

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	1.7V ~ 1.9V
Number of Logic Elements/Blocks	4
Number of Macrocells	64
Number of Gates	•
Number of I/O	64
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	144-TFBGA, CSPBGA
Supplier Device Package	144-CSBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4064ze-7mn144i

Email: info@E-XFL.COM

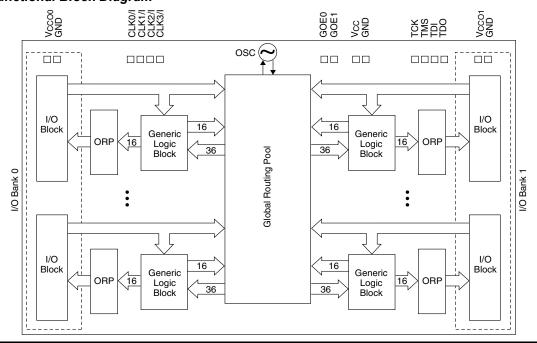
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

The high performance ispMACH 4000ZE family from Lattice offers an ultra low power CPLD solution. The new family is based on Lattice's industry-leading ispMACH 4000 architecture. Retaining the best of the previous generation, the ispMACH 4000ZE architecture focuses on significant innovations to combine high performance with low power in a flexible CPLD family. For example, the family's new Power Guard feature minimizes dynamic power consumption by preventing internal logic toggling due to unnecessary I/O pin activity.

The ispMACH 4000ZE combines high speed and low power with the flexibility needed for ease of design. With its robust Global Routing Pool and Output Routing Pool, this family delivers excellent First-Time-Fit, timing predictability, routing, pin-out retention and density migration.

The ispMACH 4000ZE family offers densities ranging from 32 to 256 macrocells. There are multiple density-I/O combinations in Thin Quad Flat Pack (TQFP), Chip Scale BGA (csBGA), and Ultra Chip Scale BGA (ucBGA) packages ranging from 32 to 144 pins/balls. Table 1 shows the macrocell, package and I/O options, along with other key parameters.


A user programmable internal oscillator and a timer are included in the device for tasks like LED control, keyboard scanner and similar housekeeping type state machines. This feature can be optionally disabled to save power.

The ispMACH 4000ZE family has enhanced system integration capabilities. It supports a 1.8V supply voltage and 3.3V, 2.5V, 1.8V and 1.5V interface voltages. Additionally, inputs can be safely driven up to 5.5V when an I/O bank is configured for 3.3V operation, making this family 5V tolerant. The ispMACH 4000ZE also offers enhanced I/O features such as slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a "per-pin" basis. The ispMACH 4000ZE family members are 1.8V in-system programmable through the IEEE Standard 1532 interface. IEEE Standard 1149.1 boundary scan testing capability also allows product testing on automated test equipment. The 1532 interface signals TCK, TMS, TDI and TDO are referenced to V_{CC} (logic core).

Overview

The ispMACH 4000ZE devices consist of multiple 36-input, 16-macrocell Generic Logic Blocks (GLBs) interconnected by a Global Routing Pool (GRP). Output Routing Pools (ORPs) connect the GLBs to the I/O Blocks (IOBs), which contain multiple I/O cells. This architecture is shown in Figure 1.

Figure 1. Functional Block Diagram

- Block CLK2
- Block CLK3
- PT Clock
- PT Clock Inverted
- Shared PT Clock
- Ground

Clock Enable Multiplexer

Each macrocell has a 4:1 clock enable multiplexer. This allows the clock enable signal to be selected from the following four sources:

- PT Initialization/CE
- PT Initialization/CE Inverted
- Shared PT Clock
- Logic High

Initialization Control

The ispMACH 4000ZE family architecture accommodates both block-level and macrocell-level set and reset capability. There is one block-level initialization term that is distributed to all macrocell registers in a GLB. At the macrocell level, two product terms can be "stolen" from the cluster associated with a macrocell to be used for set/reset functionality. A reset/preset swapping feature in each macrocell allows for reset and preset to be exchanged, providing flexibility.

Note that the reset/preset swapping selection feature affects power-up reset as well. All flip-flops power up to a known state for predictable system initialization. If a macrocell is configured to SET on a signal from the block-level initialization, then that macrocell will be SET during device power-up. If a macrocell is configured to RESET on a signal from the block-level initialization or is not configured for set/reset, then that macrocell will RESET on power-up. To guarantee initialization values, the V_{CC} rise must be monotonic, and the clock must be inactive until the reset delay time has elapsed.

GLB Clock Generator

Each ispMACH 4000ZE device has up to four clock pins that are also routed to the GRP to be used as inputs. These pins drive a clock generator in each GLB, as shown in Figure 6. The clock generator provides four clock signals that can be used anywhere in the GLB. These four GLB clock signals can consist of a number of combinations of the true and complement edges of the global clock signals.

Figure 6. GLB Clock Generator

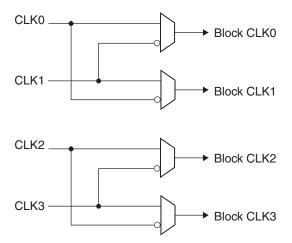
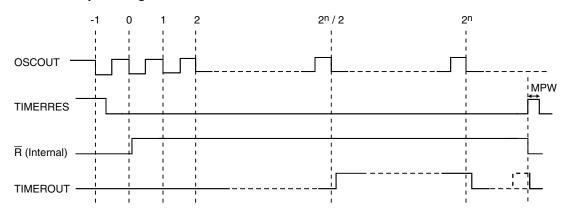


Figure 13. On-Chip Oscillator and Timer

Table 11. On-Chip Oscillator and Timer Signal Names


Signal Name	Input or Out- put	Optional / Required	Description
OSCOUT	Output	Optional	Oscillator Output (Nominal Frequency: 5MHz)
TIMEROUT	Output	Optional	Oscillator Frequency Divided by an integer TIMER_DIV (Default 128)
TIMERRES	Input	Optional	Reset the Timer
DYNOSCDIS	Input	Optional	Disables the Oscillator, resets the Timer and saves the power.

OSCTIMER has two outputs, OSCOUT and TIMEROUT. The outputs feed into the Global Routing Pool (GRP). From GRP, these signals can drive any macrocell input, as well as any output pin (with macrocell bypass). The output OSCOUT is the direct oscillator output with a typical frequency of 5MHz, whereas, the output TIMEROUT is the oscillator output divided by an attribute TIMER_DIV.

The attribute TIMER_DIV can be: 128 (7 bits), 1024 (10 bits) or 1,048,576 (20 bits). The divided output is provided for those user situations, where a very slow clock is desired. If even a slower toggling clock is desired, then the programmable macrocell resources can be used to further divide down the TIMEROUT output.

Figure 14 shows the simplified relationship among OSCOUT, TIMERRES and TIMEROUT. In the diagram, the signal " \overline{R} " is an internal reset signal that is used to synchronize TIMERRES to OSCOUT. This adds one extra clock cycle delay for the first timer transition after TIMERRES.

Figure 14. Relationship Among OSCOUT, TIMERRES and TIMEROUT

Note: n = Number of bits in the divider (7, 10 or 20)

Metastability: If the signal TIMERRES is not synchronous to OSCOUT, it could make a difference of one or two clock cycles to the TIMEROUT going high the first time.

Table 12. OSC and TIMER MC Designation

Device	Macrocell	Block Number	MC Number
ispMACH 4032ZE	OSC MC	A	15
	TIMER MC	B	15
ispMACH 4064ZE	OSC MC	A	15
	TIMER MC	D	15
ispMACH 4128ZE	OSC MC	A	15
	TIMER MC	G	15
ispMACH 4256ZE	OSC MC	C	15
	TIMER MC	F	15

Zero Power/Low Power and Power Management

The ispMACH 4000ZE family is designed with high speed low power design techniques to offer both high speed and low power. With an advanced E² low power cell and non sense-amplifier design approach (full CMOS logic approach), the ispMACH 4000ZE family offers fast pin-to-pin speeds, while simultaneously delivering low standby power without needing any "turbo bits" or other power management schemes associated with a traditional sense-amplifier approach.

The zero power ispMACH 4000ZE is based on the 1.8V ispMACH 4000Z family. With innovative circuit design changes, the ispMACH 4000ZE family is able to achieve the industry's lowest static power.

IEEE 1149.1-Compliant Boundary Scan Testability

All ispMACH 4000ZE devices have boundary scan cells and are compliant to the IEEE 1149.1 standard. This allows functional testing of the circuit board on which the device is mounted through a serial scan path that can access all critical logic notes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test node data to be captured and shifted out for verification. In addition, these devices can be linked into a board-level serial scan path for more board-level testing. The test access port operates with an LVCMOS interface that corresponds to the power supply voltage.

I/O Quick Configuration

To facilitate the most efficient board test, the physical nature of the I/O cells must be set before running any continuity tests. As these tests are fast, by nature, the overhead and time that is required for configuration of the I/Os' physical nature should be minimal so that board test time is minimized. The ispMACH 4000ZE family of devices allows this by offering the user the ability to quickly configure the physical nature of the I/O cells. This quick configuration takes milliseconds to complete, whereas it takes seconds for the entire device to be programmed. Lattice's ispVM™ System programming software can either perform the quick configuration through the PC parallel port, or can generate the ATE or test vectors necessary for a third-party test system.

IEEE 1532-Compliant In-System Programming

Programming devices in-system provides a number of significant benefits including: rapid prototyping, lower inventory levels, higher quality and the ability to make in-field modifications. All ispMACH 4000ZE devices provide In-System Programming (ISP™) capability through the Boundary Scan Test Access Port. This capability has been implemented in a manner that ensures that the port remains complaint to the IEEE 1149.1 standard. By using IEEE 1149.1 as the communication interface through which ISP is achieved, users get the benefit of a standard, well-defined interface. All ispMACH 4000ZE devices are also compliant with the IEEE 1532 standard.

The ispMACH 4000ZE devices can be programmed across the commercial temperature and voltage range. The PC-based Lattice software facilitates in-system programming of ispMACH 4000ZE devices. The software takes the JEDEC file output produced by the design implementation software, along with information about the scan chain, and creates a set of vectors used to drive the scan chain. The software can use these vectors to drive a scan chain via the parallel port of a PC. Alternatively, the software can output files in formats understood by common auto-

mated test equipment. This equipment can then be used to program ispMACH 4000ZE devices during the testing of a circuit board.

User Electronic Signature

The User Electronic Signature (UES) allows the designer to include identification bits or serial numbers inside the device, stored in E²CMOS memory. The ispMACH 4000ZE device contains 32 UES bits that can be configured by the user to store unique data such as ID codes, revision numbers or inventory control codes.

Security Bit

A programmable security bit is provided on the ispMACH 4000ZE devices as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. Programming and verification are also defeated by the security bit. The bit can only be reset by erasing the entire device.

Hot Socketing

The ispMACH 4000ZE devices are well-suited for applications that require hot socketing capability. Hot socketing a device requires that the device, during power-up and down, can tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of I/O pin loading be minimal on active signals. The isp-MACH 4000ZE devices provide this capability for input voltages in the range 0V to 3.0V.

Density Migration

The ispMACH 4000ZE family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted for a high density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

Absolute Maximum Ratings^{1, 2, 3, 4}

- Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional
 operation of the device at these or any other conditions above those indicated in the operational sections of this specification
 is not implied.
- 2. Compliance with Lattice Thermal Management document is required.
- 3. All voltages referenced to GND.
- 4. Please refer to the <u>Lattice ispMACH 4000V/B/C/ZC/ZE Product Family Qualification Summary</u> for complete data, including the ESD performance data.
- 5. Undershoot of -2V and overshoot of $(V_{IH} (MAX) + 2V)$, up to a total pin voltage of 6V is permitted for a duration of <20ns.
- 6. Maximum of 64 I/Os per device with VIN > 3.6V is allowed.

Recommended Operating Conditions

Symbol		Parameter			Units
V	Cupply Voltage	Standard Voltage Operation	1.7	1.9	V
V _{CC}	Supply Voltage	Extended Voltage Operation	1.6 ¹	1.9	V
т	Junction Temperature (Commercial)	Junction Temperature (Commercial)		90	°C
' j	Junction Temperature (Industrial)		-40	105	°C

^{1.} Devices operating at 1.6V can expect performance degradation up to 35%.

Erase Reprogram Specifications

Parameter	Min.	Max.	Units
Erase/Reprogram Cycle	1,000	_	Cycles

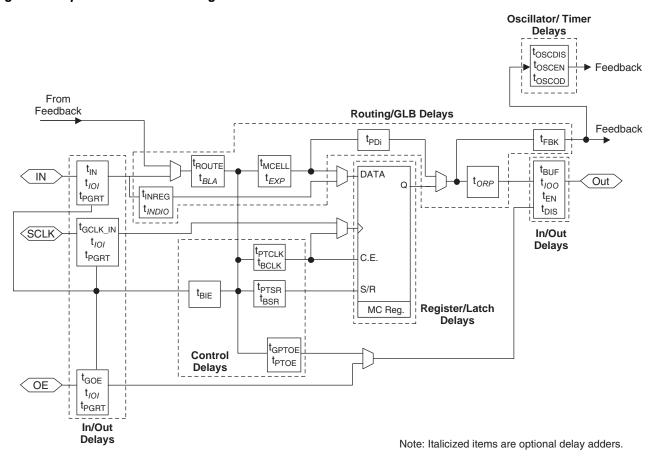
Note: Valid over commercial temperature range.

Hot Socketing Characteristics^{1,2,3}

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
1	Input or I/O Leakage Current	$0 \le V_{IN} \le 3.0V$, $Tj = 105$ °C	_	±30	±150	μΑ
IDK	Input of 1/O Leakage Current	$0 \le V_{IN} \le 3.0V$, $Tj = 130$ °C	_	±30	±200	μΑ

^{1.} Insensitive to sequence of V_{CCO} or V_{CCO} . However, assumes monotonic rise/fall rates for V_{CC} and V_{CCO} , provided $(V_{IN} - V_{CCO}) \le 3.6V$.

^{2.} $0 < V_{CC} < V_{CC}$ (MAX), $0 < V_{CCO} < V_{CCO}$ (MAX).


^{3.} I_{DK} is additive to I_{PU} , I_{PD} or I_{BH} . Device defaults to pull-up until fuse circuitry is active.

Timing Model

The task of determining the timing through the ispMACH 4000ZE family, like any CPLD, is relatively simple. The timing model provided in Figure 16 shows the specific delay paths. Once the implementation of a given function is determined either conceptually or from the software report file, the delay path of the function can easily be determined from the timing model. The Lattice design tools report the timing delays based on the same timing model for a particular design. Note that the internal timing parameters are given for reference only, and are not tested. The external timing parameters are tested and guaranteed for every device. For more information on the timing model and usage, refer to TN1168, ispMACH 4000ZE Timing Model Design and Usage Guidelines.

Figure 16. ispMACH 4000ZE Timing Model

Over Recommended Operating Conditions

			LC4032ZE		LC4064ZE	
		-4		-4		1
Parameter	Description	Min.	Max.	Min.	Max.	Units
In/Out Delays			•	1	•	•
t _{IN}	Input Buffer Delay	_	0.85	_	0.90	ns
t _{GCLK_IN}	Global Clock Input Buffer Delay	_	1.60	—	1.60	ns
t _{GOE}	Global OE Pin Delay	_	2.25	_	2.25	ns
t _{BUF}	Delay through Output Buffer	_	0.75	_	0.90	ns
t _{EN}	Output Enable Time	_	2.25	_	2.25	ns
t _{DIS}	Output Disable Time	_	1.35	_	1.35	ns
t _{PGSU}	Input Power Guard Setup Time	_	3.30	_	3.55	ns
t _{PGH}	Input Power Guard Hold Time	_	0.00	_	0.00	ns
t _{PGPW}	Input Power Guard BIE Minimum Pulse Width	_	5.00	_	5.00	ns
t _{PGRT}	Input Power Guard Recovery Time Following BIE Dissertation	_	5.00	_	5.00	ns
Routing Delays			1	ı	1	ı
t _{ROUTE}	Delay through GRP	_	1.60	_	1.70	ns
t _{PDi}	Macrocell Propagation Delay	_	0.25	_	0.25	ns
t _{MCELL}	Macrocell Delay	_	0.65	_	0.65	ns
t _{INREG}	Input Buffer to Macrocell Register Delay	_	0.90	_	1.00	ns
t _{FBK}	Internal Feedback Delay	_	0.55	_	0.55	ns
t _{ORP}	Output Routing Pool Delay	_	0.30	_	0.30	ns
Register/Latcl	n Delays		I	<u> </u>	I	.
t _S	D-Register Setup Time (Global Clock)	0.70	_	0.85	_	ns
t _{S_PT}	D-Register Setup Time (Product Term Clock)	1.25	_	1.85	_	ns
t _H	D-Register Hold Time	1.50	_	1.65	_	ns
t _{ST}	T-Register Setup Time (Global Clock)	0.90	_	1.05	_	ns
t _{ST_PT}	T-register Setup Time (Product Term Clock)	1.45	_	1.65	_	ns
t _{HT}	T-Resister Hold Time	1.50	_	1.65	_	ns
t _{SIR}	D-Input Register Setup Time (Global Clock)	0.85	_	0.80	_	ns
t _{SIR_PT}	D-Input Register Setup Time (Product Term Clock)	1.45	_	1.45	_	ns
t _{HIR}	D-Input Register Hold Time (Global Clock)	1.15	_	1.30	_	ns
t _{HIR_PT}	D-Input Register Hold Time (Product Term Clock)	0.90	_	1.10	_	ns
t _{COi}	Register Clock to Output/Feedback MUX Time	_	0.35	_	0.40	ns
t _{CES}	Clock Enable Setup Time	1.00	_	2.00	_	ns
t _{CEH}	Clock Enable Hold Time	0.00	_	0.00	_	ns
t _{SL}	Latch Setup Time (Global Clock)	0.70	_	0.95	_	ns
t _{SL_PT}	Latch Setup Time (Product Term Clock)	1.45	_	1.85	 	ns
t _{HL}	Latch Hold Time	1.40	_	1.80	_	ns
t _{GOi}	Latch Gate to Output/Feedback MUX Time	_	0.40	_	0.35	ns
	Propagation Delay through Transparent Latch to Output/					
t _{PDLi}	Feedback MUX	_	0.30	_	0.25	ns
t _{SRi}	Asynchronous Reset or Set to Output/Feedback MUX Delay	_	0.30	_	0.30	ns

Over Recommended Operating Conditions

			LC40)32ZE	LC40)64ZE	
				-4	-4		1
Parameter	Description		Min.	Max.	Min.	Max.	Units
t _{SRR}	Asynchronous Reset or Set Recove	ery Delay	_	2.00	_	1.70	ns
Control Delays							
t _{BCLK}	GLB PT Clock Delay		_	1.20	_	1.30	ns
t _{PTCLK}	Macrocell PT Clock Delay		_	1.40	_	1.50	ns
t _{BSR}	Block PT Set/Reset Delay		_	1.10	_	1.85	ns
t _{PTSR}	Macrocell PT Set/Reset Delay		_	1.20	_	1.90	ns
t _{BIE}	Power Guard Block Input Enable D	elay	_	1.60	_	1.70	ns
t _{PTOE}	Macrocell PT OE Delay		_	2.30	_	3.15	ns
t _{GPTOE}	Global PT OE Delay		_	1.80	_	2.15	ns
Internal Oscillat	or						
t _{OSCSU}	Oscillator DYNOSCDIS Setup Time)	5.00	_	5.00	_	ns
tosch	Oscillator DYNOSCDIS Hold Time		5.00	_	5.00	_	ns
t _{OSCEN}	Oscillator OSCOUT Enable Time (To Stable)	_	5.00	_	5.00	ns
toscod	Oscillator Output Delay		_	4.00	_	4.00	ns
toscnom	Oscillator OSCOUT Nominal Frequency	-		5.00		5.00	MHz
t _{OSCvar}	Oscillator Variation of Nominal Fred	• •	_	30	_	30	%
t _{TMRCO20}	Oscillator TIMEROUT Clock (Nega (20-Bit Divider)	tive Edge) to Out	_	12.50	_	12.50	ns
t _{TMRCO10}	Oscillator TIMEROUT Clock (Nega (10-Bit Divider)	tive Edge) to Out	_	7.50	_	7.50	ns
t _{TMRCO7}	Oscillator TIMEROUT Clock (Nega (7-Bit Divider)	tive Edge) to Out	_	6.00	_	6.00	ns
t _{TMRRSTO}	Oscillator TIMEROUT Reset to Out	(Going Low)	_	5.00	_	5.00	ns
t _{TMRRR}	Oscillator TIMEROUT Asynchronol Delay	us Reset Recovery	_	4.00	_	4.00	ns
t _{TMRRSTPW}	Oscillator TIMEROUT Reset Minim	um Pulse Width	3.00	_	3.00	_	ns
Optional Delay	Adjusters	Base Parameter		I.	I	I.	
t _{INDIO}	Input Register Delay	t _{INREG}	_	1.00	_	1.00	ns
t _{EXP}	Product Term Expander Delay	t _{MCELL}	_	0.40	_	0.40	ns
t _{BLA}	Additional Block Loading Adders	t _{ROUTE}	_	0.04	_	0.05	ns
t _{IOI} Input Buffer	Delays	-	•	1		1	
LVTTL_in	Using LVTTL Standard with Hysteresis	$t_{\text{IN}}, t_{\text{GCLK_IN}}, t_{\text{GOE}}$	_	0.60	_	0.60	ns
LVCMOS15_in	Using LVCMOS 1.5 Standard	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.20	_	0.20	ns
LVCMOS18_in	Using LVCMOS 1.8 Standard	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.00	_	0.00	ns
LVCMOS25_in	Using LVCMOS 2.5 Standard with Hysteresis	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.80	_	0.80	ns
LVCMOS33_in	Using LVCMOS 3.3 Standard with Hysteresis	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.80	_	0.80	ns
PCI_in	Using PCI Compatible Input with Hysteresis	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.80	_	0.80	ns
t _{IOO} Output Buff	fer Delays		1	1	ı	1	1
LVTTL_out	Output Configured as TTL Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns

Over Recommended Operating Conditions

			LC40	32ZE	LC40	64ZE	
			-	4	-	4	
Parameter	Description		Min.	Max.	Min.	Max.	Units
LVCMOS15_out	Output Configured as 1.5V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns
LVCMOS18_out	Output Configured as 1.8V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.00	_	0.00	ns
LVCMOS25_out	Output Configured as 2.5V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.10	_	0.10	ns
LVCMOS33_out	Output Configured as 3.3V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns
PCI_out	Output Configured as PCI Compatible Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns
Slow Slew	Output Configured for Slow Slew Rate	t _{EN} , t _{BUF}	_	1.00	_	1.00	ns

Note: Internal Timing Parameters are not tested and are for reference only. Refer to the timing model in this data sheet for further details. Timing v.0.8

Over Recommended Operating Conditions

			All De	evices		
			-5	-	7	
Parameter	Description	Min.	Max.	Min.	Max.	Units
In/Out Delays	·					
t _{IN}	Input Buffer Delay	_	1.05	_	1.90	ns
t _{GCLK_IN}	Global Clock Input Buffer Delay	_	1.95	_	2.15	ns
t _{GOE}	Global OE Pin Delay	_	3.00	_	4.30	ns
t _{BUF}	Delay through Output Buffer	_	1.10	_	1.30	ns
t _{EN}	Output Enable Time	_	2.50	_	2.70	ns
t _{DIS}	Output Disable Time	_	2.50	_	2.70	ns
t _{PGSU}	Input Power Guard Setup Time	_	4.30	_	5.60	ns
t _{PGH}	Input Power Guard Hold Time	_	0.00	_	0.00	ns
t _{PGPW}	Input Power Guard BIE Minimum Pulse Width	_	6.00	_	8.00	ns
t _{PGRT}	Input Power Guard Recovery Time Following BIE Dissertation	_	5.00	_	7.00	ns
Routing Delays	; ;					
t _{ROUTE}	Delay through GRP	_	2.25	_	2.50	ns
t _{PDi}	Macrocell Propagation Delay	_	0.45	_	0.50	ns
t _{MCELL}	Macrocell Delay	_	0.65	_	1.00	ns
t _{INREG}	Input Buffer to Macrocell Register Delay	_	1.00	_	1.00	ns
t _{FBK}	Internal Feedback Delay	_	0.75	_	0.30	ns
t _{ORP}	Output Routing Pool Delay	_	0.30	_	0.30	ns
Register/Latc						
t _S	D-Register Setup Time (Global Clock)	0.90	_	1.25	_	ns
t _{S_PT}	D-Register Setup Time (Product Term Clock)	2.00	_	2.35	_	ns
t _H	D-Register Hold Time	2.00	_	3.25	_	ns
t _{ST}	T-Register Setup Time (Global Clock)	1.10	_	1.45	_	ns
t _{ST_PT}	T-register Setup Time (Product Term Clock)	2.20	_	2.65	_	ns
t _{HT}	T-Resister Hold Time	2.00	_	3.25	_	ns
t _{SIR}	D-Input Register Setup Time (Global Clock)	1.20	_	0.65	_	ns
t _{SIR_PT}	D-Input Register Setup Time (Product Term Clock)	1.45	_	1.45	_	ns
t _{HIR}	D-Input Register Hold Time (Global Clock)	1.40	_	2.05	_	ns
t _{HIR_PT}	D-Input Register Hold Time (Product Term Clock)	1.10	_	1.20	_	ns
t _{COi}	Register Clock to Output/Feedback MUX Time	_	0.45	_	0.75	ns
t _{CES}	Clock Enable Setup Time	2.00	_	2.00	_	ns
t _{CEH}	Clock Enable Hold Time	0.00	_	0.00	_	ns
t _{SL}	Latch Setup Time (Global Clock)	0.90	_	1.55	_	ns
t _{SL_PT}	Latch Setup Time (Product Term Clock)	2.00	_	2.05	_	ns
t _{HL}	Latch Hold Time	2.00	_	1.17	_	ns
t _{GOi}	Latch Gate to Output/Feedback MUX Time		0.35	_	0.33	ns
t _{PDLi}	Propagation Delay through Transparent Latch to Output/ Feedback MUX	_	0.25	_	0.25	ns
t _{SRi}	Asynchronous Reset or Set to Output/Feedback MUX Delay	_	0.95	_	0.28	ns

Over Recommended Operating Conditions

		All Devices					
			-	5	-	7	
Parameter	Description		Min.	Max.	Min.	Max.	Units
LVCMOS15_out	Output Configured as 1.5V Buffer	t _{EN} , t _{DIS} , t _{BUF}		0.20	_	0.20	ns
LVCMOS18_out	Output Configured as 1.8V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.00	_	0.00	ns
LVCMOS25_out	Output Configured as 2.5V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.10	_	0.10	ns
LVCMOS33_out	Output Configured as 3.3V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns
PCI_out	Output Configured as PCI Compatible Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns
Slow Slew	Output Configured for Slow Slew Rate	t _{EN} , t _{BUF}	_	1.00	_	1.00	ns

Note: Internal Timing Parameters are not tested and are for reference only. Refer to the timing model in this data sheet for further details. Timing v.0.8

ispMACH 4000ZE Power Supply and NC Connections¹

Signal	48 TQFP ²	64 csBGA ^{3, 4}	64 ucBGA ^{3, 4}	100 TQFP ²
VCC	12, 36	E4, D5	E4, D5	25, 40, 75, 90
VCCO0 VCCO (Bank 0)	6	4032ZE : E3 4064ZE : E3, F4	C3, F3	13, 33, 95
VCCO1 VCCO (Bank 1)	30	4032ZE : D6 4064ZE : D6, C6	F6, A6	45, 63, 83
GND	13, 37	D4, E5	D4, D5	1, 26, 51, 76
GND (Bank 0)	5	D4, E5	D4, D5	7, 18, 32, 96
GND (Bank 1)	29	D4, E5	D4, D5	46, 57, 68, 82
NC	_	_	_	<u> </u>

^{1.} All grounds must be electrically connected at the board level. However, for the purposes of I/O current loading, grounds are associated with the bank shown.

^{2.} Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.

^{3.} Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.

^{4.} All bonded grounds are connected to the following two balls, D4 and E5.

ispMACH 4032ZE and 4064ZE Logic Signal Connections: 64 csBGA

		ispMACH 4032ZE	ispMACH 4064ZE GLB/MC/Pad	
Ball Number	Bank Number	GLB/MC/Pad		
B2			TDI	
B1	0	A5	A8	
C2	0	A6	A10	
C1	0	A7	A11	
GND*	0	GND (Bank 0)	GND (Bank 0)	
C3	0	NC	A12	
E3	0	VCCO (Bank 0)	VCCO (Bank 0)	
D1	0	A8	B15	
D2	0	NC	B14	
E1	0	A9	B13	
D3	0	A10	B12	
F1	0	A11	B11	
E2	0	NC	B10	
G1	0	NC	B9	
F2	0	NC	B8	
H1	-	TCK	TCK	
E4	-	VCC	VCC	
GND*	-	GND	GND	
G2	0	A12	B6	
H2	0	NC	B5	
H3	0	A13	B4	
GND*	0	NC	GND (Bank 0)	
F4	0	NC	VCCO (Bank 0)	
G3	0	A14	B3	
F3	0	NC	B2	
H4	0	A15	В0	
G4	0	CLK1/I	CLK1/I	
H5	1	CLK2/I	CLK2/I	
F5	1	B0	C0	
G5	1	B1	C1	
G6	1	B2	C2	
H6	1	B3	C4	
F6	1	B4	C5	
H7	1	NC	C6	
H8	-	TMS	TMS	
G 7	1	B5	C8	
F7	1	B6	C10	
G8	1	B7	C11	
GND*	1	GND (Bank 0)	GND (Bank 1)	
F8	1	NC	C12	
D6	1	VCCO (Bank 1)	VCCO (Bank 1)	
E8	1	B8	D15	

ispMACH 4064ZE Logic Signal Connections: 64 ucBGA

Ball Number	Bank Number	GLB/MC/Pad
A1	-	TDI
B1	0	A8
B2	0	A10
B3	0	A11
GND*	0	GND (Bank 0)
C1	0	A12
C3	0	VCCO (Bank 0)
C2	0	B15
D1	0	B14
D2	0	B13
D3	0	B12
E1	0	B11
E2	0	B10
E3	0	B9
F1	0	B8
F2	-	TCK
E4	-	VCC
GND*	-	GND
H2	0	B6
H1	0	B5
G1	0	B4
GND*	0	GND (Bank 0)
F3	0	VCCO (Bank 0)
G2	0	B3
G3	0	B2
H3	0	B0
G4	0	CLK1/I
F4	1	CLK2/I
H4	1	CO
H5	1	C1
G5	1	C2
H6	1	C4
H7	1	C5
H8	1	C6
G8	-	TMS
G7	1	C8
G6	1	C10
F8	1	C11
GND*	1	GND (Bank 1)
F7	1	C12
F6	1	VCCO (Bank 1)
F5	1	D15
E8	1	D14

ispMACH 4128ZE Logic Signal Connections: 132 ucBGA (Cont.)

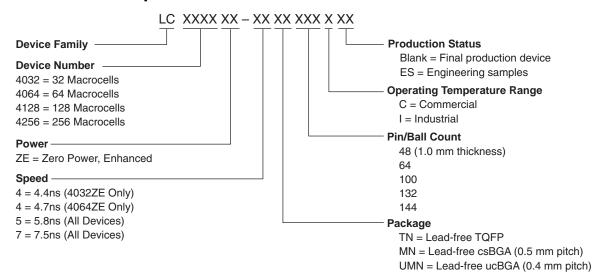
Ball Number	Bank Number	GLB/MC/Pad
D10	1	G9
E12	1	G8
E9	1	GND (Bank 1)
D12	1	G6
D11	1	G5
C12	1	G4
C10	1	G2
C11	1	G1
B11	1	G0
D9	1	VCCO (Bank 1)
B12	-	TDO
A12	-	VCC
GND*	-	GND
A10	1	H14
A11	1	H13
B10	1	H12
C9	1	H10
D8	1	H9
C8	1	H8
A9	1	GND (Bank 1)
C7	1	VCCO (Bank 1)
B9	1	H6
B8	1	H5
D7	1	H4
A8	1	H2
A7	1	H1
B6	1	H0/GOE1
C6	1	CLK3/I
B7	0	GND (Bank 0)
D6	0	CLK0/I
B5	-	VCC
A6	0	A0/GOE0
C5	0	A1
B4	0	A2
A5	0	A4
C4	0	A5
D5	0	A6
A4	0	VCCO (Bank 0)
B3	0	GND (Bank 0)
D4	0	A8
A3	0	A9
C3	0	A10
B2	0	A12
C2	0	A13

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA (Cont.)

Ball Bank		LC4064ZE	LC4128ZE	LC4256ZE	
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad	
J4	0	В7	D12	G6	
K4	0	B6 D10		G4	
М3	0	B5	D9	G2	
L4	0	B4	D8	G0	
H6	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)	
J5	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)	
M4	0	NC Ball	D6	H12	
L5	0	NC Ball	D5	H10	
K5	0	B3	D4	H8	
J6	0	B2	D2	H6	
M5	0	B1	D1	H4	
K6	0	В0	D0	H2	
L6	0	CLK1/I	CLK1/I	CLK1/I	
H7	1	NC Ball	GND (Bank 1)	GND (Bank 1)	
M6	1	CLK2/I	CLK2/I	CLK2/I	
H8	-	VCC	VCC	VCC	
K7	1	C0	E0	12	
M7	1	C1	E1	14	
L7	1	C2	E2	16	
J7	1	C3	E4	18	
L8	1	NC Ball	E5	l10	
M8	1	NC Ball	E6	l12	
J8	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)	
J9	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)	
M9	1	C4	E8	J2	
L9	1	C5	E9	J4	
K8	1	C6	E10	J6	
M10	1	C7	E12	J8	
L10	1	NC Ball	E13	J10	
K9	1	NC Ball	E14	J12	
M11	1	NC Ball	NC Ball	J14	
G7	-	GND	GND	GND	
M12	-	TMS	TMS	TMS	
H9	1	NC Ball			
L12	1	NC Ball	F0	K12	
L11	1	NC Ball	F1	K10	
K10	1	C8	F2	K8	
K12	1	C9	F4	K6	
J10	1	C10	F5	K4	
K11	1	C11	F6	K2	
G8	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)	

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA (Cont.)

J12 J11 H10 H12 G11 H11 G12 G10* G9 F12	Bank Number	GLB/MC/Pad NC Ball NC Ball NC Ball C12 C13 C14 C15	GLB/MC/Pad NC Ball NC Ball F8 F9 F10 F12	GLB/MC/Pad L14 L12 L10 L8 L6 L4	
J11 H10 H12 G11 H11 G12 G10* G9 F12	1 1 1 1 1 1 1	NC Ball NC Ball C12 C13 C14 C15	NC Ball F8 F9 F10 F12	L12 L10 L8 L6	
H10 H12 G11 H11 G12 G10* G9 F12	1 1 1 1 1	NC Ball C12 C13 C14 C15	F8 F9 F10 F12	L10 L8 L6	
H12 G11 H11 G12 G10* G9 F12	1 1 1 1	C12 C13 C14 C15	F9 F10 F12	L8 L6	
G11 H11 G12 G10* G9 F12	1 1 1	C13 C14 C15	F10 F12	L6	
H11 G12 G10* G9 F12	1 1 1	C14 C15	F12		
G12 G10* G9 F12	1 1	C15		Ι /	
G10* G9 F12	1		E40	L 4	
G9 F12		ı	F13	L2	
F12	1	I .	F14	LO	
		VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)	
	1	D15	G14	MO	
F11	1	D14	G13	M2	
E11	1	D13	G12	M4	
E12	1	D12	G10	M6	
D10	1	NC Ball	G9	M8	
F10	1	NC Ball	G8	M10	
D12	1	NC Ball	NC Ball	M12	
F8	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)	
E10	1	D11	G6	N2	
D11	1	D10	G5	N4	
E9	1	D9	G4	N6	
C12	1	D8	G2	N8	
C11*	1	<u> </u>	G1	N10	
B12	1	NC Ball	G0	N12	
F9	1	NC Ball	VCCO (Bank 1)	VCCO (Bank 1)	
B11	-	TDO	TDO	TDO	
E8	-	VCC	VCC	VCC	
F7	-	GND	GND	GND	
A12	1	NC Ball	NC Ball	014	
C10	1	NC Ball	NC Ball	012	
B10	1	NC Ball	H14	O10	
A11*	1	I	H13	O8	
D9	1	D7	H12	O6	
B9	1	D6	H10	04	
C9	1	D5	H9	02	
A10	1	D4	H8	00	
E7	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)	
D8	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)	
A9	1	NC Ball	H6	P12	
B8	1	NC Ball	H5	P10	
C8	1	D3	H4	P8	
A8	1	D2	H2	P6	
D7	1	D1	H1	P4	
B7	1	D0/G0F1	H0/G0F1	P2/GOF1	



ispMACH 4128ZE and 4256ZE Logic Signal Connections: 144 TQFP (Cont.)

		LC4128ZE	LC4256ZE	
Pin Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad	
43	0	D9	G4	
44	0	D8	G2	
45*	0	NC	1	
46	0	GND (Bank 0)	GND (Bank 0)	
47	0	VCCO (Bank 0)	VCCO (Bank 0)	
48	0	D6	H12	
49	0	D5	H10	
50	0	D4	H8	
51	0	D2	H6	
52	0	D1	H4	
53	0	D0	H2	
54	0	CLK1/I	CLK1/I	
55	1	GND (Bank 1)	GND (Bank 1)	
56	1	CLK2/I	CLK2/I	
57	-	VCC	VCC	
58	1	E0	12	
59	1	E1	14	
60	1	E2	16	
61	1	E4	18	
62	1	E5	I10	
63	1	E6	l12	
64	1	VCCO (Bank 1)	VCCO (Bank 1)	
65	1	GND (Bank 1)	GND (Bank 1)	
66	1	E8	J2	
67	1	E9	J4	
68	1	E10	J6	
69	1	E12	J8	
70	1	E13	J10	
71	1	E14	J12	
72*	1	NC	I	
73	-	GND	GND	
74	-	TMS	TMS	
75	1	VCCO (Bank 1)	VCCO (Bank 1)	
76	1	F0	K12	
77	1	F1	K10	
78	1	F2	K8	
79	1	F4	K6	
80	1	F5	K4	
81	1	F6	K2	
82	1	GND (Bank 1)	GND (Bank 1)	
83	1	F8	L14	
84	1	F9	L12	
85	1	F10	L10	

Part Number Description

ispMACH 4000ZE Family Speed Grade Offering

	-4	-5		-7	
	Commercial	Commercial	Industrial	Commercial	Industrial
ispMACH 4032ZE	✓	✓	✓	✓	✓
ispMACH 4064ZE	✓	✓	✓	✓	✓
ispMACH 4128ZE		✓		✓	✓
ispMACH 4256ZE		✓		✓	✓

Ordering Information

Note: ispMACH 4000ZE devices are dual marked except for the slowest commercial speed grade. For example, the commercial speed grade LC4128ZE-5TN100C is also marked with the industrial grade -7I. The commercial grade is always one speed grade faster than the associated dual mark industrial grade. The slowest commercial speed grade devices are marked as commercial grade only. The markings appear as follows:

Figure 18. Mark Format for 100 TQFP and 144 TQFP Packages

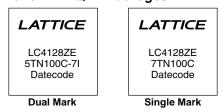
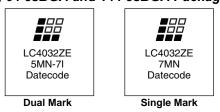



Figure 19. Mark Format for 48 TQFP, 64 csBGA and 144 csBGA Packages

