

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	1.7V ~ 1.9V
Number of Logic Elements/Blocks	4
Number of Macrocells	64
Number of Gates	-
Number of I/O	64
Operating Temperature	0°C ~ 90°C (TJ)
Mounting Type	Surface Mount
Package / Case	144-TFBGA, CSPBGA
Supplier Device Package	144-CSBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4064ze-7mn144c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

The high performance ispMACH 4000ZE family from Lattice offers an ultra low power CPLD solution. The new family is based on Lattice's industry-leading ispMACH 4000 architecture. Retaining the best of the previous generation, the ispMACH 4000ZE architecture focuses on significant innovations to combine high performance with low power in a flexible CPLD family. For example, the family's new Power Guard feature minimizes dynamic power consumption by preventing internal logic toggling due to unnecessary I/O pin activity.

The ispMACH 4000ZE combines high speed and low power with the flexibility needed for ease of design. With its robust Global Routing Pool and Output Routing Pool, this family delivers excellent First-Time-Fit, timing predictability, routing, pin-out retention and density migration.

The ispMACH 4000ZE family offers densities ranging from 32 to 256 macrocells. There are multiple density-I/O combinations in Thin Quad Flat Pack (TQFP), Chip Scale BGA (csBGA), and Ultra Chip Scale BGA (ucBGA) packages ranging from 32 to 144 pins/balls. Table 1 shows the macrocell, package and I/O options, along with other key parameters.

A user programmable internal oscillator and a timer are included in the device for tasks like LED control, keyboard scanner and similar housekeeping type state machines. This feature can be optionally disabled to save power.

The ispMACH 4000ZE family has enhanced system integration capabilities. It supports a 1.8V supply voltage and 3.3V, 2.5V, 1.8V and 1.5V interface voltages. Additionally, inputs can be safely driven up to 5.5V when an I/O bank is configured for 3.3V operation, making this family 5V tolerant. The ispMACH 4000ZE also offers enhanced I/O features such as slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a "per-pin" basis. The ispMACH 4000ZE family members are 1.8V in-system programmable through the IEEE Standard 1532 interface. IEEE Standard 1149.1 boundary scan testing capability also allows product testing on automated test equipment. The 1532 interface signals TCK, TMS, TDI and TDO are referenced to V_{CC} (logic core).

Overview

The ispMACH 4000ZE devices consist of multiple 36-input, 16-macrocell Generic Logic Blocks (GLBs) interconnected by a Global Routing Pool (GRP). Output Routing Pools (ORPs) connect the GLBs to the I/O Blocks (IOBs), which contain multiple I/O cells. This architecture is shown in Figure 1.

Figure 1. Functional Block Diagram

Figure 3. AND Array

Enhanced Logic Allocator

Within the logic allocator, product terms are allocated to macrocells in product term clusters. Each product term cluster is associated with a macrocell. The cluster size for the ispMACH 4000ZE family is 4+1 (total 5) product terms. The software automatically considers the availability and distribution of product term clusters as it fits the functions within a GLB. The logic allocator is designed to provide two speed paths: 20-PT Speed Locking path and an up to 80-PT path. The availability of these two paths lets designers trade timing variability for increased performance.

The enhanced Logic Allocator of the ispMACH 4000ZE family consists of the following blocks:

- Product Term Allocator
- Cluster Allocator
- Wide Steering Logic

Figure 4 shows a macrocell slice of the Logic Allocator. There are 16 such slices in the GLB.

Figure 4. Macrocell Slice

Table 6. GLB/MC/ORP Combinations for ispMACH 4128ZE

GLB/MC	ORP Mux Input Macrocells
[GLB] [MC 0]	M0, M1, M2, M3, M4, M5, M6, M7
[GLB] [MC 1]	M1, M2, M3, M4, M5, M6, M7, M8
[GLB] [MC 2]	M2, M3, M4, M5, M6, M7, M8, M9
[GLB] [MC 3]	M4, M5, M6, M7, M8, M9, M10, M11
[GLB] [MC 4]	M5, M6, M7, M8, M9, M10, M11, M12
[GLB] [MC 5]	M6, M7, M8, M9, M10, M11, M12, M13
[GLB] [MC 6]	M8, M9, M10, M11, M12, M13, M14, M15
[GLB] [MC 7]	M9, M10, M11, M12, M13, M14, M15, M0
[GLB] [MC 8]	M10, M11, M12, M13, M14, M15, M0, M1
[GLB] [MC 9]	M12, M13, M14, M15, M0, M1, M2, M3
[GLB] [MC 10]	M13, M14, M15, M0, M1, M2, M3, M4
[GLB] [MC 11]	M14, M15, M0, M1, M2, M3, M4, M5

Table 7. GLB/MC/ORP Combinations for ispMACH 4032ZE and 4064ZE

GLB/MC	ORP Mux Input Macrocells			
[GLB] [MC 0]	M0, M1, M2, M3, M4, M5, M6, M7			
[GLB] [MC 1]	M1, M2, M3, M4, M5, M6, M7, M8			
[GLB] [MC 2]	M2, M3, M4, M5, M6, M7, M8, M9			
[GLB] [MC 3]	M3, M4, M5, M6, M7, M8, M9, M10			
[GLB] [MC 4]	M4, M5, M6, M7, M8, M9, M10, M11			
[GLB] [MC 5]	M5, M6, M7, M8, M9, M10, M11, M12			
[GLB] [MC 6]	M6, M7, M8, M9, M10, M11, M12, M13			
[GLB] [MC 7]	M7, M8, M9, M10, M11, M12, M13, M14			
[GLB] [MC 8]	M8, M9, M10, M11, M12, M13, M14, M15			
[GLB] [MC 9]	M9, M10, M11, M12, M13, M14, M15, M0			
[GLB] [MC 10]	M10, M11, M12, M13, M14, M15, M0, M1			
[GLB] [MC 11]	M11, M12, M13, M14, M15, M0, M1, M2			
[GLB] [MC 12]	M12, M13, M14, M15, M0, M1, M2, M3			
[GLB] [MC 13]	M13, M14, M15, M0, M1, M2, M3, M4			
[GLB] [MC 14]	M14, M15, M0, M1, M2, M3, M4, M5			
[GLB] [MC 15]	M15, M0, M1, M2, M3, M4, M5, M6			

Output Enable Routing Multiplexers

The OE Routing Pool provides the corresponding local output enable (OE) product term to the I/O cell.

I/O Cell

The I/O cell contains the following programmable elements: output buffer, input buffer, OE multiplexer, Power Guard and bus maintenance circuitry. Figure 8 details the I/O cell.

Some Simple Use Scenarios

The following diagrams show a few simple examples that omit optional signals for the OSCTIMER block:

- A. An oscillator giving 5MHz nominal clock
- B. An oscillator that can be disabled with an external signal (5MHz nominal clock)
- C. An oscillator giving approximately 5 Hz nominal clock (TIMER_DIV = 2^{20} (1,048,576))
- D. An oscillator giving two output clocks: ~5MHz and ~5KHz (TIMER_DIV= 2¹⁰ (1,024))

OSCTIMER Integration With CPLD Fabric

The OSCTIMER is integrated into the CPLD fabric using the Global Routing Pool (GRP). The macrocell (MC) feedback path for two macrocells is augmented with a programmable multiplexer, as shown in Figure 15. The OSC-TIMER outputs (OSCOUT and TIMEROUT) can optionally drive the GRP lines, whereas the macrocell outputs can drive the optional OSCTIMER inputs TIMERRES and DYNOSCDIS.

Figure 15. OSCTIMER Integration With CPLD Fabric

Table 12 shows how these two MCs are designated in each of the ispMACH4000ZE device.

mated test equipment. This equipment can then be used to program ispMACH 4000ZE devices during the testing of a circuit board.

User Electronic Signature

The User Electronic Signature (UES) allows the designer to include identification bits or serial numbers inside the device, stored in E²CMOS memory. The ispMACH 4000ZE device contains 32 UES bits that can be configured by the user to store unique data such as ID codes, revision numbers or inventory control codes.

Security Bit

A programmable security bit is provided on the ispMACH 4000ZE devices as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. Programming and verification are also defeated by the security bit. The bit can only be reset by erasing the entire device.

Hot Socketing

The ispMACH 4000ZE devices are well-suited for applications that require hot socketing capability. Hot socketing a device requires that the device, during power-up and down, can tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of I/O pin loading be minimal on active signals. The isp-MACH 4000ZE devices provide this capability for input voltages in the range 0V to 3.0V.

Density Migration

The ispMACH 4000ZE family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted for a high density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

Supply Current

To minimize transient current during power-on, configure CPLD I/Os to a pull-up or float state. If this logic scenario is not possible, then the recommended power sequence should assert VCC and VCCO at the same time or VCC before VCCO.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units			
ispMACH 4032ZE									
		$Vcc = 1.8V, T_A = 25^{\circ}C$		50	—	μA			
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		58	—	μΑ			
		Vcc = 1.9V, $T_A = -40$ to $85^{\circ}C$		60	—	μA			
		$Vcc = 1.8V, T_A = 25^{\circ}C$		10	—	μA			
ICC ^{4, 5, 6}	Standby Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		13	25	μA			
		Vcc = 1.9V, $T_A = -40$ to $85^{\circ}C$		15	40	μA			
ispMACH 4	064ZE								
		$Vcc = 1.8V, T_A = 25^{\circ}C$		80		μA			
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		89	_	μΑ			
		Vcc = 1.9V, T _A = -40 to 85°C		92	—	μA			
		$Vcc = 1.8V, T_A = 25^{\circ}C$		11	—	μA			
ICC ^{4, 5, 6}	Standby Power Supply Current	Vcc = 1.9V, $T_A = 0$ to $70^{\circ}C$		15	30	μA			
		Vcc = 1.9V, T _A = -40 to 85°C		18	50	μΑ			
ispMACH 4	128ZE		•		•				
		$Vcc = 1.8V, T_A = 25^{\circ}C$	—	168		μΑ			
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		190	_	μΑ			
		Vcc = 1.9V, T_A = -40 to 85°C		195	_	μΑ			
		$Vcc = 1.8V, T_A = 25^{\circ}C$		12		μΑ			
ICC ^{4, 5, 6}	Standby Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		16	40	μA			
		Vcc = 1.9V, T_A = -40 to 85°C	—	19	60	μΑ			
ispMACH 4	256ZE								
		$Vcc = 1.8V, T_A = 25^{\circ}C$		341		μΑ			
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		361	_	μΑ			
		Vcc = 1.9V, T_A = -40 to 85°C		372	_	μΑ			
		$Vcc = 1.8V, T_A = 25^{\circ}C$	—	13	—	μA			
ICC ^{4, 5, 6}	Standby Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C	—	32	65	μA			
		Vcc = 1.9V, T_A = -40 to 85°C	—	43	100	μA			

1. Frequency = 1.0 MHz.

2. Device configured with 16-bit counters.

3. I_{CC} varies with specific device configuration and operating frequency.

4. V_{CCO} = 3.6V, V_{IN} = 0V or V_{CCO}, bus maintenance turned off. V_{IN} above V_{CCO} will add transient current above the specified standby I_{CC}.

5. Includes V_{CCO} current without output loading.

6. This operating supply current is with the internal oscillator disabled. Enabling the internal oscillator adds approximately 15µA typical current plus additional current from any logic it drives.

ispMACH 4000ZE Internal Timing Parameters

			LC4032ZE		LC4064ZE			
		-	4					
Parameter	Description	Min.	Max.	Min.	Max.	Units		
In/Out Delays								
t _{IN}	Input Buffer Delay	—	0.85	_	0.90	ns		
t _{GCLK_IN}	Global Clock Input Buffer Delay	_	1.60	_	1.60	ns		
t _{GOE}	Global OE Pin Delay		2.25		2.25	ns		
t _{BUF}	Delay through Output Buffer	_	0.75	_	0.90	ns		
t _{EN}	Output Enable Time	—	2.25	_	2.25	ns		
t _{DIS}	Output Disable Time	_	1.35	_	1.35	ns		
t _{PGSU}	Input Power Guard Setup Time	_	3.30	_	3.55	ns		
t _{PGH}	Input Power Guard Hold Time	_	0.00	_	0.00	ns		
t _{PGPW}	Input Power Guard BIE Minimum Pulse Width	_	5.00	_	5.00	ns		
t _{PGRT}	Input Power Guard Recovery Time Following BIE Dissertation		5.00	_	5.00	ns		
Routing Delays								
t _{ROUTE}	Delay through GRP	—	1.60	—	1.70	ns		
t _{PDi}	Macrocell Propagation Delay	_	0.25	_	0.25	ns		
t _{MCELL}	Macrocell Delay		0.65		0.65	ns		
t _{INREG}	Input Buffer to Macrocell Register Delay		0.90		1.00	ns		
t _{FBK}	Internal Feedback Delay		0.55	_	0.55	ns		
t _{ORP}	Output Routing Pool Delay	_	0.30		0.30	ns		
Register/Latch	Delays							
t _S	D-Register Setup Time (Global Clock)	0.70	—	0.85	—	ns		
t _{S_PT}	D-Register Setup Time (Product Term Clock)	1.25		1.85	—	ns		
t _H	D-Register Hold Time	1.50		1.65	—	ns		
t _{ST}	T-Register Setup Time (Global Clock)	0.90		1.05	—	ns		
t _{ST_PT}	T-register Setup Time (Product Term Clock)	1.45		1.65	—	ns		
t _{HT}	T-Resister Hold Time	1.50	_	1.65	—	ns		
t _{SIR}	D-Input Register Setup Time (Global Clock)	0.85	_	0.80	—	ns		
t _{SIR_PT}	D-Input Register Setup Time (Product Term Clock)	1.45	_	1.45	—	ns		
t _{HIR}	D-Input Register Hold Time (Global Clock)	1.15	_	1.30	—	ns		
t _{HIR_PT}	D-Input Register Hold Time (Product Term Clock)	0.90		1.10	—	ns		
t _{COi}	Register Clock to Output/Feedback MUX Time		0.35		0.40	ns		
t _{CES}	Clock Enable Setup Time	1.00		2.00	_	ns		
t _{CEH}	Clock Enable Hold Time	0.00		0.00	—	ns		
t _{SL}	Latch Setup Time (Global Clock)	0.70		0.95	_	ns		
t _{SL_PT}	Latch Setup Time (Product Term Clock)	1.45		1.85	_	ns		
t _{HL}	Latch Hold Time	1.40	—	1.80	—	ns		
t _{GOi}	Latch Gate to Output/Feedback MUX Time	_	0.40	_	0.35	ns		
t _{PDLi}	Propagation Delay through Transparent Latch to Output/ Feedback MUX	_	0.30	_	0.25	ns		
t _{SRi}	Asynchronous Reset or Set to Output/Feedback MUX Delay	_	0.30	_	0.30	ns		

ispMACH 4000ZE Internal Timing Parameters (Cont.)

			All Devices				
			-5		-7		
Parameter	Description		Min.	Max.	Min.	Max.	Units
t _{SRR}	Asynchronous Reset or Set Recovered	ery Delay	_	1.80		1.67	ns
Control Delays							
t _{BCLK}	GLB PT Clock Delay		—	1.45	_	0.95	ns
t _{PTCLK}	Macrocell PT Clock Delay		—	1.45	—	1.15	ns
t _{BSR}	Block PT Set/Reset Delay		_	1.85		1.83	ns
t _{PTSR}	Macrocell PT Set/Reset Delay		—	1.85	_	2.72	ns
t _{BIE}	Power Guard Block Input Enable D	elay	_	1.75		1.95	ns
t _{PTOE}	Macrocell PT OE Delay		_	2.40		1.90	ns
t _{GPTOE}	Global PT OE Delay		_	4.20		3.40	ns
Internal Oscillat	or						
t _{OSCSU}	Oscillator DYNOSCDIS Setup Time	9	5.00	_	5.00		ns
t _{OSCH}	Oscillator DYNOSCDIS Hold Time		5.00	—	5.00	—	ns
t _{OSCEN}	Oscillator OSCOUT Enable Time (To Stable)	_	5.00		5.00	ns
t _{OSCOD}	Oscillator Output Delay		—	4.00	—	4.00	ns
t _{OSCNOM}	Oscillator OSCOUT Nominal Frequ	ency		5.00		5.00	MHz
t _{OSCvar}	Oscillator Variation of Nominal Free	quency	_	30		30	%
t _{TMRCO20}	Oscillator TIMEROUT Clock (Negative Edge) to Out (20-Bit Divider)			12.50	_	14.50	ns
t _{TMRCO10}	Oscillator TIMEROUT Clock (Negative Edge) to Out (10-Bit Divider)			7.50	_	9.50	ns
t _{TMRCO7}	Oscillator TIMEROUT Clock (Negative Edge) to Out (7-Bit Divider)			6.00		8.00	ns
t _{TMRRSTO}	Oscillator TIMEROUT Reset to Out (Going Low)		_	5.00		7.00	ns
t _{TMRRR}	Oscillator TIMEROUT Asynchronous Reset Recovery Delay			4.00		6.00	ns
t _{TMRRSTPW}	Oscillator TIMEROUT Reset Minim	um Pulse Width	3.00	—	5.00		ns
Optional Delay	Adjusters	Base Parameter					
t _{INDIO}	Input Register Delay	t _{INREG}	—	1.60		2.60	ns
t _{EXP}	Product Term Expander Delay	t _{MCELL}	—	0.45	—	0.50	ns
t _{BLA}	Additional Block Loading Adders	t _{ROUTE}	—	0.05	_	0.05	ns
t _{IOI} Input Buffer	Delays						
LVTTL_in	Using LVTTL Standard with Hysteresis	t _{IN} , t _{GCLK_IN} , t _{GOE}		0.60		0.60	ns
LVCMOS15_in	Using LVCMOS 1.5 Standard	t _{IN} , t _{GCLK_IN} , t _{GOE}	—	0.20	—	0.20	ns
LVCMOS18_in	Using LVCMOS 1.8 Standard	t _{IN} , t _{GCLK_IN} , t _{GOE}	—	0.00	_	0.00	ns
LVCMOS25_in	Using LVCMOS 2.5 Standard with Hysteresis	2.5 Standard with t _{IN} , t _{GCLK_IN} , t _{GOE}		0.80	_	0.80	ns
LVCMOS33_in	Using LVCMOS 3.3 Standard with Hysteresis	tandard with t _{IN} , t _{GCLK_IN} , t _{GOE}		0.80	—	0.80	ns
PCI_in	Using PCI Compatible Input with Hysteresis	Jsing PCI Compatible Input with Hysteresis		0.80	_	0.80	ns
t _{IOO} Output Buff	er Delays	1	I	1	I	I	
LVTTL_out	Output Configured as TTL Buffer	t _{EN} , t _{DIS} , t _{BUF}		0.20	—	0.20	ns
L	-		I	L	I		

ispMACH 4000ZE Internal Timing Parameters (Cont.)

Over Recommended Operating Conditions

			All Devices				
			-	5	-	7	
Parameter	Description		Min.	Max.	Min.	Max.	Units
LVCMOS15_out	Output Configured as 1.5V Buffer	t _{EN} , t _{DIS} , t _{BUF}	—	0.20	—	0.20	ns
LVCMOS18_out	Output Configured as 1.8V Buffer	t _{EN} , t _{DIS} , t _{BUF}	—	0.00	—	0.00	ns
LVCMOS25_out	Output Configured as 2.5V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.10	—	0.10	ns
LVCMOS33_out	Output Configured as 3.3V Buffer	t _{EN} , t _{DIS} , t _{BUF}		0.20	—	0.20	ns
PCI_out	Output Configured as PCI Compati- ble Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns
Slow Slew	Output Configured for Slow Slew Rate	t _{EN} , t _{BUF}	_	1.00	—	1.00	ns

Note: Internal Timing Parameters are not tested and are for reference only. Refer to the timing model in this data sheet for further details. Timing v.0.8

Switching Test Conditions

Figure 17 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 13.

Figure 17. Output Test Load, LVTTL and LVCMOS Standards

Table 13. Test Fixture Required Components

Test Condition	R ₁	R ₂	CL1	Timing Ref.	V _{cco}
		106Ω	35pF	LVCMOS 3.3 = 1.5V	LVCMOS 3.3 = 3.0V
	106Ω			LVCMOS 2.5 = $\frac{V_{CCO}}{2}$	LVCMOS 2.5 = 2.3V
LVCMOS I/O, (L -> H, H -> L)				LVCMOS 1.8 = $\frac{V_{CCO}}{2}$	LVCMOS 1.8 = 1.65V
				LVCMOS 1.5 = $\frac{V_{CCO}}{2}$	LVCMOS 1.5 = 1.4V
LVCMOS I/O (Z -> H)	∞	106Ω	35pF	1.5V	3.0V
LVCMOS I/O (Z -> L)	106Ω	×	35pF	1.5V	3.0V
LVCMOS I/O (H -> Z)	∞	106Ω	5pF	V _{OH} - 0.3	3.0V
LVCMOS I/O (L -> Z)	106 Ω	×	5pF	V _{OL} + 0.3	3.0V

1. C_L includes test fixtures and probe capacitance.

ispMACH 4000ZE Power Supply and NC Connections¹

Signal	48 TQFP ²	64 csBGA ^{3, 4}	64 ucBGA ^{3, 4}	100 TQFP ²
VCC	12, 36	E4, D5	E4, D5	25, 40, 75, 90
VCCO0 VCCO (Bank 0)	6	4032ZE: E3 4064ZE: E3, F4	C3, F3	13, 33, 95
VCCO1 VCCO (Bank 1)	30	4032ZE: D6 4064ZE: D6, C6	F6, A6	45, 63, 83
GND	13, 37	D4, E5	D4, D5	1, 26, 51, 76
GND (Bank 0)	5	D4, E5	D4, D5	7, 18, 32, 96
GND (Bank 1)	29	D4, E5	D4, D5	46, 57, 68, 82
NC	_		—	—

1. All grounds must be electrically connected at the board level. However, for the purposes of I/O current loading, grounds are associated with the bank shown.

2. Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.

3. Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.

4. All bonded grounds are connected to the following two balls, D4 and E5.

ispMACH 4032ZE and 4064ZE Logic Signal Connections: 48 TQFP

		ispMACH 4032ZE	ispMACH 4064ZE
Pin Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad
1	-	TDI	TDI
2	0	A5	A8
3	0	A6	A10
4	0	A7	A11
5	0	GND (Bank 0)	GND (Bank 0)
6	0	VCCO (Bank 0)	VCCO (Bank 0)
7	0	A8	B15
8	0	A9	B12
9	0	A10	B10
10	0	A11	B8
11	-	ТСК	ТСК
12	-	VCC	VCC
13	-	GND	GND
14	0	A12	B6
15	0	A13	B4
16	0	A14	B2
17	0	A15	B0
18	0	CLK1/I	CLK1/I
19	1	CLK2/I	CLK2/I
20	1	B0	CO
21	1	B1	C1
22	1	B2	C2
23	1	B3	C4
24	1	B4	C6
25	-	TMS	TMS
26	1	B5	C8
27	1	B6	C10
28	1	B7	C11
29	1	GND (Bank 1)	GND (Bank 1)
30	1	VCCO (Bank 1)	VCCO (Bank 1)
31	1	B8	D15
32	1	B9	D12
33	1	B10	D10
34	1	B11	D8
35	-	TDO	TDO
36	-	VCC	VCC
37	-	GND	GND
38	1	B12	D6
39	1	B13	D4
40	1	B14	D2
41	1	B15/GOE1	D0/GOE1
42	1	CLK3/I	CLK3/I

ispMACH 4032ZE and 4064ZE Logic Signal Connections: 48 TQFP (Cont.)

		ispMACH 4032ZE	ispMACH 4064ZE
Pin Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad
43	0	CLK0/I	CLK0/I
44	0	A0/GOE0	A0/GOE0
45	0	A1	A1
46	0	A2	A2
47	0	A3	A4
48	0	A4	A6

ispMACH 4064ZE Logic Signal Connections: 64 ucBGA

Ball Number	Bank Number	GLB/MC/Pad
A1	-	TDI
B1	0	A8
B2	0	A10
B3	0	A11
GND*	0	GND (Bank 0)
C1	0	A12
C3	0	VCCO (Bank 0)
C2	0	B15
D1	0	B14
D2	0	B13
D3	0	B12
E1	0	B11
E2	0	B10
E3	0	B9
F1	0	B8
F2	-	ТСК
E4	-	VCC
GND*	-	GND
H2	0	B6
H1	0	B5
G1	0	B4
GND*	0	GND (Bank 0)
F3	0	VCCO (Bank 0)
G2	0	B3
G3	0	B2
H3	0	B0
G4	0	CLK1/I
F4	1	CLK2/I
H4	1	CO
H5	1	C1
G5	1	C2
H6	1	C4
H7	1	C5
H8	1	C6
G8	-	TMS
G7	1	C8
G6	1	C10
F8	1	C11
GND*	1	GND (Bank 1)
F7	1	C12
F6	1	VCCO (Bank 1)
F5	1	D15
E8	1	D14
	I	

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 100 TQFP (Cont.)

Pin	Bank	LC4064ZE	LC4128ZE	LC4256ZE
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad
42	1	C1	E2	16
43	1	C2	E4	110
44	1	C3	E6	112
45	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
46	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
47	1	C4	E8	J2
48	1	C5	E10	J6
49	1	C6	E12	J10
50	1	C7	E14	J12
51	-	GND	GND	GND
52	-	TMS	TMS	TMS
53	1	C8	F0	K12
54	1	C9	F2	K10
55	1	C10	F4	K6
56	1	C11	F6	K2
57	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
58	1	C12	F8	L12
59	1	C13	F10	L10
60	1	C14	F12	L6
61	1	C15	F13	L4
62*	1	I	I	1
63	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
64	1	D15	G14	M4
65	1	D14	G12	M6
66	1	D13	G10	M10
67	1	D12	G8	M12
68	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
69	1	D11	G6	N2
70	1	D10	G5	N6
71	1	D9	G4	N10
72	1	D8	G2	N12
73*	1	I	I	I
74	-	TDO	TDO	TDO
75	-	VCC	VCC	VCC
76	-	GND	GND	GND
77*	1	I	I	I
78	1	D7	H13	012
79	1	D6	H12	O10
80	1	D5	H10	O6
81	1	D4	H8	02
82	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)

ispMACH 4128ZE Logic Signal Connections: 132 ucBGA

Ball Number	Bank Number	GLB/MC/Pad
GND*	-	GND
A1	-	TDI
B1	0	VCCO (Bank 0)
D3	0	B0
C1	0	B1
D2	0	B2
D1	0	B4
E4	0	B5
F3	0	B6
E2	0	GND (Bank 0)
E1	0	B8
E3	0	B9
F4	0	B10
G4	0	B12
F2	0	B13
G3	0	B14
H4	0	VCCO (Bank 0)
F1	0	C14
G2	0	C13
G1	0	C12
H3	0	C10
J4	0	C9
H1	0	C8
H2	0	GND (Bank 0)
J3	0	C6
J1	0	C5
J2	0	C4
К3	0	C2
K2	0	C1
К1	0	CO
L2	0	VCCO (Bank 0)
L1	-	ТСК
M1	-	VCC
GND*	-	GND
L3	0	D14
M2	0	D13
K4	0	D12
M3	0	D10
K5	0	D9
L4	0	D8
M4	0	GND (Bank 0)
J5	0	VCCO (Bank 0)
L5	0	D6

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA (Cont.)

Ball	Bank Number	LC4064ZE	LC4128ZE	LC4256ZE
Number		GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad
J12	1	NC Ball	NC Ball	L14
J11	1	NC Ball	NC Ball	L12
H10	1	NC Ball	F8	L10
H12	1	C12	F9	L8
G11	1	C13	F10	L6
H11	1	C14	F12	L4
G12	1	C15	F13	L2
G10*	1	I	F14	LO
G9	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
F12	1	D15	G14	MO
F11	1	D14	G13	M2
E11	1	D13	G12	M4
E12	1	D12	G10	M6
D10	1	NC Ball	G9	M8
F10	1	NC Ball	G8	M10
D12	1	NC Ball	NC Ball	M12
F8	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
E10	1	D11	G6	N2
D11	1	D10	G5	N4
E9	1	D9	G4	N6
C12	1	D8	G2	N8
C11*	1	I	G1	N10
B12	1	NC Ball	G0	N12
F9	1	NC Ball	VCCO (Bank 1)	VCCO (Bank 1)
B11	-	TDO	TDO	TDO
E8	-	VCC	VCC	VCC
F7	-	GND	GND	GND
A12	1	NC Ball	NC Ball	O14
C10	1	NC Ball	NC Ball	O12
B10	1	NC Ball	H14	O10
A11*	1	I	H13	O8
D9	1	D7	H12	O6
B9	1	D6	H10	O4
C9	1	D5	H9	O2
A10	1	D4	H8	O0
E7	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
D8	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
A9	1	NC Ball	H6	P12
B8	1	NC Ball	H5	P10
C8	1	D3	H4	P8
A8	1	D2	H2	P6
D7	1	D1	H1	P4
R7	1	D0/GOE1	HQ/GOE1	P2/GOE1

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA (Cont.)

Ball	Bank	LC4064ZE	LC4128ZE	LC4256ZE
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad
C7	1	CLK3/I	CLK3/I	CLK3/I
E6	0	NC Ball	GND (Bank 0)	GND (Bank 0)
A7	0	CLK0/I	CLK0/I	CLK0/I
E5	-	VCC	VCC	VCC
D6	0	A0/GOE0	A0/GOE0	A2/GOE0
B6	0	A1	A1	A4
A6	0	A2	A2	A6
C6	0	A3	A4	A8
B5	0	NC Ball	A5	A10
A5	0	NC Ball	A6	A12
D5	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)
F5	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
A4	0	A4	A8	B2
B4	0	A5	A9	B4
C5	0	A6	A10	B6
A3	0	A7	A12	B8
C4	0	NC Ball	A13	B10
B3	0	NC Ball	A14	B12
A2	0	NC Ball	NC Ball	B14

* This pin is input only for the LC4064ZE.

ispMACH 4128ZE and 4256ZE Logic Signal Connections: 144 TQFP

		LC4128ZE	LC4256ZE
Pin Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad
1	-	GND	GND
2	-	TDI	TDI
3	0	VCCO (Bank 0)	VCCO (Bank 0)
4	0	B0	C12
5	0	B1	C10
6	0	B2	C8
7	0	B4	C6
8	0	B5	C4
9	0	B6	C2
10	0	GND (Bank 0)	GND (Bank 0)
11	0	B8	D14
12	0	B9	D12
13	0	B10	D10
14	0	B12	D8
15	0	B13	D6
16	0	B14	D4
17*	0	NC	I
18	0	GND (Bank 0)	NC
19	0	VCCO (Bank 0)	VCCO (Bank 0)
20*	0	NC	I
21	0	C14	E2
22	0	C13	E4
23	0	C12	E6
24	0	C10	E8
25	0	C9	E10
26	0	C8	E12
27	0	GND (Bank 0)	GND (Bank 0)
28	0	C6	F2
29	0	C5	F4
30	0	C4	F6
31	0	C2	F8
32	0	C1	F10
33	0	CO	F12
34	0	VCCO (Bank 0)	VCCO (Bank 0)
35	-	ТСК	TCK
36	-	VCC	VCC
37	-	GND	GND
38*	0	NC	I
39	0	D14	G12
40	0	D13	G10
41	0	D12	G8
42	0	D10	G6

ispMACH 4128ZE and 4256ZE Logic Signal Connections: 144 TQFP (Cont.)

		L C41287F	L C4256ZE
Pin Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad
86	1	F12	L8
87	1	F13	L6
88	1	F14	L4
89*	1	NC	
90	1	GND (Bank 1)	NC
91	1	VCCO (Bank 1)	VCCO (Bank 1)
92*	1	NC	I
93	1	G14	M2
94	1	G13	M4
95	1	G12	M6
96	1	G10	M8
97	1	G9	M10
98	1	G8	M12
99	1	GND (Bank 1)	GND (Bank 1)
100	1	G6	N2
101	1	G5	N4
102	1	G4	N6
103	1	G2	N8
104	1	G1	N10
105	1	G0	N12
106	1	VCCO (Bank 1)	VCCO (Bank 1)
107	-	TDO	TDO
108	-	VCC	VCC
109	-	GND	GND
110*	1	NC	I
111	1	H14	O12
112	1	H13	O10
113	1	H12	O8
114	1	H10	O6
115	1	H9	O4
116	1	H8	O2
117*	1	NC	I
118	1	GND (Bank 1)	GND (Bank 1)
119	1	VCCO (Bank 1)	VCCO (Bank 1)
120	1	H6	P12
121	1	H5	P10
122	1	H4	P8
123	1	H2	P6
124	1	H1	P4
125	1	H0/GOE1	P2/GOE1
126	1	CLK3/I	CLK3/I
127	0	GND (Bank 0)	GND (Bank 0)
128	0	CLK0/I	CLK0/I