E. Lattice Semiconductor Corporation - <u>LC4064ZE-7UMN64C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Not For New Designs
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	1.7V ~ 1.9V
Number of Logic Elements/Blocks	4
Number of Macrocells	64
Number of Gates	-
Number of I/O	48
Operating Temperature	0°C ~ 90°C (TJ)
Mounting Type	Surface Mount
Package / Case	64-VFBGA, CSPBGA
Supplier Device Package	64-UCBGA (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4064ze-7umn64c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

The high performance ispMACH 4000ZE family from Lattice offers an ultra low power CPLD solution. The new family is based on Lattice's industry-leading ispMACH 4000 architecture. Retaining the best of the previous generation, the ispMACH 4000ZE architecture focuses on significant innovations to combine high performance with low power in a flexible CPLD family. For example, the family's new Power Guard feature minimizes dynamic power consumption by preventing internal logic toggling due to unnecessary I/O pin activity.

The ispMACH 4000ZE combines high speed and low power with the flexibility needed for ease of design. With its robust Global Routing Pool and Output Routing Pool, this family delivers excellent First-Time-Fit, timing predictability, routing, pin-out retention and density migration.

The ispMACH 4000ZE family offers densities ranging from 32 to 256 macrocells. There are multiple density-I/O combinations in Thin Quad Flat Pack (TQFP), Chip Scale BGA (csBGA), and Ultra Chip Scale BGA (ucBGA) packages ranging from 32 to 144 pins/balls. Table 1 shows the macrocell, package and I/O options, along with other key parameters.

A user programmable internal oscillator and a timer are included in the device for tasks like LED control, keyboard scanner and similar housekeeping type state machines. This feature can be optionally disabled to save power.

The ispMACH 4000ZE family has enhanced system integration capabilities. It supports a 1.8V supply voltage and 3.3V, 2.5V, 1.8V and 1.5V interface voltages. Additionally, inputs can be safely driven up to 5.5V when an I/O bank is configured for 3.3V operation, making this family 5V tolerant. The ispMACH 4000ZE also offers enhanced I/O features such as slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a "per-pin" basis. The ispMACH 4000ZE family members are 1.8V in-system programmable through the IEEE Standard 1532 interface. IEEE Standard 1149.1 boundary scan testing capability also allows product testing on automated test equipment. The 1532 interface signals TCK, TMS, TDI and TDO are referenced to V_{CC} (logic core).

Overview

The ispMACH 4000ZE devices consist of multiple 36-input, 16-macrocell Generic Logic Blocks (GLBs) interconnected by a Global Routing Pool (GRP). Output Routing Pools (ORPs) connect the GLBs to the I/O Blocks (IOBs), which contain multiple I/O cells. This architecture is shown in Figure 1.

Figure 1. Functional Block Diagram

Figure 3. AND Array

Enhanced Logic Allocator

Within the logic allocator, product terms are allocated to macrocells in product term clusters. Each product term cluster is associated with a macrocell. The cluster size for the ispMACH 4000ZE family is 4+1 (total 5) product terms. The software automatically considers the availability and distribution of product term clusters as it fits the functions within a GLB. The logic allocator is designed to provide two speed paths: 20-PT Speed Locking path and an up to 80-PT path. The availability of these two paths lets designers trade timing variability for increased performance.

The enhanced Logic Allocator of the ispMACH 4000ZE family consists of the following blocks:

- Product Term Allocator
- Cluster Allocator
- Wide Steering Logic

Figure 4 shows a macrocell slice of the Logic Allocator. There are 16 such slices in the GLB.

Figure 4. Macrocell Slice

Product Term Allocator

The product term allocator assigns product terms from a cluster to either logic or control applications as required by the design being implemented. Product terms that are used as logic are steered into a 5-input OR gate associated with the cluster. Product terms that used for control are steered either to the macrocell or I/O cell associated with the cluster. Table 2 shows the available functions for each of the five product terms in the cluster.

Table 2. Individua	I PT Steering
--------------------	---------------

Product Term	Logic	Control
PT <i>n</i>	Logic PT	Single PT for XOR/OR
PT <i>n</i> +1	Logic PT	Individual Clock (PT Clock)
PT <i>n</i> +2	Logic PT	Individual Initialization or Individual Clock Enable (PT Initialization/CE)
PT <i>n</i> +3	Logic PT	Individual Initialization (PT Initialization)
PT <i>n</i> +4	Logic PT	Individual OE (PTOE)

Cluster Allocator

The cluster allocator allows clusters to be steered to neighboring macrocells, thus allowing the creation of functions with more product terms. Table 3 shows which clusters can be steered to which macrocells. Used in this manner, the cluster allocator can be used to form functions of up to 20 product terms. Additionally, the cluster allocator accepts inputs from the wide steering logic. Using these inputs, functions up to 80 product terms can be created.

Macrocell	Available Clusters			
MO	—	CO	C1	C2
M1	C0	C1	C2	C3
M2	C1	C2	C3	C4
M3	C2	C3	C4	C5
M4	C3	C4	C5	C6
M5	C4	C5	C6	C7
M6	C5	C6	C7	C8
M7	C6	C7	C8	C9
M8	C7	C8	C9	C10
M9	C8	C9	C10	C11
M10	C9	C10	C11	C12
M11	C10	C11	C12	C13
M12	C11	C12	C13	C14
M13	C12	C13	C14	C15
M14	C13	C14	C15	
M15	C14	C15		

Table 3. Available Clusters for Each Macrocell

Wide Steering Logic

The wide steering logic allows the output of the cluster allocator n to be connected to the input of the cluster allocator n+4. Thus, cluster chains can be formed with up to 80 product terms, supporting wide product term functions and allowing performance to be increased through a single GLB implementation. Table 4 shows the product term chains.

Expansion Chains	Macrocells Associated with Expansion Chain (with Wrap Around)	Max PT/ Macrocell
Chain-0	M0 Õ M4 Õ M8 Õ M12 Õ M0	75
Chain-1	M1 Õ M5 Õ M9 Õ M13 Õ M1	80
Chain-2	M2 Õ M6 Õ M10 Õ M14 Õ M2	75
Chain-3	M3 Õ M7 Õ M11 Õ M15 Õ M3	70

Table 4. Product Term Expansion Capability

Every time the super cluster allocator is used, there is an incremental delay of t_{EXP} . When the super cluster allocator is used, all destinations other than the one being steered to, are given the value of ground (i.e., if the super cluster is steered to M (n+4), then M (n) is ground).

Macrocell

The 16 macrocells in the GLB are driven by the 16 outputs from the logic allocator. Each macrocell contains a programmable XOR gate, a programmable register/latch, along with routing for the logic and control functions. Figure 5 shows a graphical representation of the macrocell. The macrocells feed the ORP and GRP. A direct input from the I/O cell allows designers to use the macrocell to construct high-speed input registers. A programmable delay in this path allows designers to choose between the fastest possible set-up time and zero hold time.

Figure 5. Macrocell

Enhanced Clock Multiplexer

The clock input to the flip-flop can select any of the four block clocks along with the shared PT clock, and true and complement forms of the optional individual term clock. An 8:1 multiplexer structure is used to select the clock. The eight sources for the clock multiplexer are as follows:

- Block CLK0
- Block CLK1

The number of BIE inputs, thus the number of Power Guard "Blocks" that can exist in a device, depends on the device size. Table 8 shows the number of BIE signals available in the ispMACH 4000ZE family. The number of I/Os available in each block is shown in the Ordering Information section of this data sheet.

Device	Number of Logic Blocks, Power Guard Blocks and BIE Signals
ispMACH 4032ZE	Two (Blocks: A and B)
ispMACH 4064ZE	Four (Blocks: A, B, C and D)
ispMACH 4128ZE	Eight (Blocks: A, B, C,, H)
ispMACH 4256ZE	Sixteen (Blocks: A, B, C,, P)

Table 8. Number of BIE Signals Available in ispMACH 4000ZE Devices

Power Guard for Dedicated Inputs

Power Guard can optionally be applied to the dedicated inputs. The dedicated inputs and clocks are controlled by the BIE of the logic blocks shown in Tables 9 and 10.

Table 9. Dedicated Clock Inputs to BIE Association

CLK/I	32 MC Block	64MC Block	128MC Block	256MC Block
CLK0 / I	A	A	A	A
CLK1 / I	A	В	D	Н
CLK2 / I	В	С	E	I
CLK3 / I	В	D	Н	Р

Table 10. Dedicated Inputs to BIE Association

Dedicated Input	4064ZE Block	4128ZE Block	4256ZE Block
0	A	В	D
1	В	С	E
2	В	D	G
3	С	F	G
4	D	G	J
5	D	Н	L
6	—	—	М
7	_	_	0
8		—	0
9		—	В

For more information on the Power Guard function refer to TN1174, <u>Advanced Features of the ispMACH 4000ZE</u> <u>Family</u>.

Global OE (GOE) and Block Input Enable (BIE) Generation

Most ispMACH 4000ZE family devices have a 4-bit wide Global OE (GOE) Bus (Figure 11), except the ispMACH 4032 device that has a 2-bit wide Global OE Bus (Figure 12). This bus is derived from a 4-bit internal global OE (GOE) PT bus and two dual purpose I/O or GOE pins. Each signal that drives the bus can optionally be inverted.

Each GLB has a block-level OE PT that connects to all bits of the Global OE PT bus with four fuses. Hence, for a 256-macrocell device (with 16 blocks), each line of the bus is driven from 16 OE product terms. Figures 9 and 10 show a graphical representation of the global OE generation.

Table 12. OSC and TIMER MC Designation

Device	Macrocell	Block Number	MC Number
ispMACH 4032ZE	OSC MC	A	15
	TIMER MC	B	15
ispMACH 4064ZE	OSC MC	A	15
	TIMER MC	D	15
ispMACH 4128ZE	OSC MC	A	15
	TIMER MC	G	15
ispMACH 4256ZE	OSC MC	C	15
	TIMER MC	F	15

Zero Power/Low Power and Power Management

The ispMACH 4000ZE family is designed with high speed low power design techniques to offer both high speed and low power. With an advanced E² low power cell and non sense-amplifier design approach (full CMOS logic approach), the ispMACH 4000ZE family offers fast pin-to-pin speeds, while simultaneously delivering low standby power without needing any "turbo bits" or other power management schemes associated with a traditional sense-amplifier approach.

The zero power ispMACH 4000ZE is based on the 1.8V ispMACH 4000Z family. With innovative circuit design changes, the ispMACH 4000ZE family is able to achieve the industry's lowest static power.

IEEE 1149.1-Compliant Boundary Scan Testability

All ispMACH 4000ZE devices have boundary scan cells and are compliant to the IEEE 1149.1 standard. This allows functional testing of the circuit board on which the device is mounted through a serial scan path that can access all critical logic notes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test node data to be captured and shifted out for verification. In addition, these devices can be linked into a board-level serial scan path for more board-level testing. The test access port operates with an LVCMOS interface that corresponds to the power supply voltage.

I/O Quick Configuration

To facilitate the most efficient board test, the physical nature of the I/O cells must be set before running any continuity tests. As these tests are fast, by nature, the overhead and time that is required for configuration of the I/Os' physical nature should be minimal so that board test time is minimized. The ispMACH 4000ZE family of devices allows this by offering the user the ability to quickly configure the physical nature of the I/O cells. This quick configuration takes milliseconds to complete, whereas it takes seconds for the entire device to be programmed. Lattice's ispVM[™] System programming software can either perform the quick configuration through the PC parallel port, or can generate the ATE or test vectors necessary for a third-party test system.

IEEE 1532-Compliant In-System Programming

Programming devices in-system provides a number of significant benefits including: rapid prototyping, lower inventory levels, higher quality and the ability to make in-field modifications. All ispMACH 4000ZE devices provide In-System Programming (ISP[™]) capability through the Boundary Scan Test Access Port. This capability has been implemented in a manner that ensures that the port remains complaint to the IEEE 1149.1 standard. By using IEEE 1149.1 as the communication interface through which ISP is achieved, users get the benefit of a standard, welldefined interface. All ispMACH 4000ZE devices are also compliant with the IEEE 1532 standard.

The ispMACH 4000ZE devices can be programmed across the commercial temperature and voltage range. The PC-based Lattice software facilitates in-system programming of ispMACH 4000ZE devices. The software takes the JEDEC file output produced by the design implementation software, along with information about the scan chain, and creates a set of vectors used to drive the scan chain. The software can use these vectors to drive a scan chain via the parallel port of a PC. Alternatively, the software can output files in formats understood by common auto-

Absolute Maximum Ratings^{1, 2, 3, 4}

Supply Voltage (V _{CC})	o 2.5V
Output Supply Voltage (V _{CCO})	o 4.5V
Input or I/O Tristate Voltage Applied ^{5, 6}	o 5.5V
Storage Temperature	150°C
Junction Temperature (Tj) with Power Applied55 to	150°C

- 1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
- 2. Compliance with Lattice Thermal Management document is required.
- 3. All voltages referenced to GND.
- 4. Please refer to the Lattice ispMACH 4000V/B/C/ZC/ZE Product Family Qualification Summary for complete data, including the ESD performance data.
- 5. Undershoot of -2V and overshoot of (V_{IH} (MAX) + 2V), up to a total pin voltage of 6V is permitted for a duration of <20ns.
- 6. Maximum of 64 I/Os per device with VIN > 3.6V is allowed.

Recommended Operating Conditions

Symbol	Parameter			Max.	Units
V _{CC}	Supply Voltage	Standard Voltage Operation	1.7	1.9	V
	Supply Vollage	Extended Voltage Operation	1.6 ¹	1.9	V
Т _ј	Junction Temperature (Commercial)		0	90	°C
	Junction Temperature (Industrial)		-40	105	О°

1. Devices operating at 1.6V can expect performance degradation up to 35%.

Erase Reprogram Specifications

Parameter	Min.	Max.	Units
Erase/Reprogram Cycle	1,000		Cycles

Note: Valid over commercial temperature range.

Hot Socketing Characteristics^{1,2,3}

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{DK}	Input or I/O Lookage Current	$0 \le V_{IN} \le 3.0V$, Tj = 105°C		±30	±150	μΑ
	Input of I/O Leakage Current	$0 \le V_{IN} \le 3.0V$, Tj = $130^{\circ}C$	_	±30	±200	μΑ

1. Insensitive to sequence of V_{CC} or V_{CCO.} However, assumes monotonic rise/fall rates for V_{CC} and V_{CCO,} provided (V_{IN} - V_{CCO}) \leq 3.6V.

2. $0 < V_{CC} < V_{CC}$ (MAX), $0 < V_{CCO} < V_{CCO}$ (MAX).

3. I_{DK} is additive to I_{PU} , I_{PD} or I_{BH} . Device defaults to pull-up until fuse circuitry is active.

I/O Recommended Operating Conditions

	V _{CCO} (V) ¹			
Standard	Min.	Max.		
LVTTL	3.0	3.6		
LVCMOS 3.3	3.0	3.6		
Extended LVCMOS 3.3	2.7	3.6		
LVCMOS 2.5	2.3	2.7		
LVCMOS 1.8	1.65	1.95		
LVCMOS 1.5	1.4	1.6		
PCI 3.3	3.0	3.6		

1. Typical values for V_{CCO} are the average of the min. and max. values.

DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
$I_{\rm IL}, I_{\rm IH}^{1,2}$	Input Leakage Current	$0 \le V_{IN} < V_{CCO}$	—	0.5	1	μΑ
I _{IH} ¹	Input High Leakage Current	$V_{CCO} < V_{IN} \le 5.5V$	—	_	10	μΑ
I _{PU}	I/O Weak Pull-up Resistor Current	$0 \leq V_{IN} \leq 0.7 V_{CCO}$	-20	_	-150	μΑ
I _{PD}	I/O Weak Pull-down Resistor Current	V_{IL} (MAX) $\leq V_{IN} \leq V_{IH}$ (MAX)	30	_	150	μΑ
I _{BHLS}	Bus Hold Low Sustaining Current	$V_{IN} = V_{IL} (MAX)$	30	_	—	μΑ
I _{BHHS}	Bus Hold High Sustaining Current	$V_{IN} = 0.7 V_{CCO}$	-20	_	—	μΑ
I _{BHLO}	Bus Hold Low Overdrive Current	$0V \le V_{IN} \le V_{BHT}$	—	_	150	μΑ
I _{BHHO}	Bus Hold High Overdrive Current	$V_{BHT} \le V_{IN} \le V_{CCO}$	—	_	-150	μΑ
V _{BHT}	Bus Hold Trip Points	—	V _{CCO} * 0.35	_	V _{CCO} * 0.65	V
C.	1/O Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V, 1.5V	—	Q	—	nf
01	1/O Capacitance	V_{CC} = 1.8V, V_{IO} = 0 to V_{IH} (MAX)	—	0		р
C.	Clock Canacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V, 1.5V	—	6	—	nf
02	Clock Capacitance	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	—	0	—	р
Ca	Global Input Canacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V, 1.5V	—	6	—	nf
03		$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	—	0		Ч

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tristated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

 I_{IH} excursions of up to 1.5µA maximum per pin above the spec limit may be observed for certain voltage conditions on no more than 10% of the device's I/O pins.

3. Measured $T_A = 25^{\circ}C$, f = 1.0MHz.

Supply Current

To minimize transient current during power-on, configure CPLD I/Os to a pull-up or float state. If this logic scenario is not possible, then the recommended power sequence should assert VCC and VCCO at the same time or VCC before VCCO.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
ispMACH 4	032ZE					
		$Vcc = 1.8V, T_A = 25^{\circ}C$		50	—	μA
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		58	—	μΑ
		Vcc = 1.9V, $T_A = -40$ to $85^{\circ}C$		60	—	μA
		$Vcc = 1.8V, T_A = 25^{\circ}C$		10	—	μA
ICC ^{4, 5, 6}	Standby Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		13	25	μA
		Vcc = 1.9V, $T_A = -40$ to $85^{\circ}C$		15	40	μA
ispMACH 4	064ZE					
		$Vcc = 1.8V, T_A = 25^{\circ}C$		80		μA
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		89	_	μΑ
		Vcc = 1.9V, T _A = -40 to 85°C		92	—	μA
		$Vcc = 1.8V, T_A = 25^{\circ}C$		11	—	μA
ICC ^{4, 5, 6}	Standby Power Supply Current	Vcc = 1.9V, $T_A = 0$ to $70^{\circ}C$		15	30	μA
		Vcc = 1.9V, T _A = -40 to 85°C		18	50	μΑ
ispMACH 4	128ZE		•		•	
		$Vcc = 1.8V, T_A = 25^{\circ}C$	—	168		μΑ
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		190	_	μΑ
		Vcc = 1.9V, T_A = -40 to 85°C		195	_	μΑ
		$Vcc = 1.8V, T_A = 25^{\circ}C$		12		μΑ
ICC ^{4, 5, 6}	Standby Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		16	40	μA
		Vcc = 1.9V, T_A = -40 to 85°C	—	19	60	μΑ
ispMACH 4	256ZE					
		$Vcc = 1.8V, T_A = 25^{\circ}C$		341		μΑ
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		361	_	μΑ
		Vcc = 1.9V, T_A = -40 to 85°C		372	_	μΑ
		$Vcc = 1.8V, T_A = 25^{\circ}C$	—	13	—	μA
ICC ^{4, 5, 6}	Standby Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C	—	32	65	μA
		Vcc = 1.9V, T_A = -40 to 85°C	—	43	100	μA

1. Frequency = 1.0 MHz.

2. Device configured with 16-bit counters.

3. I_{CC} varies with specific device configuration and operating frequency.

4. V_{CCO} = 3.6V, V_{IN} = 0V or V_{CCO}, bus maintenance turned off. V_{IN} above V_{CCO} will add transient current above the specified standby I_{CC}.

5. Includes V_{CCO} current without output loading.

6. This operating supply current is with the internal oscillator disabled. Enabling the internal oscillator adds approximately 15µA typical current plus additional current from any logic it drives.

Timing Model

The task of determining the timing through the ispMACH 4000ZE family, like any CPLD, is relatively simple. The timing model provided in Figure 16 shows the specific delay paths. Once the implementation of a given function is determined either conceptually or from the software report file, the delay path of the function can easily be determined from the timing model. The Lattice design tools report the timing delays based on the same timing model for a particular design. Note that the internal timing parameters are given for reference only, and are not tested. The external timing parameters are tested and guaranteed for every device. For more information on the timing model and usage, refer to TN1168, jspMACH 4000ZE Timing Model Design and Usage Guidelines.

Figure 16. ispMACH 4000ZE Timing Model

ispMACH 4000ZE Internal Timing Parameters (Cont.)

			LC4032ZE		LC4064ZE		
			-	4	-	4	
Parameter	Description		Min.	Max.	Min.	Max.	Units
t _{SRR}	Asynchronous Reset or Set Recover	ery Delay	—	2.00		1.70	ns
Control Delays							
t _{BCLK}	GLB PT Clock Delay		—	1.20	_	1.30	ns
t _{PTCLK}	Macrocell PT Clock Delay			1.40		1.50	ns
t _{BSR}	Block PT Set/Reset Delay		_	1.10	—	1.85	ns
t _{PTSR}	Macrocell PT Set/Reset Delay			1.20	—	1.90	ns
t _{BIE}	Power Guard Block Input Enable De	elay	—	1.60	_	1.70	ns
t _{PTOE}	Macrocell PT OE Delay			2.30		3.15	ns
t _{GPTOE}	Global PT OE Delay			1.80	—	2.15	ns
Internal Oscillat	or						
t _{OSCSU}	Oscillator DYNOSCDIS Setup Time)	5.00	—	5.00	_	ns
t _{OSCH}	Oscillator DYNOSCDIS Hold Time		5.00	—	5.00	—	ns
t _{OSCEN}	Oscillator OSCOUT Enable Time (1	ō Stable)		5.00		5.00	ns
t _{OSCOD}	Oscillator Output Delay		—	4.00	_	4.00	ns
t _{OSCNOM}	Oscillator OSCOUT Nominal Frequ	ency		5.00		5.00	MHz
t _{OSCvar}	Oscillator Variation of Nominal Freq	luency	—	30	_	30	%
t _{TMRCO20}	Oscillator TIMEROUT Clock (Negative Edge) to Out (20-Bit Divider)		—	12.50	—	12.50	ns
t _{TMRCO10}	Oscillator TIMEROUT Clock (Negative Edge) to Out (10-Bit Divider)		_	7.50	_	7.50	ns
t _{TMRCO7}	Oscillator TIMEROUT Clock (Negative Edge) to Out (7-Bit Divider)		_	6.00	_	6.00	ns
t _{TMRRSTO}	Oscillator TIMEROUT Reset to Out	(Going Low)	—	5.00		5.00	ns
t _{TMRRR}	Oscillator TIMEROUT Asynchronou Delay	is Reset Recovery	_	4.00	_	4.00	ns
t _{TMRRSTPW}	Oscillator TIMEROUT Reset Minim	um Pulse Width	3.00	—	3.00		ns
Optional Delay	Adjusters	Base Parameter					
t _{INDIO}	Input Register Delay	t _{INREG}	_	1.00		1.00	ns
t _{EXP}	Product Term Expander Delay	t _{MCELL}	—	0.40	—	0.40	ns
t _{BLA}	Additional Block Loading Adders	t _{ROUTE}	—	0.04		0.05	ns
t _{IOI} Input Buffer	Delays	-					
LVTTL_in	Using LVTTL Standard with Hysteresis	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.60	_	0.60	ns
LVCMOS15_in	Using LVCMOS 1.5 Standard	t _{IN} , t _{GCLK IN} , t _{GOE}	_	0.20		0.20	ns
LVCMOS18_in	Using LVCMOS 1.8 Standard	t _{IN} , t _{GCLK IN} , t _{GOE}	_	0.00		0.00	ns
LVCMOS25_in	Using LVCMOS 2.5 Standard with Hysteresis	t _{IN} , t _{GCLK_IN} , t _{GOE}		0.80		0.80	ns
LVCMOS33_in	Using LVCMOS 3.3 Standard with Hysteresis	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.80	_	0.80	ns
PCI_in	Using PCI Compatible Input with Hysteresis	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.80	—	0.80	ns
t _{IOO} Output Buff	er Delays	1	I	1	I	1	I
LVTTL_out	Output Configured as TTL Buffer	t _{EN} , t _{DIS} , t _{BUF}		0.20	—	0.20	ns
	1		1	1			1

ispMACH 4000ZE Internal Timing Parameters (Cont.)

		All Devices				
		-5 -7		7		
Parameter	Description	Min.	Max.	Min.	Max.	Units
In/Out Delays				•		
t _{IN}	Input Buffer Delay	—	1.05		1.90	ns
t _{GCLK_IN}	Global Clock Input Buffer Delay		1.95	—	2.15	ns
t _{GOE}	Global OE Pin Delay		3.00		4.30	ns
t _{BUF}	Delay through Output Buffer		1.10		1.30	ns
t _{EN}	Output Enable Time	_	2.50	—	2.70	ns
t _{DIS}	Output Disable Time	_	2.50	—	2.70	ns
t _{PGSU}	Input Power Guard Setup Time		4.30		5.60	ns
t _{PGH}	Input Power Guard Hold Time	_	0.00	—	0.00	ns
t _{PGPW}	Input Power Guard BIE Minimum Pulse Width	_	6.00	—	8.00	ns
t _{PGRT}	Input Power Guard Recovery Time Following BIE Dis- sertation	_	5.00	_	7.00	ns
Routing Delays						
t _{ROUTE}	Delay through GRP		2.25	_	2.50	ns
t _{PDi}	Macrocell Propagation Delay		0.45	_	0.50	ns
t _{MCELL}	Macrocell Delay		0.65	_	1.00	ns
t _{INREG}	Input Buffer to Macrocell Register Delay		1.00	_	1.00	ns
t _{FBK}	Internal Feedback Delay		0.75	_	0.30	ns
t _{ORP}	Output Routing Pool Delay	_	0.30	—	0.30	ns
Register/Latch	Delays					
t _S	D-Register Setup Time (Global Clock)	0.90		1.25	—	ns
t _{S PT}	D-Register Setup Time (Product Term Clock)	2.00		2.35	—	ns
t _H	D-Register Hold Time	2.00		3.25		ns
t _{ST}	T-Register Setup Time (Global Clock)	1.10		1.45		ns
t _{ST PT}	T-register Setup Time (Product Term Clock)	2.20		2.65		ns
t _{HT}	T-Resister Hold Time	2.00	_	3.25	—	ns
t _{SIR}	D-Input Register Setup Time (Global Clock)	1.20		0.65		ns
t _{SIR PT}	D-Input Register Setup Time (Product Term Clock)	1.45		1.45	_	ns
t _{HIR}	D-Input Register Hold Time (Global Clock)	1.40	—	2.05	—	ns
t _{HIR_PT}	D-Input Register Hold Time (Product Term Clock)	1.10	_	1.20	—	ns
t _{COi}	Register Clock to Output/Feedback MUX Time	_	0.45	—	0.75	ns
t _{CES}	Clock Enable Setup Time	2.00		2.00	—	ns
t _{CEH}	Clock Enable Hold Time	0.00	—	0.00	—	ns
t _{SL}	Latch Setup Time (Global Clock)	0.90	—	1.55	—	ns
t _{SL_PT}	Latch Setup Time (Product Term Clock)	2.00	—	2.05	—	ns
t _{HL}	Latch Hold Time	2.00	—	1.17	—	ns
t _{GOi}	Latch Gate to Output/Feedback MUX Time	—	0.35	—	0.33	ns
t _{PDLi}	Propagation Delay through Transparent Latch to Output/ Feedback MUX		0.25	_	0.25	ns
t _{SRi}	Asynchronous Reset or Set to Output/Feedback MUX Delay		0.95	—	0.28	ns

ispMACH 4064ZE Logic Signal Connections: 64 ucBGA

Ball Number	Bank Number	GLB/MC/Pad
A1	-	TDI
B1	0	A8
B2	0	A10
B3	0	A11
GND*	0	GND (Bank 0)
C1	0	A12
C3	0	VCCO (Bank 0)
C2	0	B15
D1	0	B14
D2	0	B13
D3	0	B12
E1	0	B11
E2	0	B10
E3	0	B9
F1	0	B8
F2	-	ТСК
E4	-	VCC
GND*	-	GND
H2	0	B6
H1	0	B5
G1	0	B4
GND*	0	GND (Bank 0)
F3	0	VCCO (Bank 0)
G2	0	B3
G3	0	B2
H3	0	B0
G4	0	CLK1/I
F4	1	CLK2/I
H4	1	CO
H5	1	C1
G5	1	C2
H6	1	C4
H7	1	C5
H8	1	C6
G8	-	TMS
G7	1	C8
G6	1	C10
F8	1	C11
GND*	1	GND (Bank 1)
F7	1	C12
F6	1	VCCO (Bank 1)
F5	1	D15
E8	1	D14
	I	

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 100 TQFP

Pin	Bank	LC4064ZE	LC4128ZE	LC4256ZE
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad
1	-	GND	GND	GND
2	-	TDI	TDI	TDI
3	0	A8	B0	C12
4	0	A9	B2	C10
5	0	A10	B4	C6
6	0	A11	B6	C2
7	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
8	0	A12	B8	D12
9	0	A13	B10	D10
10	0	A14	B12	D6
11	0	A15	B13	D4
12*	0	I	1	1
13	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)
14	0	B15	C14	E4
15	0	B14	C12	E6
16	0	B13	C10	E10
17	0	B12	C8	E12
18	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
19	0	B11	C6	F2
20	0	B10	C5	F6
21	0	B9	C4	F10
22	0	B8	C2	F12
23*	0	1	1	1
24	-	ТСК	ТСК	ТСК
25	-	VCC	VCC	VCC
26	-	GND	GND	GND
27*	0	Ι	I	I
28	0	B7	D13	G12
29	0	B6	D12	G10
30	0	B5	D10	G6
31	0	B4	D8	G2
32	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
33	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)
34	0	B3	D6	H12
35	0	B2	D4	H10
36	0	B1	D2	H6
37	0	B0	D0	H2
38	0	CLK1/I	CLK1/I	CLK1/I
39	1	CLK2/I	CLK2/I	CLK2/I
40	-	VCC	VCC	VCC
41	1	CO	E0	12

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 100 TQFP (Cont.)

Pin	Bank	LC4064ZE	LC4128ZE	LC4256ZE
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad
83	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
84	1	D3	H6	P12
85	1	D2	H4	P10
86	1	D1	H2	P6
87	1	D0/GOE1	H0/GOE1	P2/GOE1
88	1	CLK3/I	CLK3/I	CLK3/I
89	0	CLK0/I	CLK0/I	CLK0/I
90	-	VCC	VCC	VCC
91	0	A0/GOE0	A0/GOE0	A2/GOE0
92	0	A1	A2	A6
93	0	A2	A4	A10
94	0	A3	A6	A12
95	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)
96	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
97	0	A4	A8	B2
98	0	A5	A10	B6
99	0	A6	A12	B10
100	0	A7	A14	B12

* This pin is input only.

ispMACH 4128ZE Logic Signal Connections: 132 ucBGA (Cont.)

Ball Number	Bank Number	GLB/MC/Pad
M5	0	D5
J6	0	D4
K6	0	D2
L6	0	D1
M6	0	D0
K7	0	CLK1/I
L7	1	GND (Bank 1)
J7	1	CLK2/I
M7	-	VCC
K8	1	E0
L8	1	E1
M8	1	E2
J8	1	E4
L9	1	E5
M9	1	E6
К9	1	VCCO (Bank 1)
PC PC	1	GND (Bank 1)
L10	1	E8
K10	1	E9
M10	1	E10
L11	1	E12
K12	1	E13
M11	1	E14
GND*	-	GND
M12	-	TMS
L12	1	VCCO (Bank 1)
K11	1	F0
J10	1	F1
H9	1	F2
J12	1	F4
J11	1	F5
H10	1	F6
H12	1	GND (Bank 1)
G9	1	F8
H11	1	F9
F9	1	F10
G12	1	F12
G11	1	F13
G10	1	F14
F12	1	VCCO (Bank 1)
F10	1	G14
F11	1	G13
E11	1	G12
E10	1	G10

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA

Ball Number	Bank Number	LC4064ZE	LC4128ZE	LC4256ZE
		GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad
F6	-	GND	GND	GND
A1	-	TDI	TDI	TDI
E4	0	NC Ball	VCCO (Bank 0)	VCCO (Bank 0)
B2	0	NC Ball	B0	C12
B1	0	NC Ball	B1	C10
C3	0	A8	B2	C8
C2	0	A9	B4	C6
C1	0	A10	B5	C4
D1	0	A11	B6	C2
G5	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
D2	0	NC Ball	NC Ball	D14
D3	0	NC Ball	NC Ball	D12
E1	0	NC Ball	B8	D10
E2	0	A12	B9	D8
F2	0	A13	B10	D6
D4	0	A14	B12	D4
F1	0	A15	B13	D2
F3*	0	I	B14	D0
F4	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)
G1	0	B15	C14	E0
E3	0	B14	C13	E2
G2	0	B13	C12	E4
G3	0	B12	C10	E6
H1	0	NC Ball	C9	E8
H3	0	NC Ball	C8	E10
H2	0	NC Ball	NC Ball	E12
H4	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
J1	0	B11	C6	F2
J3	0	B10	C5	F4
J2	0	B9	C4	F6
K1	0	B8	C2	F8
K2*	0	Ι	C1	F10
L1	0	NC Ball	C0	F12
G4	0	NC Ball	VCCO (Bank 0)	VCCO (Bank 0)
L2	-	ТСК	ТСК	ТСК
H5	-	VCC	VCC	VCC
G6	-	GND	GND	GND
M1	0	NC Ball	NC Ball	G14
K3	0	NC Ball	NC Ball	G12
M2	0	NC Ball	D14	G10
L3*	0	I	D13	G8

Part Number Description

ispMACH 4000ZE Family Speed Grade Offering

	-4		5	-7		
	Commercial	Commercial	Industrial	Commercial	Industrial	
ispMACH 4032ZE	~	~	✓	~	✓	
ispMACH 4064ZE	~	~	✓	~	✓	
ispMACH 4128ZE		✓		~	~	
ispMACH 4256ZE		✓		✓	\checkmark	

Ordering Information

Note: ispMACH 4000ZE devices are dual marked except for the slowest commercial speed grade. For example, the commercial speed grade LC4128ZE-5TN100C is also marked with the industrial grade -7I. The commercial grade is always one speed grade faster than the associated dual mark industrial grade. The slowest commercial speed grade devices are marked as commercial grade only. The markings appear as follows:

Figure 18. Mark Format for 100 TQFP and 144 TQFP Packages

Figure 19. Mark Format for 48 TQFP, 64 csBGA and 144 csBGA Packages

Figure 20. Mark Format for 64 ucBGA and 132 ucBGA Packages

LC4064ZE 4UN-5I Datecode	LC4128ZE 7UN Datecode
Dual Mark	Single Mark

Lead-Free Packaging

Commercial

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
LC4032ZE	LC4032ZE-4TN48C	32	1.8	4.4	Lead-Free TQFP	48	32	С
	LC4032ZE-5TN48C	32	1.8	5.8	Lead-Free TQFP	48	32	С
	LC4032ZE-7TN48C	32	1.8	7.5	Lead-Free TQFP	48	32	С
	LC4032ZE-4MN64C	32	1.8	4.4	Lead-Free csBGA	64	32	С
	LC4032ZE-5MN64C	32	1.8	5.8	Lead-Free csBGA	64	32	С
	LC4032ZE-7MN64C	32	1.8	7.5	Lead-Free csBGA	64	32	С
	LC4064ZE-4TN48C	64	1.8	4.7	Lead-Free TQFP	48	32	С
	LC4064ZE-5TN48C	64	1.8	5.8	Lead-Free TQFP	48	32	С
	LC4064ZE-7TN48C	64	1.8	7.5	Lead-Free TQFP	48	32	С
	LC4064ZE-4TN100C	64	1.8	4.7	Lead-Free TQFP	100	64	С
	LC4064ZE-5TN100C	64	1.8	5.8	Lead-Free TQFP	100	64	С
LC4064ZE	LC4064ZE-7TN100C	64	1.8	7.5	Lead-Free TQFP	100	64	С
	LC4064ZE-4MN64C	64	1.8	4.7	Lead-Free csBGA	64	48	С
	LC4064ZE-5MN64C	64	1.8	5.8	Lead-Free csBGA	64	48	С
	LC4064ZE-7MN64C	64	1.8	7.5	Lead-Free csBGA	64	48	С
	LC4064ZE-4MN144C	64	1.8	4.7	Lead-Free csBGA	144	64	С
	LC4064ZE-5MN144C	64	1.8	5.8	Lead-Free csBGA	144	64	С
	LC4064ZE-7MN144C	64	1.8	7.5	Lead-Free csBGA	144	64	С
	LC4128ZE-5TN100C	128	1.8	5.8	Lead-Free TQFP	100	64	С
	LC4128ZE-7TN100C	128	1.8	7.5	Lead-Free TQFP	100	64	С
	LC4128ZE-5TN144C	128	1.8	5.8	Lead-Free TQFP	144	96	С
10412975	LC4128ZE-7TN144C	128	1.8	7.5	Lead-Free TQFP	144	96	С
LU4120ZE	LC4128ZE-5UMN132C	128	1.8	5.8	Lead-Free ucBGA	132	96	С
	LC4128ZE-7UMN132C	128	1.8	7.5	Lead-Free ucBGA	132	96	С
	LC4128ZE-5MN144C	128	1.8	5.8	Lead-Free csBGA	144	96	С
	LC4128ZE-7MN144C	128	1.8	7.5	Lead-Free csBGA	144	96	С
LC4256ZE	LC4256ZE-5TN100C	256	1.8	5.8	Lead-Free TQFP	100	64	С
	LC4256ZE-7TN100C	256	1.8	7.5	Lead-Free TQFP	100	64	С
	LC4256ZE-5TN144C	256	1.8	5.8	Lead-Free TQFP	144	96	С
	LC4256ZE-7TN144C	256	1.8	7.5	Lead-Free TQFP	144	96	С
	LC4256ZE-5MN144C	256	1.8	5.8	Lead-Free csBGA	144	108	С
	LC4256ZE-7MN144C	256	1.8	7.5	Lead-Free csBGA	144	108	С

Revision History

Date	Version	Change Summary			
April 2008	01.0	Initial release.			
July 2008	01.1	1.1 Updated Features bullets.			
		Updated typical Hysteresis voltage.			
		Updated Power Guard for Dedicated Inputs section.			
		Updated DC Electrical Characteristics table.			
		Updated Supply Current table.			
		Updated I/O DC Electrical Characteristics table and note 2.			
		Updated ispMACH 4000ZE Timing Model.			
		Added new parameters for the Internal Oscillator.			
		Updated ORP Reference table.			
		Updated Power Supply and NC Connections table.			
		Updated 100 TQFP Logic Signal Connections table with LC4128ZE and 4256ZE.			
		Updated 144 csBGA Logic Signal Connections table with LC4128ZE and 4256ZE.			
		Added 144 TQFP Logic Signal Connections table.			
August 2008	01.2	Data sheet status changed from advance to final.			
		Updated Supply Current table.			
		Updated External Switching Characteristics.			
		Updated Internal Timing Parameters.			
		Updated Power Consumption graph and Power Estimation Coefficients table.			
		Updated Ordering Information mark format example.			
December 2008	01.3	Updated ispMACH 4000ZE Family Selection Guide table to include 64-ball ucBGA and 132-ball ucBGA packages.			
		Updated ispMACH 4000ZE Power Supply and NC Connections table to include 64-ball ucBGA and 132-ball ucBGA packages.			
		Added Logic Signal Connections tables for 64-ball ucBGA and 132-ball ucBGA packages.			
		Updated Part Number Description diagram for 64-ball ucBGA and 132-ball ucBGA packages.			
		Updated Ordering Information tables for 64-ball ucBGA and 132-ball ucBGA packages.			
May 2009	01.4	Correction to t_{CW} , t_{GW} , t_{WIR} and f_{MAX} parameters in External Switching Characteristics table.			
June 2011	01.5	Added copper bond package part numbers.			
		Added footnote 4 to Absolute Maximum Ratings.			
February 2012	01.6	Updated document with new corporate logo.			
February 2012	February 2012 01.7 Removed copper bond packaging information. Refer to PCN 04A-12 for furthe				
		Updated topside marks with new logos in the Ordering Information section.			