

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

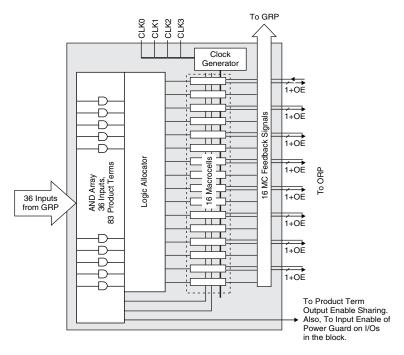
Details

2000	
Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	1.7V ~ 1.9V
Number of Logic Elements/Blocks	4
Number of Macrocells	64
Number of Gates	-
Number of I/O	32
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4064ze-7tn48i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The I/Os in the ispMACH 4000ZE are split into two banks. Each bank has a separate I/O power supply. Inputs can support a variety of standards independent of the chip or bank power supply. Outputs support the standards compatible with the power supply provided to the bank. Support for a variety of standards helps designers implement designs in mixed voltage environments. In addition, 5V tolerant inputs are specified within an I/O bank that is connected to a V_{CCO} of 3.0V to 3.6V for LVCMOS 3.3, LVTTL and PCI interfaces.


Architecture

There are a total of two GLBs in the ispMACH 4032ZE, increasing to 16 GLBs in the ispMACH 4256ZE. Each GLB has 36 inputs. All GLB inputs come from the GRP and all outputs from the GLB are brought back into the GRP to be connected to the inputs of any other GLB on the device. Even if feedback signals return to the same GLB, they still must go through the GRP. This mechanism ensures that GLBs communicate with each other with consistent and predictable delays. The outputs from the GLB are also sent to the ORP. The ORP then sends them to the associated I/O cells in the I/O block.

Generic Logic Block

The ispMACH 4000ZE GLB consists of a programmable AND array, logic allocator, 16 macrocells and a GLB clock generator. Macrocells are decoupled from the product terms through the logic allocator and the I/O pins are decoupled from macrocells through the ORP. Figure 2 illustrates the GLB.

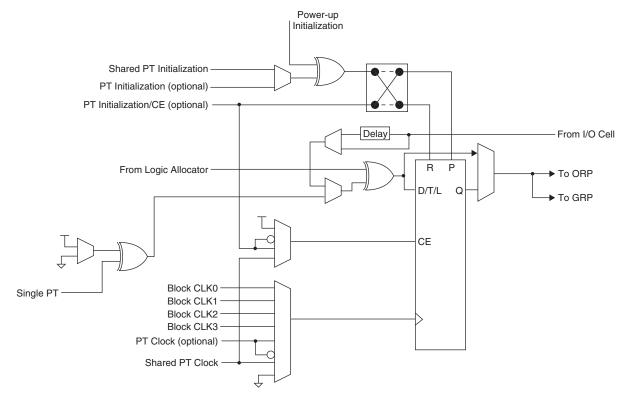
Figure 2. Generic Logic Block

AND Array

The programmable AND Array consists of 36 inputs and 83 output product terms. The 36 inputs from the GRP are used to form 72 lines in the AND Array (true and complement of the inputs). Each line in the array can be connected to any of the 83 output product terms via a wired-AND. Each of the 80 logic product terms feed the logic allocator with the remaining three control product terms feeding the Shared PT Clock, Shared PT Initialization and Shared PT OE. The Shared PT Clock and Shared PT Initialization signals can optionally be inverted before being fed to the macrocells.

Every set of five product terms from the 80 logic product terms forms a product term cluster starting with PT0. There is one product term cluster for every macrocell in the GLB. Figure 3 is a graphical representation of the AND Array.

Expansion Chains	Macrocells Associated with Expansion Chain (with Wrap Around)	Max PT/ Macrocell
Chain-0	M0 Õ M4 Õ M8 Õ M12 Õ M0	75
Chain-1	M1 Õ M5 Õ M9 Õ M13 Õ M1	80
Chain-2	M2 Õ M6 Õ M10 Õ M14 Õ M2	75
Chain-3	M3 Õ M7 Õ M11 Õ M15 Õ M3	70


Table 4. Product Term Expansion Capability

Every time the super cluster allocator is used, there is an incremental delay of t_{EXP} . When the super cluster allocator is used, all destinations other than the one being steered to, are given the value of ground (i.e., if the super cluster is steered to M (n+4), then M (n) is ground).

Macrocell

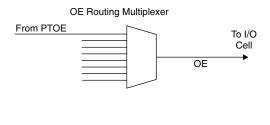
The 16 macrocells in the GLB are driven by the 16 outputs from the logic allocator. Each macrocell contains a programmable XOR gate, a programmable register/latch, along with routing for the logic and control functions. Figure 5 shows a graphical representation of the macrocell. The macrocells feed the ORP and GRP. A direct input from the I/O cell allows designers to use the macrocell to construct high-speed input registers. A programmable delay in this path allows designers to choose between the fastest possible set-up time and zero hold time.

Figure 5. Macrocell

Enhanced Clock Multiplexer

The clock input to the flip-flop can select any of the four block clocks along with the shared PT clock, and true and complement forms of the optional individual term clock. An 8:1 multiplexer structure is used to select the clock. The eight sources for the clock multiplexer are as follows:

- Block CLK0
- Block CLK1


Output Routing Pool (ORP)

The Output Routing Pool allows macrocell outputs to be connected to any of several I/O cells within an I/O block. This provides greater flexibility in determining the pinout and allows design changes to occur without affecting the pinout. The output routing pool also provides a parallel capability for routing macrocell-level OE product terms. This allows the OE product term to follow the macrocell output as it is switched between I/O cells. The enhanced ORP of the ispMACH 4000ZE family consists of the following elements:

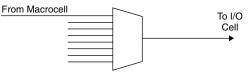

- Output Routing Multiplexers
- OE Routing Multiplexers

Figure 7 shows the structure of the ORP from the I/O cell perspective. This is referred to as an ORP slice. Each ORP has as many ORP slices as there are I/O cells in the corresponding I/O block.

Figure 7. ORP Slice

Output Routing Multiplexer

Output Routing Multiplexers

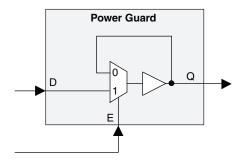
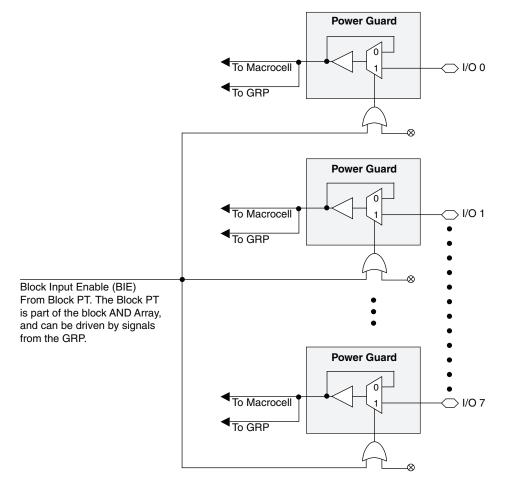

The details of connections between the macrocells and the I/O cells vary across devices and within a device dependent on the maximum number of I/Os available. Tables 5-7 provide the connection details.

Table 5. GLB/MC/ORP Combinations for ispMACH 4256ZE

GLB/MC	ORP Mux Input Macrocells
[GLB] [MC 0]	M0, M1, M2, M3, M4, M5, M6, M7
[GLB] [MC 1]	M2, M3, M4, M5, M6, M7, M8, M9
[GLB] [MC 2]	M4, M5, M6, M7, M8, M9, M10, M11
[GLB] [MC 3]	M6, M7, M8, M9, M10, M11, M12, M13
[GLB] [MC 4]	M8, M9, M10, M11, M12, M13, M14, M15
[GLB] [MC 5]	M10, M11, M12, M13, M14, M15, M0, M1
[GLB] [MC 6]	M12, M13, M14, M15, M0, M1, M2, M3
[GLB] [MC 7]	M14, M15, M0, M1, M2, M3, M4, M5

Figure 9. Power Guard



All the I/O pins in a block share a common Power Guard Enable signal. For a block of I/Os, this signal is called a Block Input Enable (BIE) signal. BIE can be internally generated using MC logic, or could come from external sources using one of the user I/O or input pins.

Any I/O pin in the block can be programmed to ignore the BIE signal. Thus, the feature can be enabled or disabled on a pin-by-pin basis.

Figure 10 shows Power Guard and BIE across multiple I/Os in a block that has eight I/Os.

Figure 10. Power Guard and BIE in a Block with 8 I/Os

The number of BIE inputs, thus the number of Power Guard "Blocks" that can exist in a device, depends on the device size. Table 8 shows the number of BIE signals available in the ispMACH 4000ZE family. The number of I/Os available in each block is shown in the Ordering Information section of this data sheet.

Device	Number of Logic Blocks, Power Guard Blocks and BIE Signals
ispMACH 4032ZE	Two (Blocks: A and B)
ispMACH 4064ZE	Four (Blocks: A, B, C and D)
ispMACH 4128ZE	Eight (Blocks: A, B, C,, H)
ispMACH 4256ZE	Sixteen (Blocks: A, B, C,, P)

Table 8. Number of BIE Signals Available in ispMACH 4000ZE Devices

Power Guard for Dedicated Inputs

Power Guard can optionally be applied to the dedicated inputs. The dedicated inputs and clocks are controlled by the BIE of the logic blocks shown in Tables 9 and 10.

Table 9. Dedicated Clock Inputs to BIE Association

CLK/I	32 MC Block	64MC Block	128MC Block	256MC Block
CLK0 / I	A	A	A	A
CLK1 / I	A	В	D	Н
CLK2 / I	В	С	E	I
CLK3 / I	В	D	Н	Р

Table 10. Dedicated Inputs to BIE Association

Dedicated Input	4064ZE Block	4128ZE Block	4256ZE Block
0	A	В	D
1	В	С	E
2	В	D	G
3	С	F	G
4	D	G	J
5	D	Н	L
6	—	—	М
7	_	—	0
8	_	—	0
9		—	В

For more information on the Power Guard function refer to TN1174, <u>Advanced Features of the ispMACH 4000ZE</u> <u>Family</u>.

Global OE (GOE) and Block Input Enable (BIE) Generation

Most ispMACH 4000ZE family devices have a 4-bit wide Global OE (GOE) Bus (Figure 11), except the ispMACH 4032 device that has a 2-bit wide Global OE Bus (Figure 12). This bus is derived from a 4-bit internal global OE (GOE) PT bus and two dual purpose I/O or GOE pins. Each signal that drives the bus can optionally be inverted.

Each GLB has a block-level OE PT that connects to all bits of the Global OE PT bus with four fuses. Hence, for a 256-macrocell device (with 16 blocks), each line of the bus is driven from 16 OE product terms. Figures 9 and 10 show a graphical representation of the global OE generation.

mated test equipment. This equipment can then be used to program ispMACH 4000ZE devices during the testing of a circuit board.

User Electronic Signature

The User Electronic Signature (UES) allows the designer to include identification bits or serial numbers inside the device, stored in E²CMOS memory. The ispMACH 4000ZE device contains 32 UES bits that can be configured by the user to store unique data such as ID codes, revision numbers or inventory control codes.

Security Bit

A programmable security bit is provided on the ispMACH 4000ZE devices as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. Programming and verification are also defeated by the security bit. The bit can only be reset by erasing the entire device.

Hot Socketing

The ispMACH 4000ZE devices are well-suited for applications that require hot socketing capability. Hot socketing a device requires that the device, during power-up and down, can tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of I/O pin loading be minimal on active signals. The isp-MACH 4000ZE devices provide this capability for input voltages in the range 0V to 3.0V.

Density Migration

The ispMACH 4000ZE family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted for a high density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

Absolute Maximum Ratings^{1, 2, 3, 4}

Supply Voltage (V_CC) \ldots
Output Supply Voltage (V_{CCO})
Input or I/O Tristate Voltage Applied ^{5, 6}
Storage Temperature65 to 150°C
Junction Temperature (Tj) with Power Applied55 to 150°C

- 1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
- 2. Compliance with Lattice Thermal Management document is required.
- 3. All voltages referenced to GND.
- 4. Please refer to the Lattice ispMACH 4000V/B/C/ZC/ZE Product Family Qualification Summary for complete data, including the ESD performance data.
- 5. Undershoot of -2V and overshoot of (V_{IH} (MAX) + 2V), up to a total pin voltage of 6V is permitted for a duration of <20ns.
- 6. Maximum of 64 I/Os per device with VIN > 3.6V is allowed.

Recommended Operating Conditions

Symbol		Min.	Max.	Units	
V	Supply Voltage	Standard Voltage Operation	1.7	1.9	V
V _{CC}	Supply Voltage	Extended Voltage Operation	1.6 ¹		V
Т _ј	Junction Temperature (Commercial)		0	90	°C
	Junction Temperature (Industrial)		-40	105	°C

1. Devices operating at 1.6V can expect performance degradation up to 35%.

Erase Reprogram Specifications

Parameter	Min.	Max.	Units
Erase/Reprogram Cycle	1,000		Cycles

Note: Valid over commercial temperature range.

Hot Socketing Characteristics^{1,2,3}

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I	Input or I/O Leakage Current	$0 \le V_{IN} \le 3.0V$, Tj = 105°C		±30	±150	μΑ
DK	Input of I/O Leakage Current	$0 \le V_{IN} \le 3.0V$, Tj = $130^{\circ}C$	-	±30	±200	μΑ

1. Insensitive to sequence of V_{CC} or V_{CCO.} However, assumes monotonic rise/fall rates for V_{CC} and V_{CCO,} provided (V_{IN} - V_{CCO}) \leq 3.6V.

2. $0 < V_{CC} < V_{CC}$ (MAX), $0 < V_{CCO} < V_{CCO}$ (MAX).

3. I_{DK} is additive to I_{PU} , I_{PD} or I_{BH} . Device defaults to pull-up until fuse circuitry is active.

I/O Recommended Operating Conditions

	V _{CCC}	_D (V) ¹
Standard	Min.	Max.
LVTTL	3.0	3.6
LVCMOS 3.3	3.0	3.6
Extended LVCMOS 3.3	2.7	3.6
LVCMOS 2.5	2.3	2.7
LVCMOS 1.8	1.65	1.95
LVCMOS 1.5	1.4	1.6
PCI 3.3	3.0	3.6

1. Typical values for V_{CCO} are the average of the min. and max. values.

DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
$I_{\rm IL}, I_{\rm IH}^{1,2}$	Input Leakage Current	$0 \le V_{IN} < V_{CCO}$	—	0.5	1	μΑ
I _{IH} ¹	Input High Leakage Current	$V_{CCO} < V_{IN} \le 5.5V$	—		10	μA
I _{PU}	I/O Weak Pull-up Resistor Current	$0 \le V_{IN} \le 0.7 V_{CCO}$	-20		-150	μA
I _{PD}	I/O Weak Pull-down Resistor Current	V_{IL} (MAX) $\leq V_{IN} \leq V_{IH}$ (MAX)	30		150	μA
I _{BHLS}	Bus Hold Low Sustaining Current	$V_{IN} = V_{IL} (MAX)$	30		—	μA
I _{BHHS}	Bus Hold High Sustaining Current	$V_{IN} = 0.7 V_{CCO}$	-20		—	μA
I _{BHLO}	Bus Hold Low Overdrive Current	$0V \le V_{IN} \le V_{BHT}$	—		150	μA
I _{BHHO}	Bus Hold High Overdrive Current	$V_{BHT} \le V_{IN} \le V_{CCO}$	—		-150	μA
V _{BHT}	Bus Hold Trip Points	—	V _{CCO} * 0.35		V _{CCO} * 0.65	V
C ₁	I/O Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V, 1.5V	—	8	—	nf
01	1/O Capacitance	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	—	0	—	pf
C ₂	Clock Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V, 1.5V	—	6	—	nf
02	Clock Capacitance	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	—	0	—	pf
C ₃	Global Input Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V, 1.5V	—	6	—	pf
\cup_3		V_{CC} = 1.8V, V_{IO} = 0 to V_{IH} (MAX)	—	0	—	

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tristated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

 I_{IH} excursions of up to 1.5µA maximum per pin above the spec limit may be observed for certain voltage conditions on no more than 10% of the device's I/O pins.

3. Measured $T_A = 25^{\circ}C$, f = 1.0MHz.

Supply Current

To minimize transient current during power-on, configure CPLD I/Os to a pull-up or float state. If this logic scenario is not possible, then the recommended power sequence should assert VCC and VCCO at the same time or VCC before VCCO.

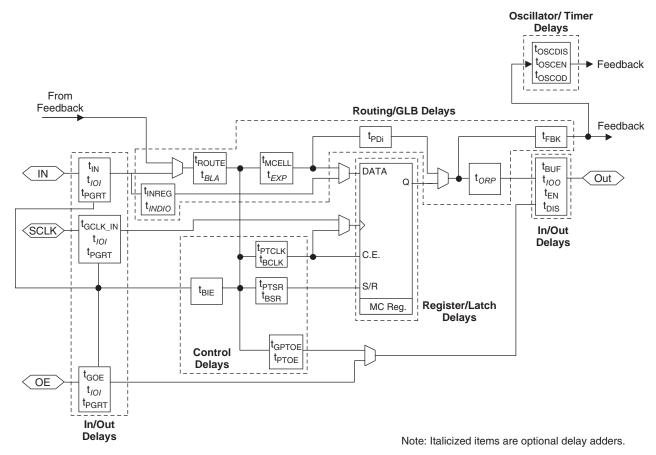
Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
ispMACH 4	032ZE					
		$Vcc = 1.8V, T_A = 25^{\circ}C$	—	50	—	μA
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	—	58	—	μA
		$Vcc = 1.9V$, $T_A = -40$ to $85^{\circ}C$	—	60	—	μA
		$Vcc = 1.8V, T_A = 25^{\circ}C$	_	10	—	μA
ICC ^{4, 5, 6}	Standby Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	13	25	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	_	15	40	μA
ispMACH 4	064ZE					
		$Vcc = 1.8V, T_A = 25^{\circ}C$		80	—	μA
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	89	—	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	_	92	—	μA
		$Vcc = 1.8V, T_A = 25^{\circ}C$	_	11	—	μA
ICC ^{4, 5, 6}	Standby Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	15	30	μA
		$Vcc = 1.9V$, $T_A = -40$ to $85^{\circ}C$	_	18	50	μA
ispMACH 4	128ZE	· · · · ·		•		·
		$Vcc = 1.8V, T_A = 25^{\circ}C$		168	—	μA
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	190	—	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	—	195	_	μA
		$Vcc = 1.8V, T_A = 25^{\circ}C$	—	12	_	μA
ICC ^{4, 5, 6}	Standby Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	16	40	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	—	19	60	μA
ispMACH 4	256ZE					
		$Vcc = 1.8V, T_A = 25^{\circ}C$		341	—	μA
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	—	361	—	μΑ
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	—	372	—	μA
		$Vcc = 1.8V, T_A = 25^{\circ}C$	-	13	—	μA
ICC ^{4, 5, 6}	Standby Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	—	32	65	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	_	43	100	μA

1. Frequency = 1.0 MHz.

2. Device configured with 16-bit counters.

3. I_{CC} varies with specific device configuration and operating frequency.

4. V_{CCO} = 3.6V, V_{IN} = 0V or V_{CCO}, bus maintenance turned off. V_{IN} above V_{CCO} will add transient current above the specified standby I_{CC}.


5. Includes V_{CCO} current without output loading.

6. This operating supply current is with the internal oscillator disabled. Enabling the internal oscillator adds approximately 15µA typical current plus additional current from any logic it drives.

Timing Model

The task of determining the timing through the ispMACH 4000ZE family, like any CPLD, is relatively simple. The timing model provided in Figure 16 shows the specific delay paths. Once the implementation of a given function is determined either conceptually or from the software report file, the delay path of the function can easily be determined from the timing model. The Lattice design tools report the timing delays based on the same timing model for a particular design. Note that the internal timing parameters are given for reference only, and are not tested. The external timing parameters are tested and guaranteed for every device. For more information on the timing model and usage, refer to TN1168, jspMACH 4000ZE Timing Model Design and Usage Guidelines.

Figure 16. ispMACH 4000ZE Timing Model

ispMACH 4032ZE and 4064ZE Logic Signal Connections: 48 TQFP (Cont.)

		ispMACH 4032ZE	ispMACH 4064ZE
Pin Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad
43	0	CLK0/I	CLK0/I
44	0	A0/GOE0	A0/GOE0
45	0	A1	A1
46	0	A2	A2
47	0	A3	A4
48	0	A4	A6

ispMACH 4064ZE Logic Signal Connections: 64 ucBGA (Cont.)

Ball Number	Bank Number	GLB/MC/Pad
E7	1	D13
E6	1	D12
D8	1	D11
D7	1	D10
D6	1	D9
C8	1	D8
C7	-	TDO
D5	-	VCC
GND*	-	GND
B8	1	D7
A8	1	D6
B7	1	D5
A7	1	D4
GND*	1	GND (Bank 1)
A6	1	VCCO (Bank 1)
B6	1	D3
C6	1	D2
A5	1	D0/GOE1
B5	1	CLK3/I
C5	0	CLK0/I
A4	0	A0/GOE0
B4	0	A1
C4	0	A2
A3	0	A4
A2	0	A6

* All bonded grounds are connected to the following two balls, D4 and E5.

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 100 TQFP (Cont.)

Pin	Bank	Bank LC4064ZE LC	LC4128ZE	LC4256ZE	
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad	
42	1	C1	E2	16	
43	1	C2	E4	110	
44	1	C3	E6	112	
45	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)	
46	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)	
47	1	C4	E8	J2	
48	1	C5	E10	J6	
49	1	C6	E12	J10	
50	1	C7	E14	J12	
51	-	GND	GND	GND	
52	-	TMS	TMS	TMS	
53	1	C8	F0	K12	
54	1	C9	F2	K10	
55	1	C10	F4	K6	
56	1	C11	F6	K2	
57	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)	
58	1	C12	F8	L12	
59	1	C13	F10	L10	
60	1	C14	F12	L6	
61	1	C15	F13	L4	
62*	1	I	I	I	
63	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)	
64	1	D15	G14	M4	
65	1	D14	G12	M6	
66	1	D13	G10	M10	
67	1	D12	G8	M12	
68	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)	
69	1	D11	G6	N2	
70	1	D10	G5	N6	
71	1	D9	G4	N10	
72	1	D8	G2	N12	
73*	1	I	l		
74	-	TDO	TDO	TDO	
75	-	VCC	VCC	VCC	
76	-	GND	GND	GND	
77*	1	I	I	I	
78	1	D7	H13	012	
79	1	D6	H12	O10	
80	1	D5	H10	O6	
81	1	D4	H8	O2	
82	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)	

ispMACH 4128ZE Logic Signal Connections: 132 ucBGA (Cont.)

Ball Number	Bank Number	GLB/MC/Pad
M5	0	D5
J6	0	D4
K6	0	D2
L6	0	D1
M6	0	D0
K7	0	CLK1/I
L7	1	GND (Bank 1)
J7	1	CLK2/I
M7	-	VCC
K8	1	E0
L8	1	E1
M8	1	E2
J8	1	E4
L9	1	E5
M9	1	E6
K9	1	VCCO (Bank 1)
J9	1	GND (Bank 1)
L10	1	E8
K10	1	E9
M10	1	E10
L11	1	E12
K12	1	E13
M11	1	E14
GND*	-	GND
M12	-	TMS
L12	1	VCCO (Bank 1)
K11	1	F0
J10	1	F1
H9	1	F2
J12	1	F4
J11	1	F5
H10	1	F6
H12	1	GND (Bank 1)
G9	1	F8
H11	1	F9
F9	1	F10
G12	1	F12
G11	1	F13
G10	1	F14
F12	1	VCCO (Bank 1)
F10	1	G14
F11	1	G13
E11	1	G12
E10	1	G10

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA

Ball	ll Bank	LC4064ZE	LC4128ZE	LC4256ZE	
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad	
F6	-	GND	GND	GND	
A1	-	TDI	TDI	TDI	
E4	0	NC Ball	VCCO (Bank 0)	VCCO (Bank 0)	
B2	0	NC Ball	B0	C12	
B1	0	NC Ball	B1	C10	
C3	0	A8	B2	C8	
C2	0	A9	B4	C6	
C1	0	A10	B5	C4	
D1	0	A11	B6	C2	
G5	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)	
D2	0	NC Ball	NC Ball	D14	
D3	0	NC Ball	NC Ball	D12	
E1	0	NC Ball	B8	D10	
E2	0	A12	B9	D8	
F2	0	A13	B10	D6	
D4	0	A14	B12	D4	
F1	0	A15	B13	D2	
F3*	0		B14	D0	
F4	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)	
G1	0	B15	C14	E0	
E3	0	B14	C13	E2	
G2	0	B13	C12	E4	
G3	0	B12	C10	E6	
H1	0	NC Ball	C9	E8	
H3	0	NC Ball	C8	E10	
H2	0	NC Ball	NC Ball	E12	
H4	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)	
J1	0	B11	C6	F2	
J3	0	B10	C5	F4	
J2	0	B9	C4	F6	
K1	0	B8	C2	F8	
K2*	0	I	C1	F10	
L1	0	NC Ball	CO	F12	
G4	0	NC Ball	VCCO (Bank 0)	VCCO (Bank 0)	
L2	-	ТСК	ТСК	ТСК	
H5	-	VCC	VCC	VCC	
G6	-	GND	GND	GND	
M1	0	NC Ball	NC Ball	G14	
K3	0	NC Ball	NC Ball	G12	
M2	0	NC Ball	D14	G10	
L3*	0		D13	G8	

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA (Cont.)

Ball	Bank LC4064ZE	LC4064ZE	LC4128ZE	LC4256ZE	
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad	
J4	0	B7	D12	G6	
K4	0	B6	D10	G4	
M3	0	B5	D9	G2	
L4	0	B4	D8	G0	
H6	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)	
J5	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)	
M4	0	NC Ball	D6	H12	
L5	0	NC Ball	D5	H10	
K5	0	B3	D4	H8	
J6	0	B2	D2	H6	
M5	0	B1	D1	H4	
K6	0	B0	D0	H2	
L6	0	CLK1/I	CLK1/I	CLK1/I	
H7	1	NC Ball	GND (Bank 1)	GND (Bank 1)	
M6	1	CLK2/I	CLK2/I	CLK2/I	
H8	-	VCC	VCC	VCC	
K7	1	C0	E0	12	
M7	1	C1	E1	14	
L7	1	C2	E2	16	
J7	1	C3	E4	18	
L8	1	NC Ball	E5	110	
M8	1	NC Ball	E6	12	
J8	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)	
J9	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)	
M9	1	C4	E8	J2	
L9	1	C5	E9	J4	
K8	1	C6	E10	J6	
M10	1	C7	E12	J8	
L10	1	NC Ball	E13	J10	
K9	1	NC Ball	E14	J12	
M11	1	NC Ball	NC Ball	J14	
G7	-	GND	GND	GND	
M12	-	TMS	TMS	TMS	
H9	1	NC Ball	VCCO (Bank 1)	VCCO (Bank 1)	
L12	1	NC Ball	F0	K12	
L11	1	NC Ball	F1	K10	
K10	1	C8	F2	K8	
K12	1	C9	F4	K6	
J10	1	C10	F5	K4	
K11	1	C11	F6	K2	
G8	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)	

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA (Cont.)

Ball	Bank	Bank LC4064ZE	LC4128ZE	LC4256ZE	
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad	
J12	1	NC Ball	NC Ball	L14	
J11	1	NC Ball	NC Ball	L12	
H10	1	NC Ball	F8	L10	
H12	1	C12	F9	L8	
G11	1	C13	F10	L6	
H11	1	C14	F12	L4	
G12	1	C15	F13	L2	
G10*	1	Ι	F14	LO	
G9	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)	
F12	1	D15	G14	M0	
F11	1	D14	G13	M2	
E11	1	D13	G12	M4	
E12	1	D12	G10	M6	
D10	1	NC Ball	G9	M8	
F10	1	NC Ball	G8	M10	
D12	1	NC Ball	NC Ball	M12	
F8	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)	
E10	1	D11	G6	N2	
D11	1	D10	G5	N4	
E9	1	D9	G4	N6	
C12	1	D8	G2	N8	
C11*	1	I	G1	N10	
B12	1	NC Ball	G0	N12	
F9	1	NC Ball	VCCO (Bank 1)	VCCO (Bank 1)	
B11	-	TDO	TDO	TDO	
E8	-	VCC	VCC	VCC	
F7	-	GND	GND	GND	
A12	1	NC Ball	NC Ball	O14	
C10	1	NC Ball	NC Ball	012	
B10	1	NC Ball	H14	O10	
A11*	1	I	H13	O8	
D9	1	D7	H12	O6	
B9	1	D6	H10	O4	
C9	1	D5	H9	02	
A10	1	D4	H8	O0	
E7	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)	
D8	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)	
A9	1	NC Ball	H6	P12	
B8	1	NC Ball	H5	P10	
C8	1	D3	H4	P8	
A8	1	D2	H2	P6	
D7	1	D1	H1	P4	
B7	1				

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA (Cont.)

Ball Bank Number Numbe	Bank LC4064ZE Number GLB/MC/Pad	LC4064ZE	LC4128ZE	LC4256ZE
		GLB/MC/Pad	GLB/MC/Pad	
C7	1	CLK3/I	CLK3/I	CLK3/I
E6	0	NC Ball	GND (Bank 0)	GND (Bank 0)
A7	0	CLK0/I	CLK0/I	CLK0/I
E5	-	VCC	VCC	VCC
D6	0	A0/GOE0	A0/GOE0	A2/GOE0
B6	0	A1	A1	A4
A6	0	A2	A2	A6
C6	0	A3	A4	A8
B5	0	NC Ball	A5	A10
A5	0	NC Ball	A6	A12
D5	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)
F5	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
A4	0	A4	A8	B2
B4	0	A5	A9	B4
C5	0	A6	A10	B6
A3	0	A7	A12	B8
C4	0	NC Ball	A13	B10
B3	0	NC Ball	A14	B12
A2	0	NC Ball	NC Ball	B14

* This pin is input only for the LC4064ZE.

ispMACH 4128ZE and 4256ZE Logic Signal Connections: 144 TQFP (Cont.)

		LC4128ZE	LC4256ZE	
Pin Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad	
43	0	D9	G4	
44	0	D8	G2	
45*	0	NC	I	
46	0	GND (Bank 0)	GND (Bank 0)	
47	0	VCCO (Bank 0)	VCCO (Bank 0)	
48	0	D6	H12	
49	0	D5	H10	
50	0	D4	H8	
51	0	D2	H6	
52	0	D1	H4	
53	0	D0	H2	
54	0	CLK1/I	CLK1/I	
55	1	GND (Bank 1)	GND (Bank 1)	
56	1	CLK2/I	CLK2/I	
57	-	VCC	VCC	
58	1	E0	12	
59	1	E1	14	
60	1	E2	16	
61	1	E4	18	
62	1	E5	110	
63	1	E6	12	
64	1	VCCO (Bank 1)	VCCO (Bank 1)	
65	1	GND (Bank 1)	GND (Bank 1)	
66	1	E8	J2	
67	1	E9	J4	
68	1	E10	J6	
69	1	E12	J8	
70	1	E13	J10	
71	1	E14	J12	
72*	1	NC	I	
73	-	GND	GND	
74	-	TMS	TMS	
75	1	VCCO (Bank 1)	VCCO (Bank 1)	
76	1	F0	K12	
77	1	F1	K10	
78	1	F2	K8	
79	1	F4	K6	
80	1	F5	K4	
81	1	F6	K2	
82	1	GND (Bank 1)	GND (Bank 1)	
83	1	F8	L14	
84	1	F9	L12	
85	1	F10	L10	

ispMACH 4128ZE and 4256ZE Logic Signal Connections: 144 TQFP (Cont.)

		LC4128ZE	LC4256ZE	
Pin Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad	
86	1	F12	L8	
87	1	F13	L6	
88	1	F14	L4	
89*	1	NC	I	
90	1	GND (Bank 1)	NC	
91	1	VCCO (Bank 1)	VCCO (Bank 1)	
92*	1	NC	I	
93	1	G14	M2	
94	1	G13	M4	
95	1	G12	M6	
96	1	G10	M8	
97	1	G9	M10	
98	1	G8	M12	
99	1	GND (Bank 1)	GND (Bank 1)	
100	1	G6	N2	
101	1	G5	N4	
102	1	G4	N6	
103	1	G2	N8	
104	1	G1	N10	
105	1	G0	N12	
106	1	VCCO (Bank 1)	VCCO (Bank 1)	
107	-	TDO	TDO	
108	-	VCC	VCC	
109	-	GND	GND	
110*	1	NC	I	
111	1	H14	O12	
112	1	H13	O10	
113	1	H12	O8	
114	1	H10	O6	
115	1	H9	04	
116	1	H8	02	
117*	1	NC	I	
118	1	GND (Bank 1)	GND (Bank 1)	
119	1	VCCO (Bank 1)	VCCO (Bank 1)	
120	1	H6	P12	
121	1	H5	P10	
122	1	H4	P8	
123	1	H2	P6	
124	1	H1	P4	
125	1	H0/GOE1	P2/GOE1	
126	1	CLK3/I	CLK3/I	
127	0	GND (Bank 0)	GND (Bank 0)	
128	0	CLK0/I	CLK0/I	