Logic Block

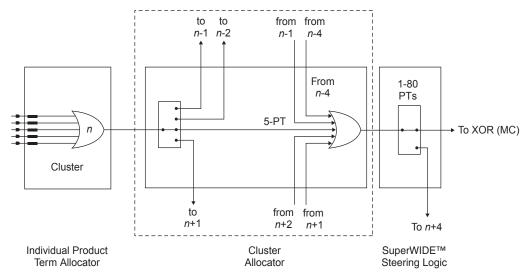

AND Array

The programmable AND Array consists of 36 inputs and 83 output product terms. The 36 inputs from the GRP are used to form 72 lines in the AND Array (true and complement of the inputs). Each line in the array can be connected to any of the 83 output product terms via a wired-AND. Each of the 80 logic product terms feed the logic allocator with the remaining three control product terms feeding the Shared PT Clock, Shared PT Initialization and Shared PT OE. The Shared PT Clock and Shared PT Initialization signals can optionally be inverted before being fed to the macrocells.

Every set of five product terms from the 80 logic product terms forms a product term cluster starting with PT0. There is one product term cluster for every macrocell in the GLB. Figure 3 is a graphical representation of the AND Array.

Figure 3. AND Array

Enhanced Logic Allocator

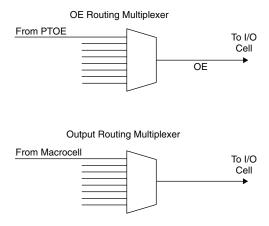

Within the logic allocator, product terms are allocated to macrocells in product term clusters. Each product term cluster is associated with a macrocell. The cluster size for the ispMACH 4000ZE family is 4+1 (total 5) product terms. The software automatically considers the availability and distribution of product term clusters as it fits the functions within a GLB. The logic allocator is designed to provide two speed paths: 20-PT Speed Locking path and an up to 80-PT path. The availability of these two paths lets designers trade timing variability for increased performance.

The enhanced Logic Allocator of the ispMACH 4000ZE family consists of the following blocks:

- Product Term Allocator
- Cluster Allocator
- Wide Steering Logic

Figure 4 shows a macrocell slice of the Logic Allocator. There are 16 such slices in the GLB.

Figure 4. Macrocell Slice


Output Routing Pool (ORP)

The Output Routing Pool allows macrocell outputs to be connected to any of several I/O cells within an I/O block. This provides greater flexibility in determining the pinout and allows design changes to occur without affecting the pinout. The output routing pool also provides a parallel capability for routing macrocell-level OE product terms. This allows the OE product term to follow the macrocell output as it is switched between I/O cells. The enhanced ORP of the ispMACH 4000ZE family consists of the following elements:

- Output Routing Multiplexers
- OE Routing Multiplexers

Figure 7 shows the structure of the ORP from the I/O cell perspective. This is referred to as an ORP slice. Each ORP has as many ORP slices as there are I/O cells in the corresponding I/O block.

Figure 7. ORP Slice

Output Routing Multiplexers

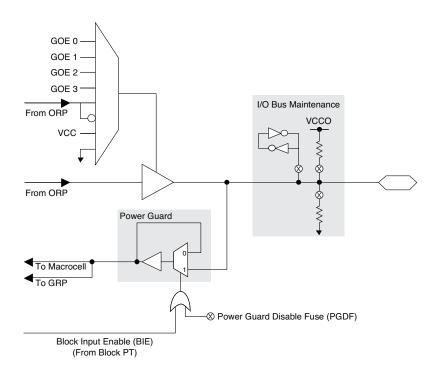

The details of connections between the macrocells and the I/O cells vary across devices and within a device dependent on the maximum number of I/Os available. Tables 5-7 provide the connection details.

Table 5. GLB/MC/ORP Combinations for ispMACH 4256ZE

GLB/MC	ORP Mux Input Macrocells
[GLB] [MC 0]	M0, M1, M2, M3, M4, M5, M6, M7
[GLB] [MC 1]	M2, M3, M4, M5, M6, M7, M8, M9
[GLB] [MC 2]	M4, M5, M6, M7, M8, M9, M10, M11
[GLB] [MC 3]	M6, M7, M8, M9, M10, M11, M12, M13
[GLB] [MC 4]	M8, M9, M10, M11, M12, M13, M14, M15
[GLB] [MC 5]	M10, M11, M12, M13, M14, M15, M0, M1
[GLB] [MC 6]	M12, M13, M14, M15, M0, M1, M2, M3
[GLB] [MC 7]	M14, M15, M0, M1, M2, M3, M4, M5

Figure 8. I/O Cell

Each output supports a variety of output standards dependent on the V_{CCO} supplied to its I/O bank. Outputs can also be configured for open drain operation. Each input can be programmed to support a variety of standards, independent of the V_{CCO} supplied to its I/O bank. The I/O standards supported are:

- LVTTL
 LVCMOS 1.8
 LVCMOS 1.5
- LVCMOS 2.5 3.3V PCI Compatible

All of the I/Os and dedicated inputs have the capability to provide a bus-keeper latch, pull-up resistor or pull-down resistor selectable on a "per-pin" basis. A fourth option is to provide none of these. The default in both hardware and software is such that when the device is erased or if the user does not specify, the input structure is configured to be a Pull-down Resistor.

Each ispMACH 4000ZE device I/O has an individually programmable output slew rate control bit. Each output can be individually configured for fast slew or slow slew. The typical edge rate difference between fast and slow slew setting is 20%. For high-speed designs with long, unterminated traces, the slow-slew rate will introduce fewer reflections, less noise and keep ground bounce to a minimum. For designs with short traces or well terminated lines, the fast slew rate can be used to achieve the highest speed.

The ispMACH 4000ZE family has an always on, 200mV typical hysteresis for each input operational at 3.3V and 2.5V. This provides improved noise immunity for slow transitioning signals.

Power Guard

Power Guard allows easier achievement of standby current in the system. As shown in Figure 9, this feature consists of an enabling multiplexer between an I/O pin and input buffer, and its associated circuitry inside the device.

If the enable signal (E) is held low, all inputs (D) can be optionally isolated (guarded), such that, if any of these were toggled, it would not cause any toggle on internal pins (Q), thus, a toggling I/O pin will not cause any internal dynamic power consumption.

Absolute Maximum Ratings^{1, 2, 3, 4}

- Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional
 operation of the device at these or any other conditions above those indicated in the operational sections of this specification
 is not implied.
- 2. Compliance with Lattice Thermal Management document is required.
- 3. All voltages referenced to GND.
- 4. Please refer to the <u>Lattice ispMACH 4000V/B/C/ZC/ZE Product Family Qualification Summary</u> for complete data, including the ESD performance data.
- 5. Undershoot of -2V and overshoot of $(V_{IH} (MAX) + 2V)$, up to a total pin voltage of 6V is permitted for a duration of <20ns.
- 6. Maximum of 64 I/Os per device with VIN > 3.6V is allowed.

Recommended Operating Conditions

Symbol		Min.	Max.	Units	
V	Cupply Voltage	Standard Voltage Operation	1.7	1.9	V
V _{CC}	Supply Voltage	Extended Voltage Operation	1.6 ¹	1.9	V
т	Junction Temperature (Commercial)			90	°C
' j	Junction Temperature (Industrial)		-40	105	°C

^{1.} Devices operating at 1.6V can expect performance degradation up to 35%.

Erase Reprogram Specifications

Parameter	Min.	Max.	Units
Erase/Reprogram Cycle	1,000	_	Cycles

Note: Valid over commercial temperature range.

Hot Socketing Characteristics^{1,2,3}

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
1	Input or I/O Leakage Current	$0 \le V_{IN} \le 3.0V$, $Tj = 105$ °C	_	±30	±150	μΑ
IDK	Input of 1/O Leakage Current	$0 \le V_{IN} \le 3.0V$, $Tj = 130$ °C	_	±30	±200	μΑ

^{1.} Insensitive to sequence of V_{CCO} or V_{CCO} . However, assumes monotonic rise/fall rates for V_{CC} and V_{CCO} , provided $(V_{IN} - V_{CCO}) \le 3.6V$.

^{2.} $0 < V_{CC} < V_{CC}$ (MAX), $0 < V_{CCO} < V_{CCO}$ (MAX).

^{3.} I_{DK} is additive to I_{PU} , I_{PD} or I_{BH} . Device defaults to pull-up until fuse circuitry is active.

Supply Current

To minimize transient current during power-on, configure CPLD I/Os to a pull-up or float state. If this logic scenario is not possible, then the recommended power sequence should assert VCC and VCCO at the same time or VCC before VCCO.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
ispMACH 4	032ZE		•	,	,	
		Vcc = 1.8V, T _A = 25°C	_	50	_	μΑ
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	58	_	μΑ
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	_	60	_	μΑ
		Vcc = 1.8V, T _A = 25°C	_	10	_	μΑ
ICC ^{4, 5, 6}	Standby Power Supply Current	Vcc = 1.9V, T _A = 0 to 70°C	_	13	25	μΑ
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	_	15	40	μΑ
ispMACH 4	064ZE		•	,	,	
		Vcc = 1.8V, T _A = 25°C		80	_	μΑ
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	Vcc = 1.9V, T _A = 0 to 70°C	_	89	_	μΑ
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	_	92	_	μΑ
		Vcc = 1.8V, T _A = 25°C	_	11	_	μΑ
ICC ^{4, 5, 6}	Standby Power Supply Current	Vcc = 1.9V, T _A = 0 to 70°C	_	15	30	μΑ
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	_	18	50	μΑ
ispMACH 4	128ZE		•			
		Vcc = 1.8V, T _A = 25°C	_	168	_	μΑ
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	190	_	μΑ
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	_	195	_	μΑ
		Vcc = 1.8V, T _A = 25°C	_	12	_	μΑ
ICC ^{4, 5, 6}	Standby Power Supply Current	Vcc = 1.9V, T _A = 0 to 70°C	_	16	40	μΑ
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	_	19	60	μΑ
ispMACH 4	256ZE					
		Vcc = 1.8V, T _A = 25°C	_	341	_	μΑ
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	361	_	μΑ
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	_	372	_	μΑ
		Vcc = 1.8V, T _A = 25°C	_	13	_	μΑ
ICC ^{4, 5, 6}	Standby Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	32	65	μΑ
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	_	43	100	μΑ

^{1.} Frequency = 1.0 MHz.

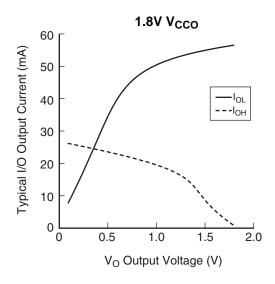
^{2.} Device configured with 16-bit counters.

^{3.} I_{CC} varies with specific device configuration and operating frequency.

^{4.} $V_{CCO}^{CCO} = 3.6V$, $V_{IN} = 0V$ or V_{CCO} , bus maintenance turned off. V_{IN} above V_{CCO} will add transient current above the specified standby I_{CC} .

^{5.} Includes $V_{\mbox{\footnotesize CCO}}$ current without output loading.

^{6.} This operating supply current is with the internal oscillator disabled. Enabling the internal oscillator adds approximately 15μA typical current plus additional current from any logic it drives.

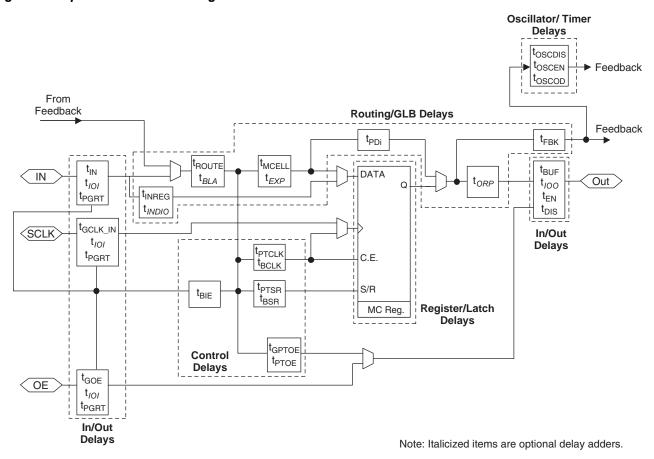

I/O DC Electrical Characteristics

Over Recommended Operating Conditions

		V _{IL}	V _{IH}		V _{OL}	V _{OH}	l _{OL} 1	I _{OH} ¹		
Standard	Min (V)	Max (V)	Min (V)	Max (V)	Max (V)	Min (V)	(mA)	(mA)		
LVTTL	-0.3	0.80	2.0	5.5	0.40	V _{CCO} - 0.40	8.0	-4.0		
LVIIL	-0.5	0.00	2.0	5.5	0.20	V _{CCO} - 0.20	0.1	-0.1		
LVCMOS 3.3	-0.3	0.80	2.0	5.5	0.40	V _{CCO} - 0.40	8.0	-4.0		
EVOIVIOU 0.5	-0.5	0.00	0.00	2.0	5.5	2.0	0.20	V _{CCO} - 0.20	0.1	-0.1
LVCMOS 2.5	-0.3	0.70	1.70	3.6	0.40	V _{CCO} - 0.40	8.0	-4.0		
LVOIVIOU 2.5	-0.5	0.70	1.70	5.0	0.20	V _{CCO} - 0.20	0.1	-0.1		
LVCMOS 1.8	-0.3	0.35 * V _{CC}	0.65 * V _{CC}	3.6	0.40	V _{CCO} - 0.45	2.0	-2.0		
LVOIVIOO 1.0	-0.5	0.55 400	0.03 400	5.0	0.20	V _{CCO} - 0.20	0.1	-0.1		
LVCMOS 1.5 ²	-0.3	0.35 * V _{CC}	0.65 * V _{CC}	3.6	0.40	V _{CCO} - 0.45	2.0	-2.0		
LVOIVIOU 1.5	-0.5	0.00 100		5.0	0.20	V _{CCO} - 0.20	0.1	-0.1		
PCI 3.3	-0.3	0.3 * 3.3 * (V _{CC} / 1.8)	0.5 * 3.3 * (V _{CC} / 1.8)	5.5	0.1 V _{CCO}	0.9 V _{CCO}	1.5	-0.5		

^{1.} The average DC current drawn by I/Os between adjacent bank GND connections, or between the last GND in an I/O bank and the end of the I/O bank, as shown in the logic signals connection table, shall not exceed *n**8mA. Where *n* is the number of I/Os between bank GND connections or between the last GND in a bank and the end of a bank.

^{2.} For 1.5V inputs, there may be an additional DC current drawn from V_{CC} , if the ispMACH 4000ZE V_{CC} and the V_{CC} of the driving device (V_{CC} d-d; that determines steady state V_{IH}) are in the extreme range of their specifications. Typically, DC current drawn from V_{CC} will be 2μ A per input.



Timing Model

The task of determining the timing through the ispMACH 4000ZE family, like any CPLD, is relatively simple. The timing model provided in Figure 16 shows the specific delay paths. Once the implementation of a given function is determined either conceptually or from the software report file, the delay path of the function can easily be determined from the timing model. The Lattice design tools report the timing delays based on the same timing model for a particular design. Note that the internal timing parameters are given for reference only, and are not tested. The external timing parameters are tested and guaranteed for every device. For more information on the timing model and usage, refer to TN1168, ispMACH 4000ZE Timing Model Design and Usage Guidelines.

Figure 16. ispMACH 4000ZE Timing Model

ispMACH 4000ZE Internal Timing Parameters

Over Recommended Operating Conditions

		LC40	32ZE	LC40		
	1		4	-4		
Parameter	Description	Min.	Max.	Min.	Max.	Units
In/Out Delays			•	1	•	•
t _{IN}	Input Buffer Delay	_	0.85	_	0.90	ns
t _{GCLK_IN}	Global Clock Input Buffer Delay	_	1.60	—	1.60	ns
t _{GOE}	Global OE Pin Delay	_	2.25	_	2.25	ns
t _{BUF}	Delay through Output Buffer	_	0.75	_	0.90	ns
t _{EN}	Output Enable Time	_	2.25	_	2.25	ns
t _{DIS}	Output Disable Time	_	1.35	_	1.35	ns
t _{PGSU}	Input Power Guard Setup Time	_	3.30	_	3.55	ns
t _{PGH}	Input Power Guard Hold Time	_	0.00	_	0.00	ns
t _{PGPW}	Input Power Guard BIE Minimum Pulse Width	_	5.00	_	5.00	ns
t _{PGRT}	Input Power Guard Recovery Time Following BIE Dissertation	_	5.00	_	5.00	ns
Routing Delays			1	ı	1	ı
t _{ROUTE}	Delay through GRP	_	1.60	_	1.70	ns
t _{PDi}	Macrocell Propagation Delay	_	0.25	_	0.25	ns
t _{MCELL}	Macrocell Delay	_	0.65	_	0.65	ns
t _{INREG}	Input Buffer to Macrocell Register Delay	_	0.90	_	1.00	ns
t _{FBK}	Internal Feedback Delay	_	0.55	_	0.55	ns
t _{ORP}	Output Routing Pool Delay	_	0.30	_	0.30	ns
Register/Latcl	n Delays		I	<u> </u>	I	.
t _S	D-Register Setup Time (Global Clock)	0.70	_	0.85	_	ns
t _{S_PT}	D-Register Setup Time (Product Term Clock)	1.25	_	1.85	_	ns
t _H	D-Register Hold Time	1.50	_	1.65	_	ns
t _{ST}	T-Register Setup Time (Global Clock)	0.90	_	1.05	_	ns
t _{ST_PT}	T-register Setup Time (Product Term Clock)	1.45	_	1.65	_	ns
t _{HT}	T-Resister Hold Time	1.50	_	1.65	_	ns
t _{SIR}	D-Input Register Setup Time (Global Clock)	0.85	_	0.80	_	ns
t _{SIR_PT}	D-Input Register Setup Time (Product Term Clock)	1.45	_	1.45	_	ns
t _{HIR}	D-Input Register Hold Time (Global Clock)	1.15	_	1.30	_	ns
t _{HIR_PT}	D-Input Register Hold Time (Product Term Clock)	0.90	_	1.10	_	ns
t _{COi}	Register Clock to Output/Feedback MUX Time	_	0.35	_	0.40	ns
t _{CES}	Clock Enable Setup Time	1.00	_	2.00	_	ns
t _{CEH}	Clock Enable Hold Time	0.00	_	0.00	_	ns
t _{SL}	Latch Setup Time (Global Clock)	0.70	_	0.95	_	ns
t _{SL_PT}	Latch Setup Time (Product Term Clock)	1.45	_	1.85	 	ns
t _{HL}	Latch Hold Time	1.40	_	1.80	_	ns
t _{GOi}	Latch Gate to Output/Feedback MUX Time	_	0.40	_	0.35	ns
	Propagation Delay through Transparent Latch to Output/					
t _{PDLi}	Feedback MUX	_	0.30	_	0.25	ns
t _{SRi}	Asynchronous Reset or Set to Output/Feedback MUX Delay	_	0.30	_	0.30	ns

ispMACH 4000ZE Internal Timing Parameters (Cont.)

Over Recommended Operating Conditions

			LC40	32ZE	LC40	64ZE	
			-	4	-	4	
Parameter	Description		Min.	Max.	Min.	Max.	Units
LVCMOS15_out	Output Configured as 1.5V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns
LVCMOS18_out	Output Configured as 1.8V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.00	_	0.00	ns
LVCMOS25_out	Output Configured as 2.5V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.10	_	0.10	ns
LVCMOS33_out	Output Configured as 3.3V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns
PCI_out	Output Configured as PCI Compatible Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns
Slow Slew	Output Configured for Slow Slew Rate	t _{EN} , t _{BUF}	_	1.00	_	1.00	ns

Note: Internal Timing Parameters are not tested and are for reference only. Refer to the timing model in this data sheet for further details. Timing v.0.8

ispMACH 4000ZE Internal Timing Parameters (Cont.)

Over Recommended Operating Conditions

			All Devices				
			-	5	-	7	
Parameter	Description		Min.	Max.	Min.	Max.	Units
LVCMOS15_out	Output Configured as 1.5V Buffer	t _{EN} , t _{DIS} , t _{BUF}		0.20	_	0.20	ns
LVCMOS18_out	Output Configured as 1.8V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.00	_	0.00	ns
LVCMOS25_out	Output Configured as 2.5V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.10	_	0.10	ns
LVCMOS33_out	Output Configured as 3.3V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns
PCI_out	Output Configured as PCI Compatible Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns
Slow Slew	Output Configured for Slow Slew Rate	t _{EN} , t _{BUF}	_	1.00	_	1.00	ns

Note: Internal Timing Parameters are not tested and are for reference only. Refer to the timing model in this data sheet for further details. Timing v.0.8

Switching Test Conditions

Figure 17 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 13.

Figure 17. Output Test Load, LVTTL and LVCMOS Standards

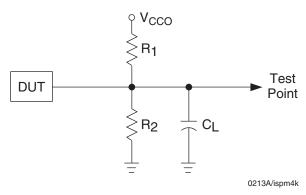


Table 13. Test Fixture Required Components

Test Condition	R ₁	R ₂	C _L ¹	Timing Ref.	V _{cco}
				LVCMOS 3.3 = 1.5V	LVCMOS 3.3 = 3.0V
				LVCMOS 2.5 = $\frac{V_{CCO}}{2}$	LVCMOS 2.5 = 2.3V
LVCMOS I/O, (L -> H, H -> L)	106Ω	106Ω	35pF	LVCMOS 1.8 = $\frac{V_{CCO}}{2}$	LVCMOS 1.8 = 1.65V
				LVCMOS 1.5 = $\frac{V_{CCO}}{2}$	LVCMOS 1.5 = 1.4V
LVCMOS I/O (Z -> H)	∞	106Ω	35pF	1.5V	3.0V
LVCMOS I/O (Z -> L)	106Ω	∞	35pF	1.5V	3.0V
LVCMOS I/O (H -> Z)	∞	106Ω	5pF	V _{OH} - 0.3	3.0V
LVCMOS I/O (L -> Z)	106Ω	8	5pF	V _{OL} + 0.3	3.0V

^{1.} C_L includes test fixtures and probe capacitance.

ispMACH 4000ZE Power Supply and NC Connections¹ (Cont.)

Signal	132 ucBGA³	144 csBGA³	144 TQFP ²
VCC	M1, M7, A12, B5	H5, H8, E8, E5	36, 57, 108, 129
VCCO0 VCCO (Bank 0)	B1, H4, L2, J5, A4	E4, F4, G4, J5, D5	3, 19, 34, 47, 136
VCCO1 VCCO (Bank 1)	K9, L12, F12, D9, C7	J8, H9, G9, F9, D8	64, 75, 91, 106, 119
GND	E5, E8, H5, H8	F6, G6, G7, F7	1, 37, 73, 109
GND (Bank 0)	E2, H2, M4, B7, B3	G5, H4, H6, E6, F5	10, 184, 27, 46, 127, 137
GND (Bank 1)	L7, J9, H12, E9, A9	H7, J9, G8, F8, E7	55, 65, 82, 90 ⁴ , 99, 118
NC	_	4064ZE: E4, B2, B1, D2, D3, E1, H1, H3, H2, L1, G4, M1, K3, M2, M4, L5, H7, L8, M8, L10, K9, M11, H9, L12, L11, J12, J11, H10, D10, F10, D12, B12, F9, A12, C10, B10, A9, B8, E6, B5, A5, C4, B3, A2 4128ZE: D2, D3, H2, M1, K3, M11, J12, J11, D12, A12, C10, A2	, ,

^{1.} All grounds must be electrically connected at the board level. However, for the purposes of I/O current loading, grounds are associated with the bank shown.

^{2.} Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.

^{3.} Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.

^{4.} For the LC4256ZE, pins 18 and 90 are no connects.

ispMACH 4032ZE and 4064ZE Logic Signal Connections: 64 csBGA

		ispMACH 4032ZE	ispMACH 4064ZE
Ball Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad
B2	-	TDI	TDI
B1	0	A5	A8
C2	0	A6	A10
C1	0	A7	A11
GND*	0	GND (Bank 0)	GND (Bank 0)
C3	0	NC	A12
E3	0	VCCO (Bank 0)	VCCO (Bank 0)
D1	0	A8	B15
D2	0	NC	B14
E1	0	A9	B13
D3	0	A10	B12
F1	0	A11	B11
E2	0	NC	B10
G1	0	NC	B9
F2	0	NC	B8
H1	-	TCK	TCK
E4	-	VCC	VCC
GND*	-	GND	GND
G2	0	A12	B6
H2	0	NC	B5
H3	0	A13	B4
GND*	0	NC	GND (Bank 0)
F4	0	NC	VCCO (Bank 0)
G3	0	A14	B3
F3	0	NC	B2
H4	0	A15	В0
G4	0	CLK1/I	CLK1/I
H5	1	CLK2/I	CLK2/I
F5	1	B0	C0
G5	1	B1	C1
G6	1	B2	C2
H6	1	B3	C4
F6	1	B4	C5
H7	1	NC	C6
H8	-	TMS	TMS
G 7	1	B5	C8
F7	1	B6	C10
G8	1	B7	C11
GND*	1	GND (Bank 0)	GND (Bank 1)
F8	1	NC	C12
D6	1	VCCO (Bank 1)	VCCO (Bank 1)
E8	1	B8	D15

ispMACH 4128ZE Logic Signal Connections: 132 ucBGA (Cont.)

Ball Number	Bank Number	GLB/MC/Pad
D10	1	G9
E12	1	G8
E9	1	GND (Bank 1)
D12	1	G6
D11	1	G5
C12	1	G4
C10	1	G2
C11	1	G1
B11	1	G0
D9	1	VCCO (Bank 1)
B12	-	TDO
A12	-	VCC
GND*	-	GND
A10	1	H14
A11	1	H13
B10	1	H12
C9	1	H10
D8	1	H9
C8	1	H8
A9	1	GND (Bank 1)
C7	1	VCCO (Bank 1)
B9	1	H6
B8	1	H5
D7	1	H4
A8	1	H2
A7	1	H1
B6	1	H0/GOE1
C6	1	CLK3/I
B7	0	GND (Bank 0)
D6	0	CLK0/I
B5	-	VCC
A6	0	A0/GOE0
C5	0	A1
B4	0	A2
A5	0	A4
C4	0	A5
D5	0	A6
A4	0	VCCO (Bank 0)
B3	0	GND (Bank 0)
D4	0	A8
A3	0	A9
C3	0	A10
B2	0	A12
C2	0	A13

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA (Cont.)

J12 J11 H10 H12 G11 H11 G12 G10* G9 F12	Bank Number	GLB/MC/Pad NC Ball NC Ball NC Ball C12 C13 C14 C15	GLB/MC/Pad NC Ball NC Ball F8 F9 F10 F12	GLB/MC/Pad L14 L12 L10 L8 L6 L4
J11 H10 H12 G11 H11 G12 G10* G9 F12	1 1 1 1 1 1 1	NC Ball NC Ball C12 C13 C14 C15	NC Ball F8 F9 F10 F12	L12 L10 L8 L6
H10 H12 G11 H11 G12 G10* G9 F12	1 1 1 1 1	NC Ball C12 C13 C14 C15	F8 F9 F10 F12	L10 L8 L6
H12 G11 H11 G12 G10* G9 F12	1 1 1 1	C12 C13 C14 C15	F9 F10 F12	L8 L6
G11 H11 G12 G10* G9 F12	1 1 1	C13 C14 C15	F10 F12	L6
H11 G12 G10* G9 F12	1 1 1	C14 C15	F12	
G12 G10* G9 F12	1 1	C15		Ι /
G10* G9 F12	1		E40	L 4
G9 F12		ı	F13	L2
F12	1	I .	F14	LO
		VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
	1	D15	G14	MO
F11	1	D14	G13	M2
E11	1	D13	G12	M4
E12	1	D12	G10	M6
D10	1	NC Ball	G9	M8
F10	1	NC Ball	G8	M10
D12	1	NC Ball	NC Ball	M12
F8	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
E10	1	D11	G6	N2
D11	1	D10	G5	N4
E9	1	D9	G4	N6
C12	1	D8	G2	N8
C11*	1	<u> </u>	G1	N10
B12	1	NC Ball	G0	N12
F9	1	NC Ball	VCCO (Bank 1)	VCCO (Bank 1)
B11	-	TDO	TDO	TDO
E8	-	VCC	VCC	VCC
F7	-	GND	GND	GND
A12	1	NC Ball	NC Ball	014
C10	1	NC Ball	NC Ball	012
B10	1	NC Ball	H14	O10
A11*	1	I	H13	O8
D9	1	D7	H12	O6
B9	1	D6	H10	04
C9	1	D5	H9	02
A10	1	D4	H8	00
E7	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
D8	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
A9	1	NC Ball	H6	P12
B8	1	NC Ball	H5	P10
C8	1	D3	H4	P8
A8	1	D2	H2	P6
D7	1	D1	H1	P4
B7	1	D0/G0F1	H0/G0F1	P2/GOF1

ispMACH 4128ZE and 4256ZE Logic Signal Connections: 144 TQFP (Cont.)

		LC4128ZE	LC4256ZE
Pin Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad
43	0	D9	G4
44	0	D8	G2
45*	0	NC	1
46	0	GND (Bank 0)	GND (Bank 0)
47	0	VCCO (Bank 0)	VCCO (Bank 0)
48	0	D6	H12
49	0	D5	H10
50	0	D4	H8
51	0	D2	H6
52	0	D1	H4
53	0	D0	H2
54	0	CLK1/I	CLK1/I
55	1	GND (Bank 1)	GND (Bank 1)
56	1	CLK2/I	CLK2/I
57	-	VCC	VCC
58	1	E0	12
59	1	E1	14
60	1	E2	16
61	1	E4	18
62	1	E5	I10
63	1	E6	l12
64	1	VCCO (Bank 1)	VCCO (Bank 1)
65	1	GND (Bank 1)	GND (Bank 1)
66	1	E8	J2
67	1	E9	J4
68	1	E10	J6
69	1	E12	J8
70	1	E13	J10
71	1	E14	J12
72*	1	NC	I
73	-	GND	GND
74	-	TMS	TMS
75	1	VCCO (Bank 1)	VCCO (Bank 1)
76	1	F0	K12
77	1	F1	K10
78	1	F2	K8
79	1	F4	K6
80	1	F5	K4
81	1	F6	K2
82	1	GND (Bank 1)	GND (Bank 1)
83	1	F8	L14
84	1	F9	L12
85	1	F10	L10

ispMACH 4128ZE and 4256ZE Logic Signal Connections: 144 TQFP (Cont.)

Pin Number	Bank Number	LC4128ZE GLB/MC/Pad	LC4256ZE GLB/MC/Pad
130	0	A0/GOE0	A2/GOE0
131	0	A1	A4
132	0	A2	A6
133	0	A4	A8
134	0	A5	A10
135	0	A6	A12
136	0	VCCO (Bank 0)	VCCO (Bank 0)
137	0	GND (Bank 0)	GND (Bank 0)
138	0	A8	B2
139	0	A9	B4
140	0	A10	B6
141	0	A12	B8
142	0	A13	B10
143	0	A14	B12
144*	0	NC	I

^{*} This pin is input only for the LC4256ZE.

Revision History

Date	Version	Change Summary	
April 2008	01.0	Initial release.	
July 2008	01.1	Updated Features bullets.	
		Updated typical Hysteresis voltage.	
		Updated Power Guard for Dedicated Inputs section.	
		Updated DC Electrical Characteristics table.	
		Updated Supply Current table.	
		Updated I/O DC Electrical Characteristics table and note 2.	
		Updated ispMACH 4000ZE Timing Model.	
		Added new parameters for the Internal Oscillator.	
		Updated ORP Reference table.	
		Updated Power Supply and NC Connections table.	
		Updated 100 TQFP Logic Signal Connections table with LC4128ZE and 4256ZE.	
		Updated 144 csBGA Logic Signal Connections table with LC4128ZE and 4256ZE.	
		Added 144 TQFP Logic Signal Connections table.	
August 2008	01.2	Data sheet status changed from advance to final.	
		Updated Supply Current table.	
		Updated External Switching Characteristics.	
		Updated Internal Timing Parameters.	
		Updated Power Consumption graph and Power Estimation Coefficients table.	
		Updated Ordering Information mark format example.	
December 2008	01.3	Updated ispMACH 4000ZE Family Selection Guide table to include 64-ball ucBGA and 132-ball ucBGA packages.	
		Updated ispMACH 4000ZE Power Supply and NC Connections table to include 64-ball ucBGA and 132-ball ucBGA packages.	
		Added Logic Signal Connections tables for 64-ball ucBGA and 132-ball ucBGA packages.	
		Updated Part Number Description diagram for 64-ball ucBGA and 132-ball ucBGA packages.	
		Updated Ordering Information tables for 64-ball ucBGA and 132-ball ucBGA packages.	
May 2009	01.4	Correction to t _{CW} , t _{GW} , t _{WIR} and f _{MAX} parameters in External Switching Characteristics table.	
June 2011	01.5	Added copper bond package part numbers.	
		Added footnote 4 to Absolute Maximum Ratings.	
February 2012	01.6	Updated document with new corporate logo.	
February 2012	01.7	Removed copper bond packaging information. Refer to PCN 04A-12 for further information.	
		Updated topside marks with new logos in the Ordering Information section.	