# E: Lattice Semiconductor Corporation - <u>LC4064ZE-5UMN64I Datasheet</u>



Welcome to E-XFL.COM

#### Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

#### Applications of Embedded - CPLDs

#### Details

| Product Status                  | Not For New Designs                                                         |
|---------------------------------|-----------------------------------------------------------------------------|
| Programmable Type               | In System Programmable                                                      |
| Delay Time tpd(1) Max           | 5.8 ns                                                                      |
| Voltage Supply - Internal       | 1.7V ~ 1.9V                                                                 |
| Number of Logic Elements/Blocks | 4                                                                           |
| Number of Macrocells            | 64                                                                          |
| Number of Gates                 | -                                                                           |
| Number of I/O                   | 48                                                                          |
| Operating Temperature           | -40°C ~ 105°C (TJ)                                                          |
| Mounting Type                   | Surface Mount                                                               |
| Package / Case                  | 64-VFBGA, CSPBGA                                                            |
| Supplier Device Package         | 64-UCBGA (4x4)                                                              |
| Purchase URL                    | https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4064ze-5umn64i |
|                                 |                                                                             |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



### Introduction

The high performance ispMACH 4000ZE family from Lattice offers an ultra low power CPLD solution. The new family is based on Lattice's industry-leading ispMACH 4000 architecture. Retaining the best of the previous generation, the ispMACH 4000ZE architecture focuses on significant innovations to combine high performance with low power in a flexible CPLD family. For example, the family's new Power Guard feature minimizes dynamic power consumption by preventing internal logic toggling due to unnecessary I/O pin activity.

The ispMACH 4000ZE combines high speed and low power with the flexibility needed for ease of design. With its robust Global Routing Pool and Output Routing Pool, this family delivers excellent First-Time-Fit, timing predictability, routing, pin-out retention and density migration.

The ispMACH 4000ZE family offers densities ranging from 32 to 256 macrocells. There are multiple density-I/O combinations in Thin Quad Flat Pack (TQFP), Chip Scale BGA (csBGA), and Ultra Chip Scale BGA (ucBGA) packages ranging from 32 to 144 pins/balls. Table 1 shows the macrocell, package and I/O options, along with other key parameters.

A user programmable internal oscillator and a timer are included in the device for tasks like LED control, keyboard scanner and similar housekeeping type state machines. This feature can be optionally disabled to save power.

The ispMACH 4000ZE family has enhanced system integration capabilities. It supports a 1.8V supply voltage and 3.3V, 2.5V, 1.8V and 1.5V interface voltages. Additionally, inputs can be safely driven up to 5.5V when an I/O bank is configured for 3.3V operation, making this family 5V tolerant. The ispMACH 4000ZE also offers enhanced I/O features such as slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a "per-pin" basis. The ispMACH 4000ZE family members are 1.8V in-system programmable through the IEEE Standard 1532 interface. IEEE Standard 1149.1 boundary scan testing capability also allows product testing on automated test equipment. The 1532 interface signals TCK, TMS, TDI and TDO are referenced to V<sub>CC</sub> (logic core).

#### Overview

The ispMACH 4000ZE devices consist of multiple 36-input, 16-macrocell Generic Logic Blocks (GLBs) interconnected by a Global Routing Pool (GRP). Output Routing Pools (ORPs) connect the GLBs to the I/O Blocks (IOBs), which contain multiple I/O cells. This architecture is shown in Figure 1.



#### Figure 1. Functional Block Diagram



The I/Os in the ispMACH 4000ZE are split into two banks. Each bank has a separate I/O power supply. Inputs can support a variety of standards independent of the chip or bank power supply. Outputs support the standards compatible with the power supply provided to the bank. Support for a variety of standards helps designers implement designs in mixed voltage environments. In addition, 5V tolerant inputs are specified within an I/O bank that is connected to a  $V_{CCO}$  of 3.0V to 3.6V for LVCMOS 3.3, LVTTL and PCI interfaces.

## Architecture

There are a total of two GLBs in the ispMACH 4032ZE, increasing to 16 GLBs in the ispMACH 4256ZE. Each GLB has 36 inputs. All GLB inputs come from the GRP and all outputs from the GLB are brought back into the GRP to be connected to the inputs of any other GLB on the device. Even if feedback signals return to the same GLB, they still must go through the GRP. This mechanism ensures that GLBs communicate with each other with consistent and predictable delays. The outputs from the GLB are also sent to the ORP. The ORP then sends them to the associated I/O cells in the I/O block.

#### **Generic Logic Block**

The ispMACH 4000ZE GLB consists of a programmable AND array, logic allocator, 16 macrocells and a GLB clock generator. Macrocells are decoupled from the product terms through the logic allocator and the I/O pins are decoupled from macrocells through the ORP. Figure 2 illustrates the GLB.

#### Figure 2. Generic Logic Block



#### AND Array

The programmable AND Array consists of 36 inputs and 83 output product terms. The 36 inputs from the GRP are used to form 72 lines in the AND Array (true and complement of the inputs). Each line in the array can be connected to any of the 83 output product terms via a wired-AND. Each of the 80 logic product terms feed the logic allocator with the remaining three control product terms feeding the Shared PT Clock, Shared PT Initialization and Shared PT OE. The Shared PT Clock and Shared PT Initialization signals can optionally be inverted before being fed to the macrocells.

Every set of five product terms from the 80 logic product terms forms a product term cluster starting with PT0. There is one product term cluster for every macrocell in the GLB. Figure 3 is a graphical representation of the AND Array.



| Expansion<br>Chains | Macrocells Associated with Expansion Chain<br>(with Wrap Around) | Max PT/<br>Macrocell |
|---------------------|------------------------------------------------------------------|----------------------|
| Chain-0             | M0 Õ M4 Õ M8 Õ M12 Õ M0                                          | 75                   |
| Chain-1             | M1 Õ M5 Õ M9 Õ M13 Õ M1                                          | 80                   |
| Chain-2             | M2 Õ M6 Õ M10 Õ M14 Õ M2                                         | 75                   |
| Chain-3             | M3 Õ M7 Õ M11 Õ M15 Õ M3                                         | 70                   |

#### Table 4. Product Term Expansion Capability

Every time the super cluster allocator is used, there is an incremental delay of  $t_{EXP}$ . When the super cluster allocator is used, all destinations other than the one being steered to, are given the value of ground (i.e., if the super cluster is steered to M (n+4), then M (n) is ground).

#### Macrocell

The 16 macrocells in the GLB are driven by the 16 outputs from the logic allocator. Each macrocell contains a programmable XOR gate, a programmable register/latch, along with routing for the logic and control functions. Figure 5 shows a graphical representation of the macrocell. The macrocells feed the ORP and GRP. A direct input from the I/O cell allows designers to use the macrocell to construct high-speed input registers. A programmable delay in this path allows designers to choose between the fastest possible set-up time and zero hold time.

#### Figure 5. Macrocell



#### **Enhanced Clock Multiplexer**

The clock input to the flip-flop can select any of the four block clocks along with the shared PT clock, and true and complement forms of the optional individual term clock. An 8:1 multiplexer structure is used to select the clock. The eight sources for the clock multiplexer are as follows:

- Block CLK0
- Block CLK1



The number of BIE inputs, thus the number of Power Guard "Blocks" that can exist in a device, depends on the device size. Table 8 shows the number of BIE signals available in the ispMACH 4000ZE family. The number of I/Os available in each block is shown in the Ordering Information section of this data sheet.

| Device         | Number of Logic Blocks, Power<br>Guard Blocks and BIE Signals |
|----------------|---------------------------------------------------------------|
| ispMACH 4032ZE | Two (Blocks: A and B)                                         |
| ispMACH 4064ZE | Four (Blocks: A, B, C and D)                                  |
| ispMACH 4128ZE | Eight (Blocks: A, B, C,, H)                                   |
| ispMACH 4256ZE | Sixteen (Blocks: A, B, C,, P)                                 |

#### Table 8. Number of BIE Signals Available in ispMACH 4000ZE Devices

#### **Power Guard for Dedicated Inputs**

Power Guard can optionally be applied to the dedicated inputs. The dedicated inputs and clocks are controlled by the BIE of the logic blocks shown in Tables 9 and 10.

#### Table 9. Dedicated Clock Inputs to BIE Association

| CLK/I    | 32 MC Block | 64MC Block | 128MC Block | 256MC Block |
|----------|-------------|------------|-------------|-------------|
| CLK0 / I | A           | A          | A           | A           |
| CLK1 / I | A           | В          | D           | Н           |
| CLK2 / I | В           | С          | E           | I           |
| CLK3 / I | В           | D          | Н           | Р           |

#### Table 10. Dedicated Inputs to BIE Association

| Dedicated Input | 4064ZE Block | 4128ZE Block | 4256ZE Block |
|-----------------|--------------|--------------|--------------|
| 0               | A            | В            | D            |
| 1               | В            | С            | E            |
| 2               | В            | D            | G            |
| 3               | С            | F            | G            |
| 4               | D            | G            | J            |
| 5               | D            | Н            | L            |
| 6               | —            | —            | М            |
| 7               | _            | _            | 0            |
| 8               |              | —            | 0            |
| 9               |              | —            | В            |

For more information on the Power Guard function refer to TN1174, <u>Advanced Features of the ispMACH 4000ZE</u> <u>Family</u>.

## Global OE (GOE) and Block Input Enable (BIE) Generation

Most ispMACH 4000ZE family devices have a 4-bit wide Global OE (GOE) Bus (Figure 11), except the ispMACH 4032 device that has a 2-bit wide Global OE Bus (Figure 12). This bus is derived from a 4-bit internal global OE (GOE) PT bus and two dual purpose I/O or GOE pins. Each signal that drives the bus can optionally be inverted.

Each GLB has a block-level OE PT that connects to all bits of the Global OE PT bus with four fuses. Hence, for a 256-macrocell device (with 16 blocks), each line of the bus is driven from 16 OE product terms. Figures 9 and 10 show a graphical representation of the global OE generation.



mated test equipment. This equipment can then be used to program ispMACH 4000ZE devices during the testing of a circuit board.

#### **User Electronic Signature**

The User Electronic Signature (UES) allows the designer to include identification bits or serial numbers inside the device, stored in E<sup>2</sup>CMOS memory. The ispMACH 4000ZE device contains 32 UES bits that can be configured by the user to store unique data such as ID codes, revision numbers or inventory control codes.

## **Security Bit**

A programmable security bit is provided on the ispMACH 4000ZE devices as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. Programming and verification are also defeated by the security bit. The bit can only be reset by erasing the entire device.

## Hot Socketing

The ispMACH 4000ZE devices are well-suited for applications that require hot socketing capability. Hot socketing a device requires that the device, during power-up and down, can tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of I/O pin loading be minimal on active signals. The isp-MACH 4000ZE devices provide this capability for input voltages in the range 0V to 3.0V.

## **Density Migration**

The ispMACH 4000ZE family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted for a high density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.



## Absolute Maximum Ratings<sup>1, 2, 3, 4</sup>

| Supply Voltage (V <sub>CC</sub> )                     | o 2.5V |
|-------------------------------------------------------|--------|
| Output Supply Voltage (V <sub>CCO</sub> )             | o 4.5V |
| Input or I/O Tristate Voltage Applied <sup>5, 6</sup> | o 5.5V |
| Storage Temperature                                   | 150°C  |
| Junction Temperature (Tj) with Power Applied55 to     | 150°C  |

- 1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
- 2. Compliance with Lattice Thermal Management document is required.
- 3. All voltages referenced to GND.
- 4. Please refer to the Lattice ispMACH 4000V/B/C/ZC/ZE Product Family Qualification Summary for complete data, including the ESD performance data.
- 5. Undershoot of -2V and overshoot of ( $V_{IH}$  (MAX) + 2V), up to a total pin voltage of 6V is permitted for a duration of <20ns.
- 6. Maximum of 64 I/Os per device with VIN > 3.6V is allowed.

## **Recommended Operating Conditions**

| Symbol          |                                   | Parameter                  |                  |     | Units |
|-----------------|-----------------------------------|----------------------------|------------------|-----|-------|
| V <sub>CC</sub> | Supply Voltage                    | Standard Voltage Operation | 1.7              | 1.9 | V     |
|                 | Supply vollage                    | Extended Voltage Operation | 1.6 <sup>1</sup> | 1.9 | V     |
| Т <sub>ј</sub>  | Junction Temperature (Commercial) |                            | 0                | 90  | °C    |
|                 | Junction Temperature (Industrial) |                            | -40              | 105 | О°    |

1. Devices operating at 1.6V can expect performance degradation up to 35%.

### **Erase Reprogram Specifications**

| Parameter             | Min.  | Max. | Units  |
|-----------------------|-------|------|--------|
| Erase/Reprogram Cycle | 1,000 |      | Cycles |

Note: Valid over commercial temperature range.

#### Hot Socketing Characteristics<sup>1,2,3</sup>

| Symbol          | Parameter                    | Condition                                     | Min. | Тур. | Max. | Units |
|-----------------|------------------------------|-----------------------------------------------|------|------|------|-------|
| I <sub>DK</sub> | Input or I/O Leakage Current | $0 \le V_{IN} \le 3.0V$ , Tj = 105°C          |      | ±30  | ±150 | μΑ    |
|                 |                              | $0 \le V_{IN} \le 3.0V$ , Tj = $130^{\circ}C$ | _    | ±30  | ±200 | μΑ    |

1. Insensitive to sequence of V<sub>CC</sub> or V<sub>CCO.</sub> However, assumes monotonic rise/fall rates for V<sub>CC</sub> and V<sub>CCO,</sub> provided (V<sub>IN</sub> - V<sub>CCO</sub>)  $\leq$  3.6V.

2.  $0 < V_{CC} < V_{CC}$  (MAX),  $0 < V_{CCO} < V_{CCO}$  (MAX).

3.  $I_{DK}$  is additive to  $I_{PU}$ ,  $I_{PD}$  or  $I_{BH}$ . Device defaults to pull-up until fuse circuitry is active.



## I/O Recommended Operating Conditions

|                     | V <sub>CCC</sub> | <sub>D</sub> (V) <sup>1</sup> |
|---------------------|------------------|-------------------------------|
| Standard            | Min.             | Max.                          |
| LVTTL               | 3.0              | 3.6                           |
| LVCMOS 3.3          | 3.0              | 3.6                           |
| Extended LVCMOS 3.3 | 2.7              | 3.6                           |
| LVCMOS 2.5          | 2.3              | 2.7                           |
| LVCMOS 1.8          | 1.65             | 1.95                          |
| LVCMOS 1.5          | 1.4              | 1.6                           |
| PCI 3.3             | 3.0              | 3.6                           |

1. Typical values for  $V_{CCO}$  are the average of the min. and max. values.

## **DC Electrical Characteristics**

#### **Over Recommended Operating Conditions**

| Symbol                         | Parameter                             | Condition                                        | Min.                    | Тур. | Max.                    | Units |  |
|--------------------------------|---------------------------------------|--------------------------------------------------|-------------------------|------|-------------------------|-------|--|
| $I_{\rm IL}, I_{\rm IH}^{1,2}$ | Input Leakage Current                 | $0 \le V_{IN} < V_{CCO}$                         | —                       | 0.5  | 1                       | μΑ    |  |
| I <sub>IH</sub> <sup>1</sup>   | Input High Leakage Current            | $V_{CCO} < V_{IN} \le 5.5V$                      | —                       | _    | 10                      | μΑ    |  |
| I <sub>PU</sub>                | I/O Weak Pull-up Resistor Current     | $0 \leq V_{IN} \leq 0.7 V_{CCO}$                 | -20                     | _    | -150                    | μΑ    |  |
| I <sub>PD</sub>                | I/O Weak Pull-down Resistor Current   | $V_{IL}$ (MAX) $\leq V_{IN} \leq V_{IH}$ (MAX)   | 30                      | _    | 150                     | μΑ    |  |
| I <sub>BHLS</sub>              | Bus Hold Low Sustaining Current       | $V_{IN} = V_{IL} (MAX)$                          | 30                      | _    | —                       | μΑ    |  |
| I <sub>BHHS</sub>              | Bus Hold High Sustaining Current      | $V_{IN} = 0.7 V_{CCO}$                           | -20                     | _    | —                       | μΑ    |  |
| I <sub>BHLO</sub>              | Bus Hold Low Overdrive Current        | $0V \le V_{IN} \le V_{BHT}$                      | —                       | _    | 150                     | μΑ    |  |
| I <sub>BHHO</sub>              | Bus Hold High Overdrive Current       | $V_{BHT} \le V_{IN} \le V_{CCO}$                 | —                       | _    | -150                    | μΑ    |  |
| V <sub>BHT</sub>               | Bus Hold Trip Points                  | —                                                | V <sub>CCO</sub> * 0.35 | _    | V <sub>CCO</sub> * 0.65 | V     |  |
| C.                             | 1/O Capacitance <sup>3</sup>          | V <sub>CCO</sub> = 3.3V, 2.5V, 1.8V, 1.5V        | —                       | Q    | —                       | nf    |  |
| 01                             | 1/O Capacitance                       | $V_{CC}$ = 1.8V, $V_{IO}$ = 0 to $V_{IH}$ (MAX)  | —                       | 0    |                         | Ы     |  |
| C.                             | Clock Canacitance <sup>3</sup>        | V <sub>CCO</sub> = 3.3V, 2.5V, 1.8V, 1.5V        | —                       | 6    | —                       | nf    |  |
| 02                             | Clock Capacitance                     | $V_{CC} = 1.8V$ , $V_{IO} = 0$ to $V_{IH}$ (MAX) | —                       | 0    | —                       | р     |  |
| Ca                             | Global Input Canacitance <sup>3</sup> | V <sub>CCO</sub> = 3.3V, 2.5V, 1.8V, 1.5V        | —                       | 6    | —                       | nf    |  |
| 03                             |                                       | $V_{CC} = 1.8V$ , $V_{IO} = 0$ to $V_{IH}$ (MAX) | —                       | 0    |                         | Ч     |  |

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tristated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

 I<sub>IH</sub> excursions of up to 1.5µA maximum per pin above the spec limit may be observed for certain voltage conditions on no more than 10% of the device's I/O pins.

3. Measured  $T_A = 25^{\circ}C$ , f = 1.0MHz.



## I/O DC Electrical Characteristics

| e e e e e e e e e e e e e e e e e e e |         |                                     |                                     |                 |                      |                         |                         |      |      |
|---------------------------------------|---------|-------------------------------------|-------------------------------------|-----------------|----------------------|-------------------------|-------------------------|------|------|
|                                       |         | V <sub>IL</sub>                     | V <sub>IH</sub>                     | V <sub>IH</sub> |                      | V <sub>OH</sub>         |                         |      |      |
| Standard                              | Min (V) | Max (V)                             | Min (V)                             | Max (V)         | Max (V)              | Min (V)                 | (mĀ)                    | (mA) |      |
|                                       | -03     | 0.80                                | 2.0                                 | 5 5             | 0.40                 | V <sub>CCO</sub> - 0.40 | 8.0                     | -4.0 |      |
|                                       | -0.5    | 0.00                                | 2.0                                 | 5.5             | 0.20                 | V <sub>CCO</sub> - 0.20 | 0.1                     | -0.1 |      |
| LVCMOS 3.3                            | -0.3    | 0.80                                | 2.0                                 | 5.5             | 0.40                 | V <sub>CCO</sub> - 0.40 | 8.0                     | -4.0 |      |
|                                       |         |                                     |                                     |                 | 0.20                 | V <sub>CCO</sub> - 0.20 | 0.1                     | -0.1 |      |
|                                       | -0.3    | -0.3                                | 0.3 0.70                            | 1 70            | 26                   | 0.40                    | V <sub>CCO</sub> - 0.40 | 8.0  | -4.0 |
| LV 010100 2.5                         |         | 0.70                                | 1.70                                | 0.0             | 0.20                 | V <sub>CCO</sub> - 0.20 | 0.1                     | -0.1 |      |
|                                       | -0.3    | 0.35 * V                            | 0.65 * V                            | 36              | 0.40                 | V <sub>CCO</sub> - 0.45 | 2.0                     | -2.0 |      |
|                                       | -0.5    | 0.55 V <sub>CC</sub>                | 0.03 VCC                            | 5.0             | 0.20                 | V <sub>CCO</sub> - 0.20 | 0.1                     | -0.1 |      |
|                                       | -0.3    | 0.35 * V                            | 0.65 * V                            | 3.6             | 0.40                 | V <sub>CCO</sub> - 0.45 | 2.0                     | -2.0 |      |
|                                       | -0.5    | 0.55 VCC                            | 0.05 VCC                            | 5.0             | 0.20                 | V <sub>CCO</sub> - 0.20 | 0.1                     | -0.1 |      |
| PCI 3.3                               | -0.3    | 0.3 * 3.3 * (V <sub>CC</sub> / 1.8) | 0.5 * 3.3 * (V <sub>CC</sub> / 1.8) | 5.5             | 0.1 V <sub>CCO</sub> | 0.9 V <sub>CCO</sub>    | 1.5                     | -0.5 |      |

**Over Recommended Operating Conditions** 

 The average DC current drawn by I/Os between adjacent bank GND connections, or between the last GND in an I/O bank and the end of the I/O bank, as shown in the logic signals connection table, shall not exceed n\*8mA. Where n is the number of I/Os between bank GND connections or between the last GND in a bank and the end of a bank.

2. For 1.5V inputs, there may be an additional DC current drawn from  $V_{CC}$ , if the ispMACH 4000ZE  $V_{CC}$  and the  $V_{CC}$  of the driving device ( $V_{CC}$ d-d; that determines steady state  $V_{IH}$ ) are in the extreme range of their specifications. Typically, DC current drawn from  $V_{CC}$  will be 2µA per input.





# ispMACH 4000ZE Internal Timing Parameters (Cont.)

|                      |                                                                        | All Devices |      |      |      |       |
|----------------------|------------------------------------------------------------------------|-------------|------|------|------|-------|
|                      |                                                                        |             | 5    | -7   |      |       |
| Parameter            | Description                                                            | Min.        | Max. | Min. | Max. | Units |
| In/Out Delays        |                                                                        |             |      |      |      |       |
| t <sub>IN</sub>      | Input Buffer Delay                                                     | _           | 1.05 | —    | 1.90 | ns    |
| t <sub>GCLK_IN</sub> | Global Clock Input Buffer Delay                                        | _           | 1.95 | _    | 2.15 | ns    |
| t <sub>GOE</sub>     | Global OE Pin Delay                                                    |             | 3.00 |      | 4.30 | ns    |
| t <sub>BUF</sub>     | Delay through Output Buffer                                            |             | 1.10 |      | 1.30 | ns    |
| t <sub>EN</sub>      | Output Enable Time                                                     | _           | 2.50 | _    | 2.70 | ns    |
| t <sub>DIS</sub>     | Output Disable Time                                                    | _           | 2.50 | _    | 2.70 | ns    |
| t <sub>PGSU</sub>    | Input Power Guard Setup Time                                           |             | 4.30 | _    | 5.60 | ns    |
| t <sub>PGH</sub>     | Input Power Guard Hold Time                                            |             | 0.00 | _    | 0.00 | ns    |
| t <sub>PGPW</sub>    | Input Power Guard BIE Minimum Pulse Width                              |             | 6.00 | _    | 8.00 | ns    |
| t <sub>PGRT</sub>    | Input Power Guard Recovery Time Following BIE Dis-<br>sertation        | _           | 5.00 | _    | 7.00 | ns    |
| Routing Delays       |                                                                        |             |      |      |      |       |
| t <sub>ROUTE</sub>   | Delay through GRP                                                      | _           | 2.25 | _    | 2.50 | ns    |
| t <sub>PDi</sub>     | Macrocell Propagation Delay                                            |             | 0.45 | _    | 0.50 | ns    |
| t <sub>MCELL</sub>   | Macrocell Delay                                                        |             | 0.65 | _    | 1.00 | ns    |
| t <sub>INREG</sub>   | Input Buffer to Macrocell Register Delay                               |             | 1.00 | _    | 1.00 | ns    |
| t <sub>FBK</sub>     | Internal Feedback Delay                                                |             | 0.75 | _    | 0.30 | ns    |
| t <sub>ORP</sub>     | Output Routing Pool Delay                                              | _           | 0.30 | _    | 0.30 | ns    |
| Register/Latch       | Delays                                                                 |             |      |      |      |       |
| t <sub>S</sub>       | D-Register Setup Time (Global Clock)                                   | 0.90        | —    | 1.25 | —    | ns    |
| t <sub>S PT</sub>    | D-Register Setup Time (Product Term Clock)                             | 2.00        | _    | 2.35 | —    | ns    |
| t <sub>H</sub>       | D-Register Hold Time                                                   | 2.00        | _    | 3.25 | —    | ns    |
| t <sub>ST</sub>      | T-Register Setup Time (Global Clock)                                   | 1.10        | _    | 1.45 | —    | ns    |
| t <sub>ST PT</sub>   | T-register Setup Time (Product Term Clock)                             | 2.20        | _    | 2.65 | —    | ns    |
| t <sub>HT</sub>      | T-Resister Hold Time                                                   | 2.00        | _    | 3.25 | —    | ns    |
| t <sub>SIR</sub>     | D-Input Register Setup Time (Global Clock)                             | 1.20        | _    | 0.65 | —    | ns    |
| t <sub>SIR PT</sub>  | D-Input Register Setup Time (Product Term Clock)                       | 1.45        | _    | 1.45 | —    | ns    |
| t <sub>HIR</sub>     | D-Input Register Hold Time (Global Clock)                              | 1.40        | _    | 2.05 | —    | ns    |
| t <sub>HIR PT</sub>  | D-Input Register Hold Time (Product Term Clock)                        | 1.10        | _    | 1.20 | —    | ns    |
| t <sub>COi</sub>     | Register Clock to Output/Feedback MUX Time                             |             | 0.45 | _    | 0.75 | ns    |
| t <sub>CES</sub>     | Clock Enable Setup Time                                                | 2.00        | _    | 2.00 | —    | ns    |
| t <sub>CEH</sub>     | Clock Enable Hold Time                                                 | 0.00        | —    | 0.00 | —    | ns    |
| t <sub>SL</sub>      | Latch Setup Time (Global Clock)                                        | 0.90        | _    | 1.55 | —    | ns    |
| t <sub>SL_PT</sub>   | Latch Setup Time (Product Term Clock)                                  | 2.00        | _    | 2.05 | —    | ns    |
| t <sub>HL</sub>      | Latch Hold Time                                                        | 2.00        | _    | 1.17 | —    | ns    |
| t <sub>GOi</sub>     | Latch Gate to Output/Feedback MUX Time                                 | —           | 0.35 | —    | 0.33 | ns    |
| t <sub>PDLi</sub>    | Propagation Delay through Transparent Latch to Output/<br>Feedback MUX | _           | 0.25 | _    | 0.25 | ns    |
| t <sub>SRi</sub>     | Asynchronous Reset or Set to Output/Feedback MUX Delay                 | _           | 0.95 | _    | 0.28 | ns    |





## **Power Consumption**



## **Power Estimation Coefficients**<sup>1</sup>

| Device         | Α     | В     |
|----------------|-------|-------|
| ispMACH 4032ZE | 0.010 | 0.009 |
| ispMACH 4064ZE | 0.011 | 0.009 |
| ispMACH 4128ZE | 0.012 | 0.009 |
| ispMACH 4256ZE | 0.013 | 0.009 |

1. For further information about the use of these coefficients, refer to TN1187, <u>Power Esti-</u> mation in ispMACH 4000ZE Devices.



# **Signal Descriptions**

| Signal Names                          | Desc                                                                                                    | ription                                                              |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|
| TMS                                   | Input – This pin is the IEEE 1149.1 Test Mode Select input, which is used to control the state machine. |                                                                      |  |  |
| ТСК                                   | Input – This pin is the IEEE 1149.1 Test Clock input pin, used to clock through the state machine.      |                                                                      |  |  |
| TDI                                   | Input – This pin is the IEEE 1149.1 Test D                                                              | Pata In pin, used to load data.                                      |  |  |
| TDO                                   | Output – This pin is the IEEE 1149.1 Test                                                               | Data Out pin used to shift data out.                                 |  |  |
| GOE0/IO, GOE1/IO                      | These pins are configured to be either Global Output Enable Input or as general I/O pins.               |                                                                      |  |  |
| GND                                   | Ground                                                                                                  |                                                                      |  |  |
| NC                                    | Not Connected                                                                                           |                                                                      |  |  |
| V <sub>CC</sub>                       | The power supply pins for logic core and JTAG port.                                                     |                                                                      |  |  |
| CLK0/I, CLK1/I, CLK2/I, CLK3/I        | These pins are configured to be either CL                                                               | K input or as an input.                                              |  |  |
| V <sub>CCO0</sub> , V <sub>CCO1</sub> | The power supply pins for each I/O bank.                                                                |                                                                      |  |  |
|                                       | Input/Output <sup>1</sup> – These are the general pur reference (alpha) and z is macrocell reference    | rpose I/O used by the logic array. y is GLB ence (numeric). z: 0-15. |  |  |
|                                       | ispMACH 4032ZE                                                                                          | y: A-B                                                               |  |  |
| yzz                                   | ispMACH 4064ZE                                                                                          | y: A-D                                                               |  |  |
|                                       | ispMACH 4128ZE                                                                                          | y: A-H                                                               |  |  |
|                                       | ispMACH 4256ZE                                                                                          | y: A-P                                                               |  |  |

1. In some packages, certain I/Os are only available for use as inputs. See the Logic Signal Connections tables for details.

## **ORP Reference Table**

|                                          | 4032ZE |    | 4064ZE                         |    | 412 | 8ZE |    | 4256ZE |                       |
|------------------------------------------|--------|----|--------------------------------|----|-----|-----|----|--------|-----------------------|
| Number of I/Os                           | 32     | 32 | 48                             | 64 | 64  | 96  | 64 | 96     | 108                   |
| Number of GLBs                           | 2      | 4  | 4                              | 4  | 8   | 8   | 16 | 16     | 16                    |
| Number of<br>I/Os per GLB                | 16     | 8  | Mixture of<br>9, 10,<br>14, 15 | 16 | 8   | 12  | 4  | 6      | Mixture of<br>6, 7, 8 |
| Reference ORP<br>Table (I/Os per<br>GLB) | 16     | 8  | 9, 10,<br>14, 15               | 16 | 8   | 12  | 4  | 6      | 6, 7, 8               |



## ispMACH 4000ZE Power Supply and NC Connections<sup>1</sup>

| Signal                 | 48 TQFP <sup>2</sup> | 64 csBGA <sup>3, 4</sup>     | 64 ucBGA <sup>3, 4</sup> | 100 TQFP <sup>2</sup> |
|------------------------|----------------------|------------------------------|--------------------------|-----------------------|
| VCC                    | 12, 36               | E4, D5                       | E4, D5                   | 25, 40, 75, 90        |
| VCCO0<br>VCCO (Bank 0) | 6                    | 4032ZE: E3<br>4064ZE: E3, F4 | C3, F3                   | 13, 33, 95            |
| VCCO1<br>VCCO (Bank 1) | 30                   | 4032ZE: D6<br>4064ZE: D6, C6 | F6, A6                   | 45, 63, 83            |
| GND                    | 13, 37               | D4, E5                       | D4, D5                   | 1, 26, 51, 76         |
| GND (Bank 0)           | 5                    | D4, E5                       | D4, D5                   | 7, 18, 32, 96         |
| GND (Bank 1)           | 29                   | D4, E5                       | D4, D5                   | 46, 57, 68, 82        |
| NC                     | _                    |                              | —                        | —                     |

1. All grounds must be electrically connected at the board level. However, for the purposes of I/O current loading, grounds are associated with the bank shown.

2. Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.

3. Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.

4. All bonded grounds are connected to the following two balls, D4 and E5.



## ispMACH 4032ZE and 4064ZE Logic Signal Connections: 48 TQFP (Cont.)

|            |             | ispMACH 4032ZE | ispMACH 4064ZE |
|------------|-------------|----------------|----------------|
| Pin Number | Bank Number | GLB/MC/Pad     | GLB/MC/Pad     |
| 43         | 0           | CLK0/I         | CLK0/I         |
| 44         | 0           | A0/GOE0        | A0/GOE0        |
| 45         | 0           | A1             | A1             |
| 46         | 0           | A2             | A2             |
| 47         | 0           | A3             | A4             |
| 48         | 0           | A4             | A6             |



# ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 100 TQFP (Cont.)

| Pin    | Bank   | LC4064ZE      | LC4128ZE      | LC4256ZE      |
|--------|--------|---------------|---------------|---------------|
| Number | Number | GLB/MC/Pad    | GLB/MC/Pad    | GLB/MC/Pad    |
| 83     | 1      | VCCO (Bank 1) | VCCO (Bank 1) | VCCO (Bank 1) |
| 84     | 1      | D3            | H6            | P12           |
| 85     | 1      | D2            | H4            | P10           |
| 86     | 1      | D1            | H2            | P6            |
| 87     | 1      | D0/GOE1       | H0/GOE1       | P2/GOE1       |
| 88     | 1      | CLK3/I        | CLK3/I        | CLK3/I        |
| 89     | 0      | CLK0/I        | CLK0/I        | CLK0/I        |
| 90     | -      | VCC           | VCC           | VCC           |
| 91     | 0      | A0/GOE0       | A0/GOE0       | A2/GOE0       |
| 92     | 0      | A1            | A2            | A6            |
| 93     | 0      | A2            | A4            | A10           |
| 94     | 0      | A3            | A6            | A12           |
| 95     | 0      | VCCO (Bank 0) | VCCO (Bank 0) | VCCO (Bank 0) |
| 96     | 0      | GND (Bank 0)  | GND (Bank 0)  | GND (Bank 0)  |
| 97     | 0      | A4            | A8            | B2            |
| 98     | 0      | A5            | A10           | B6            |
| 99     | 0      | A6            | A12           | B10           |
| 100    | 0      | A7            | A14           | B12           |

\* This pin is input only.



## ispMACH 4128ZE Logic Signal Connections: 132 ucBGA (Cont.)

| Ball Number | Bank Number | GLB/MC/Pad    |
|-------------|-------------|---------------|
| D10         | 1           | G9            |
| E12         | 1           | G8            |
| E9          | 1           | GND (Bank 1)  |
| D12         | 1           | G6            |
| D11         | 1           | G5            |
| C12         | 1           | G4            |
| C10         | 1           | G2            |
| C11         | 1           | G1            |
| B11         | 1           | G0            |
| D9          | 1           | VCCO (Bank 1) |
| B12         | -           | TDO           |
| A12         | -           | VCC           |
| GND*        | -           | GND           |
| A10         | 1           | H14           |
| A11         | 1           | H13           |
| B10         | 1           | H12           |
| C9          | 1           | H10           |
| D8          | 1           | H9            |
| C8          | 1           | H8            |
| A9          | 1           | GND (Bank 1)  |
| C7          | 1           | VCCO (Bank 1) |
| B9          | 1           | H6            |
| B8          | 1           | H5            |
| D7          | 1           | H4            |
| A8          | 1           | H2            |
| A7          | 1           | H1            |
| B6          | 1           | H0/GOE1       |
| C6          | 1           | CLK3/I        |
| B7          | 0           | GND (Bank 0)  |
| D6          | 0           | CLK0/I        |
| B5          | -           | VCC           |
| A6          | 0           | A0/GOE0       |
| C5          | 0           | A1            |
| B4          | 0           | A2            |
| A5          | 0           | A4            |
| C4          | 0           | A5            |
| D5          | 0           | A6            |
| A4          | 0           | VCCO (Bank 0) |
| B3          | 0           | GND (Bank 0)  |
| D4          | 0           | A8            |
| A3          | 0           | A9            |
| C3          | 0           | A10           |
| B2          | 0           | A12           |
| C2          | 0           | A13           |
|             |             |               |



# ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA

| Ball   | Bank   | LC4064ZE      | LC4128ZE      | LC4256ZE      |
|--------|--------|---------------|---------------|---------------|
| Number | Number | GLB/MC/Pad    | GLB/MC/Pad    | GLB/MC/Pad    |
| F6     | -      | GND           | GND           | GND           |
| A1     | -      | TDI           | TDI           | TDI           |
| E4     | 0      | NC Ball       | VCCO (Bank 0) | VCCO (Bank 0) |
| B2     | 0      | NC Ball       | B0            | C12           |
| B1     | 0      | NC Ball       | B1            | C10           |
| C3     | 0      | A8            | B2            | C8            |
| C2     | 0      | A9            | B4            | C6            |
| C1     | 0      | A10           | B5            | C4            |
| D1     | 0      | A11           | B6            | C2            |
| G5     | 0      | GND (Bank 0)  | GND (Bank 0)  | GND (Bank 0)  |
| D2     | 0      | NC Ball       | NC Ball       | D14           |
| D3     | 0      | NC Ball       | NC Ball       | D12           |
| E1     | 0      | NC Ball       | B8            | D10           |
| E2     | 0      | A12           | B9            | D8            |
| F2     | 0      | A13           | B10           | D6            |
| D4     | 0      | A14           | B12           | D4            |
| F1     | 0      | A15           | B13           | D2            |
| F3*    | 0      | I             | B14           | D0            |
| F4     | 0      | VCCO (Bank 0) | VCCO (Bank 0) | VCCO (Bank 0) |
| G1     | 0      | B15           | C14           | E0            |
| E3     | 0      | B14           | C13           | E2            |
| G2     | 0      | B13           | C12           | E4            |
| G3     | 0      | B12           | C10           | E6            |
| H1     | 0      | NC Ball       | C9            | E8            |
| H3     | 0      | NC Ball       | C8            | E10           |
| H2     | 0      | NC Ball       | NC Ball       | E12           |
| H4     | 0      | GND (Bank 0)  | GND (Bank 0)  | GND (Bank 0)  |
| J1     | 0      | B11           | C6            | F2            |
| J3     | 0      | B10           | C5            | F4            |
| J2     | 0      | B9            | C4            | F6            |
| K1     | 0      | B8            | C2            | F8            |
| K2*    | 0      |               | C1            | F10           |
| L1     | 0      | NC Ball       | CO            | F12           |
| G4     | 0      | NC Ball       | VCCO (Bank 0) | VCCO (Bank 0) |
| L2     | -      | ТСК           | ТСК           | тск           |
| H5     | -      | VCC           | VCC           | VCC           |
| G6     | -      | GND           | GND           | GND           |
| M1     | 0      | NC Ball       | NC Ball       | G14           |
| K3     | 0      | NC Ball       | NC Ball       | G12           |
| M2     | 0      | NC Ball       | D14           | G10           |
| L3*    | 0      | I             | D13           | G8            |



# ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA (Cont.)

| Ball   | Bank   | LC4064ZE      | LC4128ZE      | LC4256ZE      |
|--------|--------|---------------|---------------|---------------|
| Number | Number | GLB/MC/Pad    | GLB/MC/Pad    | GLB/MC/Pad    |
| J12    | 1      | NC Ball       | NC Ball       | L14           |
| J11    | 1      | NC Ball       | NC Ball       | L12           |
| H10    | 1      | NC Ball       | F8            | L10           |
| H12    | 1      | C12           | F9            | L8            |
| G11    | 1      | C13           | F10           | L6            |
| H11    | 1      | C14           | F12           | L4            |
| G12    | 1      | C15           | F13           | L2            |
| G10*   | 1      | I             | F14           | LO            |
| G9     | 1      | VCCO (Bank 1) | VCCO (Bank 1) | VCCO (Bank 1) |
| F12    | 1      | D15           | G14           | MO            |
| F11    | 1      | D14           | G13           | M2            |
| E11    | 1      | D13           | G12           | M4            |
| E12    | 1      | D12           | G10           | M6            |
| D10    | 1      | NC Ball       | G9            | M8            |
| F10    | 1      | NC Ball       | G8            | M10           |
| D12    | 1      | NC Ball       | NC Ball       | M12           |
| F8     | 1      | GND (Bank 1)  | GND (Bank 1)  | GND (Bank 1)  |
| E10    | 1      | D11           | G6            | N2            |
| D11    | 1      | D10           | G5            | N4            |
| E9     | 1      | D9            | G4            | N6            |
| C12    | 1      | D8            | G2            | N8            |
| C11*   | 1      | I             | G1            | N10           |
| B12    | 1      | NC Ball       | G0            | N12           |
| F9     | 1      | NC Ball       | VCCO (Bank 1) | VCCO (Bank 1) |
| B11    | -      | TDO           | TDO           | TDO           |
| E8     | -      | VCC           | VCC           | VCC           |
| F7     | -      | GND           | GND           | GND           |
| A12    | 1      | NC Ball       | NC Ball       | O14           |
| C10    | 1      | NC Ball       | NC Ball       | O12           |
| B10    | 1      | NC Ball       | H14           | O10           |
| A11*   | 1      | I             | H13           | O8            |
| D9     | 1      | D7            | H12           | O6            |
| B9     | 1      | D6            | H10           | O4            |
| C9     | 1      | D5            | H9            | O2            |
| A10    | 1      | D4            | H8            | O0            |
| E7     | 1      | GND (Bank 1)  | GND (Bank 1)  | GND (Bank 1)  |
| D8     | 1      | VCCO (Bank 1) | VCCO (Bank 1) | VCCO (Bank 1) |
| A9     | 1      | NC Ball       | H6            | P12           |
| B8     | 1      | NC Ball       | H5            | P10           |
| C8     | 1      | D3            | H4            | P8            |
| A8     | 1      | D2            | H2            | P6            |
| D7     | 1      | D1            | H1            | P4            |
| R7     | 1      | D0/GOE1       | H0/GOE1       | P2/GOE1       |



# ispMACH 4128ZE and 4256ZE Logic Signal Connections: 144 TQFP

|            |             | LC4128ZE      | LC4256ZE      |
|------------|-------------|---------------|---------------|
| Pin Number | Bank Number | GLB/MC/Pad    | GLB/MC/Pad    |
| 1          | -           | GND           | GND           |
| 2          | -           | TDI           | TDI           |
| 3          | 0           | VCCO (Bank 0) | VCCO (Bank 0) |
| 4          | 0           | B0            | C12           |
| 5          | 0           | B1            | C10           |
| 6          | 0           | B2            | C8            |
| 7          | 0           | B4            | C6            |
| 8          | 0           | B5            | C4            |
| 9          | 0           | B6            | C2            |
| 10         | 0           | GND (Bank 0)  | GND (Bank 0)  |
| 11         | 0           | B8            | D14           |
| 12         | 0           | B9            | D12           |
| 13         | 0           | B10           | D10           |
| 14         | 0           | B12           | D8            |
| 15         | 0           | B13           | D6            |
| 16         | 0           | B14           | D4            |
| 17*        | 0           | NC            | I             |
| 18         | 0           | GND (Bank 0)  | NC            |
| 19         | 0           | VCCO (Bank 0) | VCCO (Bank 0) |
| 20*        | 0           | NC            | I             |
| 21         | 0           | C14           | E2            |
| 22         | 0           | C13           | E4            |
| 23         | 0           | C12           | E6            |
| 24         | 0           | C10           | E8            |
| 25         | 0           | C9            | E10           |
| 26         | 0           | C8            | E12           |
| 27         | 0           | GND (Bank 0)  | GND (Bank 0)  |
| 28         | 0           | C6            | F2            |
| 29         | 0           | C5            | F4            |
| 30         | 0           | C4            | F6            |
| 31         | 0           | C2            | F8            |
| 32         | 0           | C1            | F10           |
| 33         | 0           | CO            | F12           |
| 34         | 0           | VCCO (Bank 0) | VCCO (Bank 0) |
| 35         | -           | ТСК           | TCK           |
| 36         | -           | VCC           | VCC           |
| 37         | -           | GND           | GND           |
| 38*        | 0           | NC            | I             |
| 39         | 0           | D14           | G12           |
| 40         | 0           | D13           | G10           |
| 41         | 0           | D12           | G8            |
| 42         | 0           | D10           | G6            |



| Industrial |                   |            |         |                 |                 |                   |     |       |  |
|------------|-------------------|------------|---------|-----------------|-----------------|-------------------|-----|-------|--|
| Device     | Part Number       | Macrocells | Voltage | t <sub>PD</sub> | Package         | Pin/Ball<br>Count | I/O | Grade |  |
| LC4032ZE   | LC4032ZE-5TN48I   | 32         | 1.8     | 5.8             | Lead-Free TQFP  | 48                | 32  | Ι     |  |
|            | LC4032ZE-7TN48I   | 32         | 1.8     | 7.5             | Lead-Free TQFP  | 48                | 32  | Ι     |  |
|            | LC4032ZE-5MN64I   | 32         | 1.8     | 5.8             | Lead-Free csBGA | 64                | 32  | Ι     |  |
|            | LC4032ZE-7MN64I   | 32         | 1.8     | 7.5             | Lead-Free csBGA | 64                | 32  | Ι     |  |
| LC4064ZE   | LC4064ZE-5TN48I   | 64         | 1.8     | 5.8             | Lead-Free TQFP  | 48                | 32  | Ι     |  |
|            | LC4064ZE-7TN48I   | 64         | 1.8     | 7.5             | Lead-Free TQFP  | 48                | 32  |       |  |
|            | LC4064ZE-5TN100I  | 64         | 1.8     | 5.8             | Lead-Free TQFP  | 100               | 64  |       |  |
|            | LC4064ZE-7TN100I  | 64         | 1.8     | 7.5             | Lead-Free TQFP  | 100               | 64  | Ι     |  |
|            | LC4064ZE-5MN64I   | 64         | 1.8     | 5.8             | Lead-Free csBGA | 64                | 48  | I     |  |
|            | LC4064ZE-7MN64I   | 64         | 1.8     | 7.5             | Lead-Free csBGA | 64                | 48  | I     |  |
|            | LC4064ZE-5UMN64I  | 64         | 1.8     | 5.8             | Lead-Free ucBGA | 64                | 48  | Ι     |  |
|            | LC4064ZE-7UMN64I  | 64         | 1.8     | 7.5             | Lead-Free ucBGA | 64                | 48  |       |  |
|            | LC4064ZE-5MN144I  | 64         | 1.8     | 5.8             | Lead-Free csBGA | 144               | 64  | Ι     |  |
|            | LC4064ZE-7MN144I  | 64         | 1.8     | 7.5             | Lead-Free csBGA | 144               | 64  | I     |  |
| LC4128ZE   | LC4128ZE-7TN100I  | 128        | 1.8     | 7.5             | Lead-Free TQFP  | 100               | 64  | I     |  |
|            | LC4128ZE-7UMN132I | 128        | 1.8     | 7.5             | Lead-Free ucBGA | 132               | 96  | Ι     |  |
|            | LC4128ZE-7TN144I  | 128        | 1.8     | 7.5             | Lead-Free TQFP  | 144               | 96  |       |  |
|            | LC4128ZE-7MN144I  | 128        | 1.8     | 7.5             | Lead-Free csBGA | 144               | 96  | Ι     |  |
| LC4256ZE   | LC4256ZE-7TN100I  | 256        | 1.8     | 7.5             | Lead-Free TQFP  | 100               | 64  | I     |  |
|            | LC4256ZE-7TN144I  | 256        | 1.8     | 7.5             | Lead-Free TQFP  | 144               | 96  | Ι     |  |
|            | LC4256ZE-7MN144I  | 256        | 1.8     | 7.5             | Lead-Free csBGA | 144               | 108 | Ι     |  |

1. Contact factory for product availability.

## For Further Information

In addition to this data sheet, the following technical notes may be helpful when designing with the ispMACH 4000ZE family:

- TN1168, ispMACH 4000ZE Timing Model Design and Usage Guidelines
- TN1174, Advanced Features of the ispMACH 4000ZE Family
- TN1187, Power Estimation in ispMACH 4000ZE Devices
- Package Diagrams

### **Technical Support Assistance**

- Hotline: 1-800-LATTICE (North America)
  - +1-503-268-8001 (Outside North America)
- e-mail: techsupport@latticesemi.com
- Internet: <u>www.latticesemi.com</u>



# **Revision History**

| Date          | Version | Change Summary                                                                                                      |  |  |
|---------------|---------|---------------------------------------------------------------------------------------------------------------------|--|--|
| April 2008    | 01.0    | Initial release.                                                                                                    |  |  |
| July 2008     | 01.1    | Updated Features bullets.                                                                                           |  |  |
|               |         | Updated typical Hysteresis voltage.                                                                                 |  |  |
|               |         | Updated Power Guard for Dedicated Inputs section.                                                                   |  |  |
|               |         | Updated DC Electrical Characteristics table.                                                                        |  |  |
|               |         | Updated Supply Current table.                                                                                       |  |  |
|               |         | Updated I/O DC Electrical Characteristics table and note 2.                                                         |  |  |
|               |         | Updated ispMACH 4000ZE Timing Model.                                                                                |  |  |
|               |         | Added new parameters for the Internal Oscillator.                                                                   |  |  |
|               |         | Updated ORP Reference table.                                                                                        |  |  |
|               |         | Updated Power Supply and NC Connections table.                                                                      |  |  |
|               |         | Updated 100 TQFP Logic Signal Connections table with LC4128ZE and 4256ZE.                                           |  |  |
|               |         | Updated 144 csBGA Logic Signal Connections table with LC4128ZE and 4256ZE.                                          |  |  |
|               |         | Added 144 TQFP Logic Signal Connections table.                                                                      |  |  |
| August 2008   | 01.2    | Data sheet status changed from advance to final.                                                                    |  |  |
|               |         | Updated Supply Current table.                                                                                       |  |  |
|               |         | Updated External Switching Characteristics.                                                                         |  |  |
|               |         | Updated Internal Timing Parameters.                                                                                 |  |  |
|               |         | Updated Power Consumption graph and Power Estimation Coefficients table.                                            |  |  |
|               |         | Updated Ordering Information mark format example.                                                                   |  |  |
| December 2008 | 01.3    | Updated ispMACH 4000ZE Family Selection Guide table to include 64-ball ucBGA and 132-ball ucBGA packages.           |  |  |
|               |         | Updated ispMACH 4000ZE Power Supply and NC Connections table to include 64-ball ucBGA and 132-ball ucBGA packages.  |  |  |
|               |         | Added Logic Signal Connections tables for 64-ball ucBGA and 132-ball ucBGA packages.                                |  |  |
|               |         | Updated Part Number Description diagram for 64-ball ucBGA and 132-ball ucBGA packages.                              |  |  |
|               |         | Updated Ordering Information tables for 64-ball ucBGA and 132-ball ucBGA packages.                                  |  |  |
| May 2009      | 01.4    | Correction to $t_{CW}$ , $t_{GW}$ , $t_{WIR}$ and $f_{MAX}$ parameters in External Switching Characteristics table. |  |  |
| June 2011     | 01.5    | Added copper bond package part numbers.                                                                             |  |  |
|               |         | Added footnote 4 to Absolute Maximum Ratings.                                                                       |  |  |
| February 2012 | 01.6    | Updated document with new corporate logo.                                                                           |  |  |
| February 2012 | 01.7    | Removed copper bond packaging information. Refer to PCN 04A-12 for further information.                             |  |  |
|               |         | Updated topside marks with new logos in the Ordering Information section.                                           |  |  |