E. Lattice Semiconductor Corporation - <u>LC4128ZE-5TCN100C Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

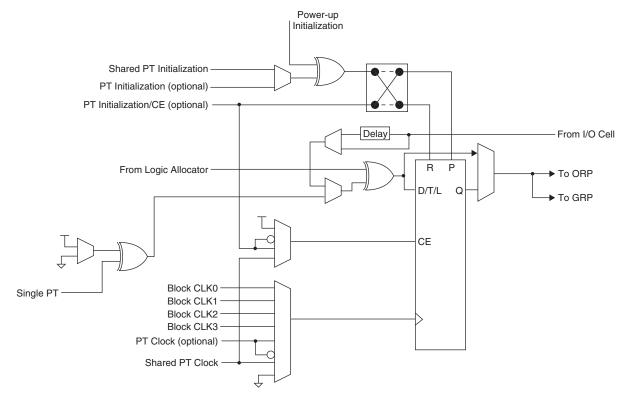
Details

Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	5.8 ns
Voltage Supply - Internal	1.7V ~ 1.9V
Number of Logic Elements/Blocks	8
Number of Macrocells	128
Number of Gates	-
Number of I/O	64
Operating Temperature	0°C ~ 90°C (TJ)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4128ze-5tcn100c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Expansion Chains	Macrocells Associated with Expansion Chain (with Wrap Around)	Max PT/ Macrocell
Chain-0	M0 Õ M4 Õ M8 Õ M12 Õ M0	75
Chain-1	M1 Õ M5 Õ M9 Õ M13 Õ M1	80
Chain-2	M2 Õ M6 Õ M10 Õ M14 Õ M2	75
Chain-3	M3 Õ M7 Õ M11 Õ M15 Õ M3	70


Table 4. Product Term Expansion Capability

Every time the super cluster allocator is used, there is an incremental delay of t_{EXP} . When the super cluster allocator is used, all destinations other than the one being steered to, are given the value of ground (i.e., if the super cluster is steered to M (n+4), then M (n) is ground).

Macrocell

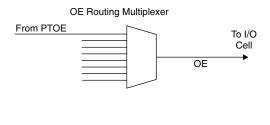
The 16 macrocells in the GLB are driven by the 16 outputs from the logic allocator. Each macrocell contains a programmable XOR gate, a programmable register/latch, along with routing for the logic and control functions. Figure 5 shows a graphical representation of the macrocell. The macrocells feed the ORP and GRP. A direct input from the I/O cell allows designers to use the macrocell to construct high-speed input registers. A programmable delay in this path allows designers to choose between the fastest possible set-up time and zero hold time.

Figure 5. Macrocell

Enhanced Clock Multiplexer

The clock input to the flip-flop can select any of the four block clocks along with the shared PT clock, and true and complement forms of the optional individual term clock. An 8:1 multiplexer structure is used to select the clock. The eight sources for the clock multiplexer are as follows:

- Block CLK0
- Block CLK1


Output Routing Pool (ORP)

The Output Routing Pool allows macrocell outputs to be connected to any of several I/O cells within an I/O block. This provides greater flexibility in determining the pinout and allows design changes to occur without affecting the pinout. The output routing pool also provides a parallel capability for routing macrocell-level OE product terms. This allows the OE product term to follow the macrocell output as it is switched between I/O cells. The enhanced ORP of the ispMACH 4000ZE family consists of the following elements:

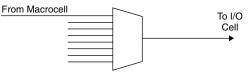

- Output Routing Multiplexers
- OE Routing Multiplexers

Figure 7 shows the structure of the ORP from the I/O cell perspective. This is referred to as an ORP slice. Each ORP has as many ORP slices as there are I/O cells in the corresponding I/O block.

Figure 7. ORP Slice

Output Routing Multiplexer

Output Routing Multiplexers

The details of connections between the macrocells and the I/O cells vary across devices and within a device dependent on the maximum number of I/Os available. Tables 5-7 provide the connection details.

Table 5. GLB/MC/ORP Combinations for ispMACH 4256ZE

GLB/MC	ORP Mux Input Macrocells
[GLB] [MC 0]	M0, M1, M2, M3, M4, M5, M6, M7
[GLB] [MC 1]	M2, M3, M4, M5, M6, M7, M8, M9
[GLB] [MC 2]	M4, M5, M6, M7, M8, M9, M10, M11
[GLB] [MC 3]	M6, M7, M8, M9, M10, M11, M12, M13
[GLB] [MC 4]	M8, M9, M10, M11, M12, M13, M14, M15
[GLB] [MC 5]	M10, M11, M12, M13, M14, M15, M0, M1
[GLB] [MC 6]	M12, M13, M14, M15, M0, M1, M2, M3
[GLB] [MC 7]	M14, M15, M0, M1, M2, M3, M4, M5

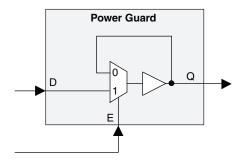
Table 6. GLB/MC/ORP Combinations for ispMACH 4128ZE

GLB/MC	ORP Mux Input Macrocells
[GLB] [MC 0]	M0, M1, M2, M3, M4, M5, M6, M7
[GLB] [MC 1]	M1, M2, M3, M4, M5, M6, M7, M8
[GLB] [MC 2]	M2, M3, M4, M5, M6, M7, M8, M9
[GLB] [MC 3]	M4, M5, M6, M7, M8, M9, M10, M11
[GLB] [MC 4]	M5, M6, M7, M8, M9, M10, M11, M12
[GLB] [MC 5]	M6, M7, M8, M9, M10, M11, M12, M13
[GLB] [MC 6]	M8, M9, M10, M11, M12, M13, M14, M15
[GLB] [MC 7]	M9, M10, M11, M12, M13, M14, M15, M0
[GLB] [MC 8]	M10, M11, M12, M13, M14, M15, M0, M1
[GLB] [MC 9]	M12, M13, M14, M15, M0, M1, M2, M3
[GLB] [MC 10]	M13, M14, M15, M0, M1, M2, M3, M4
[GLB] [MC 11]	M14, M15, M0, M1, M2, M3, M4, M5

Table 7. GLB/MC/ORP Combinations for ispMACH 4032ZE and 4064ZE

GLB/MC	ORP Mux Input Macrocells
[GLB] [MC 0]	M0, M1, M2, M3, M4, M5, M6, M7
[GLB] [MC 1]	M1, M2, M3, M4, M5, M6, M7, M8
[GLB] [MC 2]	M2, M3, M4, M5, M6, M7, M8, M9
[GLB] [MC 3]	M3, M4, M5, M6, M7, M8, M9, M10
[GLB] [MC 4]	M4, M5, M6, M7, M8, M9, M10, M11
[GLB] [MC 5]	M5, M6, M7, M8, M9, M10, M11, M12
[GLB] [MC 6]	M6, M7, M8, M9, M10, M11, M12, M13
[GLB] [MC 7]	M7, M8, M9, M10, M11, M12, M13, M14
[GLB] [MC 8]	M8, M9, M10, M11, M12, M13, M14, M15
[GLB] [MC 9]	M9, M10, M11, M12, M13, M14, M15, M0
[GLB] [MC 10]	M10, M11, M12, M13, M14, M15, M0, M1
[GLB] [MC 11]	M11, M12, M13, M14, M15, M0, M1, M2
[GLB] [MC 12]	M12, M13, M14, M15, M0, M1, M2, M3
[GLB] [MC 13]	M13, M14, M15, M0, M1, M2, M3, M4
[GLB] [MC 14]	M14, M15, M0, M1, M2, M3, M4, M5
[GLB] [MC 15]	M15, M0, M1, M2, M3, M4, M5, M6

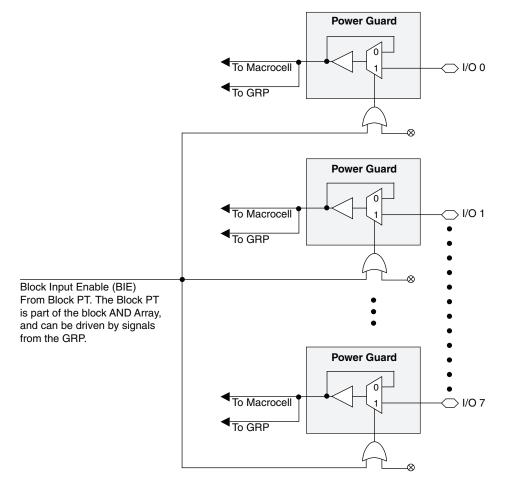
Output Enable Routing Multiplexers


The OE Routing Pool provides the corresponding local output enable (OE) product term to the I/O cell.

I/O Cell

The I/O cell contains the following programmable elements: output buffer, input buffer, OE multiplexer, Power Guard and bus maintenance circuitry. Figure 8 details the I/O cell.

Figure 9. Power Guard



All the I/O pins in a block share a common Power Guard Enable signal. For a block of I/Os, this signal is called a Block Input Enable (BIE) signal. BIE can be internally generated using MC logic, or could come from external sources using one of the user I/O or input pins.

Any I/O pin in the block can be programmed to ignore the BIE signal. Thus, the feature can be enabled or disabled on a pin-by-pin basis.

Figure 10 shows Power Guard and BIE across multiple I/Os in a block that has eight I/Os.

Figure 10. Power Guard and BIE in a Block with 8 I/Os

The number of BIE inputs, thus the number of Power Guard "Blocks" that can exist in a device, depends on the device size. Table 8 shows the number of BIE signals available in the ispMACH 4000ZE family. The number of I/Os available in each block is shown in the Ordering Information section of this data sheet.

Device	Number of Logic Blocks, Power Guard Blocks and BIE Signals
ispMACH 4032ZE	Two (Blocks: A and B)
ispMACH 4064ZE	Four (Blocks: A, B, C and D)
ispMACH 4128ZE	Eight (Blocks: A, B, C,, H)
ispMACH 4256ZE	Sixteen (Blocks: A, B, C,, P)

Table 8. Number of BIE Signals Available in ispMACH 4000ZE Devices

Power Guard for Dedicated Inputs

Power Guard can optionally be applied to the dedicated inputs. The dedicated inputs and clocks are controlled by the BIE of the logic blocks shown in Tables 9 and 10.

Table 9. Dedicated Clock Inputs to BIE Association

CLK/I	32 MC Block	64MC Block	128MC Block	256MC Block
CLK0 / I	A	A	A	A
CLK1 / I	A	В	D	Н
CLK2 / I	В	С	E	I
CLK3 / I	В	D	Н	Р

Table 10. Dedicated Inputs to BIE Association

Dedicated Input	4064ZE Block	4128ZE Block	4256ZE Block
0	A	В	D
1	В	С	E
2	В	D	G
3	С	F	G
4	D	G	J
5	D	Н	L
6	—	—	М
7	_	—	0
8	_	—	0
9		—	В

For more information on the Power Guard function refer to TN1174, <u>Advanced Features of the ispMACH 4000ZE</u> <u>Family</u>.

Global OE (GOE) and Block Input Enable (BIE) Generation

Most ispMACH 4000ZE family devices have a 4-bit wide Global OE (GOE) Bus (Figure 11), except the ispMACH 4032 device that has a 2-bit wide Global OE Bus (Figure 12). This bus is derived from a 4-bit internal global OE (GOE) PT bus and two dual purpose I/O or GOE pins. Each signal that drives the bus can optionally be inverted.

Each GLB has a block-level OE PT that connects to all bits of the Global OE PT bus with four fuses. Hence, for a 256-macrocell device (with 16 blocks), each line of the bus is driven from 16 OE product terms. Figures 9 and 10 show a graphical representation of the global OE generation.

The block-level OE PT of each GLB is also tied to Block Input Enable (BIE) of that block. Hence, for a 256-macrocell device (with 16 blocks), each block's BIE signal is driven by block-level OE PT from each block.

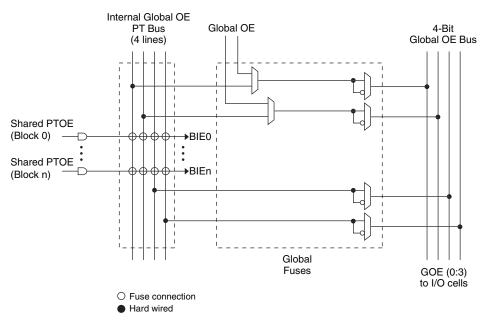
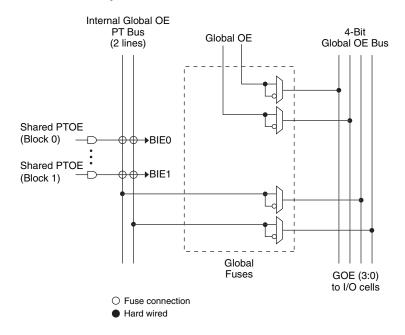
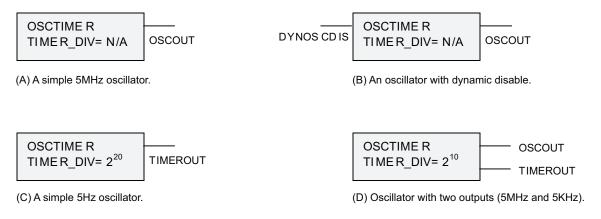



Figure 12. Global OE Generation for ispMACH 4032ZE

On-Chip Oscillator and Timer


An internal oscillator is provided for use in miscellaneous housekeeping functions such as watchdog heartbeats, digital de-glitch circuits and control state machines. The oscillator is disabled by default to save power. Figure 13 shows the block diagram of the oscillator and timer block.

Some Simple Use Scenarios

The following diagrams show a few simple examples that omit optional signals for the OSCTIMER block:

- A. An oscillator giving 5MHz nominal clock
- B. An oscillator that can be disabled with an external signal (5MHz nominal clock)
- C. An oscillator giving approximately 5 Hz nominal clock (TIMER_DIV = 2^{20} (1,048,576))
- D. An oscillator giving two output clocks: ~5MHz and ~5KHz (TIMER_DIV= 2¹⁰ (1,024))

OSCTIMER Integration With CPLD Fabric

The OSCTIMER is integrated into the CPLD fabric using the Global Routing Pool (GRP). The macrocell (MC) feedback path for two macrocells is augmented with a programmable multiplexer, as shown in Figure 15. The OSC-TIMER outputs (OSCOUT and TIMEROUT) can optionally drive the GRP lines, whereas the macrocell outputs can drive the optional OSCTIMER inputs TIMERRES and DYNOSCDIS.

Figure 15. OSCTIMER Integration With CPLD Fabric

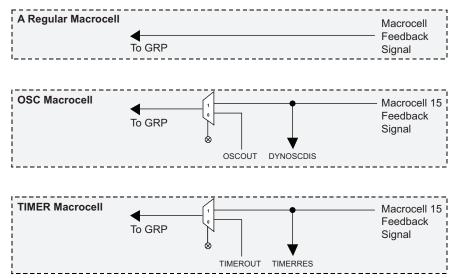


Table 12 shows how these two MCs are designated in each of the ispMACH4000ZE device.

mated test equipment. This equipment can then be used to program ispMACH 4000ZE devices during the testing of a circuit board.

User Electronic Signature

The User Electronic Signature (UES) allows the designer to include identification bits or serial numbers inside the device, stored in E²CMOS memory. The ispMACH 4000ZE device contains 32 UES bits that can be configured by the user to store unique data such as ID codes, revision numbers or inventory control codes.

Security Bit

A programmable security bit is provided on the ispMACH 4000ZE devices as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. Programming and verification are also defeated by the security bit. The bit can only be reset by erasing the entire device.

Hot Socketing

The ispMACH 4000ZE devices are well-suited for applications that require hot socketing capability. Hot socketing a device requires that the device, during power-up and down, can tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of I/O pin loading be minimal on active signals. The isp-MACH 4000ZE devices provide this capability for input voltages in the range 0V to 3.0V.

Density Migration

The ispMACH 4000ZE family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted for a high density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

Supply Current

To minimize transient current during power-on, configure CPLD I/Os to a pull-up or float state. If this logic scenario is not possible, then the recommended power sequence should assert VCC and VCCO at the same time or VCC before VCCO.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
ispMACH 4	032ZE					
		$Vcc = 1.8V, T_A = 25^{\circ}C$	—	50	—	μA
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	—	58	—	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	—	60	—	μA
		$Vcc = 1.8V, T_A = 25^{\circ}C$	_	10	—	μA
ICC ^{4, 5, 6}	Standby Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	13	25	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	_	15	40	μA
ispMACH 4	064ZE					
		$Vcc = 1.8V, T_A = 25^{\circ}C$		80	—	μA
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	89	—	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	—	92	—	μA
		$Vcc = 1.8V, T_A = 25^{\circ}C$	_	11	—	μA
ICC ^{4, 5, 6}	Standby Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	15	30	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	—	18	50	μA
ispMACH 4	128ZE	· · · · ·		•		·
		$Vcc = 1.8V, T_A = 25^{\circ}C$	—	168	_	μΑ
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	190	—	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	_	195	—	μA
		$Vcc = 1.8V, T_A = 25^{\circ}C$	—	12	_	μA
ICC ^{4, 5, 6}	Standby Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	16	40	μA
	$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$		—	19	60	μΑ
ispMACH 4	256ZE		-			
		$Vcc = 1.8V, T_A = 25^{\circ}C$		341	—	μΑ
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	-	361	—	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	-	372	—	μA
		$Vcc = 1.8V, T_A = 25^{\circ}C$	-	13	—	μA
ICC ^{4, 5, 6}	Standby Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	—	32	65	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	_	43	100	μA

1. Frequency = 1.0 MHz.

2. Device configured with 16-bit counters.

3. I_{CC} varies with specific device configuration and operating frequency.

4. V_{CCO} = 3.6V, V_{IN} = 0V or V_{CCO}, bus maintenance turned off. V_{IN} above V_{CCO} will add transient current above the specified standby I_{CC}.

5. Includes V_{CCO} current without output loading.

6. This operating supply current is with the internal oscillator disabled. Enabling the internal oscillator adds approximately 15µA typical current plus additional current from any logic it drives.

ispMACH 4000ZE Internal Timing Parameters

		LC40)32ZE	LC40	64ZE	
		-4		-4		1
Parameter	Description	Min.	Max.	Min.	Max.	Units
In/Out Delays	•					
t _{IN}	Input Buffer Delay	_	0.85	_	0.90	ns
t _{GCLK_IN}	Global Clock Input Buffer Delay	_	1.60	—	1.60	ns
t _{GOE}	Global OE Pin Delay	_	2.25	—	2.25	ns
t _{BUF}	Delay through Output Buffer	_	0.75	—	0.90	ns
t _{EN}	Output Enable Time	_	2.25	—	2.25	ns
t _{DIS}	Output Disable Time		1.35	_	1.35	ns
t _{PGSU}	Input Power Guard Setup Time		3.30	_	3.55	ns
t _{PGH}	Input Power Guard Hold Time		0.00	_	0.00	ns
t _{PGPW}	Input Power Guard BIE Minimum Pulse Width	_	5.00	—	5.00	ns
t _{PGRT}	Input Power Guard Recovery Time Following BIE Dissertation	_	5.00	_	5.00	ns
Routing Delays					1	1
t _{ROUTE}	Delay through GRP	—	1.60	—	1.70	ns
t _{PDi}	Macrocell Propagation Delay	_	0.25	—	0.25	ns
t _{MCELL}	Macrocell Delay	_	0.65	—		
t _{INREG}	Input Buffer to Macrocell Register Delay		0.90	_	1.00	ns
t _{FBK}	Internal Feedback Delay	_	0.55	—		
t _{ORP}			0.30	ns		
Register/Latcl	h Delays					l
t _S	D-Register Setup Time (Global Clock)	0.70	_	0.85	_	ns
t _{S_PT}	D-Register Setup Time (Product Term Clock)	1.25		1.85		
t _H	D-Register Hold Time	1.50		1.65		
t _{ST}	T-Register Setup Time (Global Clock)	0.90				ns
t _{ST_PT}	T-register Setup Time (Product Term Clock)	1.45		1.65	_	ns
t _{HT}	T-Resister Hold Time	1.50		1.65		ns
t _{SIR}	D-Input Register Setup Time (Global Clock)	0.85		0.80		ns
t _{SIR_PT}	D-Input Register Setup Time (Product Term Clock)	1.45		1.45		ns
t _{HIR}	D-Input Register Hold Time (Global Clock)	1.15		1.30		ns
t _{HIR_PT}	D-Input Register Hold Time (Product Term Clock)	0.90		1.10		ns
t _{COi}	Register Clock to Output/Feedback MUX Time		0.35 — 0.40		ns	
t _{CES}	Clock Enable Setup Time	1.00		2.00		ns
t _{CEH}	Clock Enable Hold Time	0.00		0.00		
t _{SL}	Latch Setup Time (Global Clock)	0.70		0.95		ns
t _{SL_PT}	Latch Setup Time (Product Term Clock)	1.45		1.85		ns
t _{HL}	Latch Hold Time	1.40	<u> </u>	1.80		ns
t _{GOi}	Latch Gate to Output/Feedback MUX Time		0.40		0.35	ns
t _{PDLi}	Propagation Delay through Transparent Latch to Output/ Feedback MUX	_	0.30	_	0.25	ns
t _{SRi}	Asynchronous Reset or Set to Output/Feedback MUX _ 0.30 _ 0.30		ns			

ispMACH 4000ZE Internal Timing Parameters (Cont.)

Over Recommended Operating Conditions

			LC40)32ZE	LC40	64ZE	
			-	-4	-4		1
Parameter	Description		Min.	Max.	Min.	Max.	Units
t _{SRR}	Asynchronous Reset or Set Recover	ery Delay		2.00		1.70	ns
Control Delays							
t _{BCLK}	GLB PT Clock Delay		—	1.20	_	1.30	ns
t _{PTCLK}	Macrocell PT Clock Delay		1.40	—	1.50	ns	
t _{BSR}	Block PT Set/Reset Delay		—	1.10	—	1.85	ns
t _{PTSR}	Macrocell PT Set/Reset Delay			1.20	—	1.90	ns
t _{BIE}	Power Guard Block Input Enable D	elay		1.60	—	1.70	ns
t _{PTOE}	Macrocell PT OE Delay		—	2.30	—	3.15	ns
t _{GPTOE}	Global PT OE Delay		1.80	—	2.15	ns	
Internal Oscillat	or				•	•	
toscsu	Oscillator DYNOSCDIS Setup Time)	5.00	—	5.00	—	ns
t _{OSCH}	Oscillator DYNOSCDIS Hold Time		5.00	—	5.00	—	ns
t _{OSCEN}	Oscillator OSCOUT Enable Time (To Stable)		—	5.00	—	5.00	ns
toscod	Oscillator Output Delay			4.00	—	4.00	ns
t _{OSCNOM}	Oscillator OSCOUT Nominal Frequency			5.00		5.00	MHz
t _{OSCvar}	Oscillator Variation of Nominal Frequency			30	—	30	%
t _{TMRCO20}	Oscillator TIMEROUT Clock (Negative Edge) to Out (20-Bit Divider)			12.50	_	12.50	ns
t _{TMRCO10}	Oscillator TIMEROUT Clock (Negative Edge) to Out (10-Bit Divider)			7.50	_	7.50	ns
t _{TMRCO7}	Oscillator TIMEROUT Clock (Negative Edge) to Out (7-Bit Divider)			6.00	_	6.00	ns
t _{TMRRSTO}	Oscillator TIMEROUT Reset to Out	(Going Low)		5.00		5.00	ns
t _{TMRRR}	Oscillator TIMEROUT Asynchronou Delay	us Reset Recovery		4.00	_	4.00	ns
t _{TMRRSTPW}	Oscillator TIMEROUT Reset Minim	um Pulse Width	3.00	—	3.00	—	ns
Optional Delay	Adjusters	Base Parameter					
t _{INDIO}	Input Register Delay	t _{INREG}		1.00		1.00	ns
t _{EXP}	Product Term Expander Delay	t _{MCELL}	_	0.40	—	0.40	ns
t _{BLA}	Additional Block Loading Adders	t _{ROUTE}		0.04		0.05	ns
t _{IOI} Input Buffer	Delays						
LVTTL_in	Using LVTTL Standard with Hysteresis	$t_{IN}, t_{GCLK_IN}, t_{GOE}$		0.60	_	0.60	ns
LVCMOS15_in	Using LVCMOS 1.5 Standard	t _{IN} , t _{GCLK_IN} , t _{GOE}		0.20	_	0.20	ns
LVCMOS18_in	Using LVCMOS 1.8 Standard	t _{IN} , t _{GCLK_IN} , t _{GOE}		0.00	_	0.00	ns
LVCMOS25_in	Using LVCMOS 2.5 Standard with Hysteresis	CMOS 2.5 Standard with t_{IN} , t_{GCLK} IN, t_{GOE}		0.80	_	0.80	ns
LVCMOS33_in	Using LVCMOS 3.3 Standard with Hysteresis	CMOS 3.3 Standard with t _{IN} , t _{GCLK IN} , t _{GOE}		0.80	—	0.80	ns
PCI_in	Using PCI Compatible Input with Hysteresis	$t_{\text{IN}},t_{\text{GCLK}_{\text{IN}}},t_{\text{GOE}}$	_	0.80	_	0.80	ns
t _{IOO} Output Buff	-	1	I	I	1	1	1
LVTTL_out	Output Configured as TTL Buffer	t _{EN} , t _{DIS} , t _{BUF}		0.20	_	0.20	ns

ispMACH 4000ZE Internal Timing Parameters (Cont.)

Over Recommended Operating Condit

				evices		
Dowowostow	Description		5 Max		7 	
Parameter In/Out Delays	Description	Min.	Max.	Min.	Max.	Units
t _{IN}	Input Buffer Delay	_	1.05	_	1.90	ns
	Global Clock Input Buffer Delay		1.95		2.15	ns
t _{GCLK_IN}	Global OE Pin Delay		3.00		4.30	ns
t _{GOE}	Delay through Output Buffer	_	1.10		1.30	ns
	Output Enable Time		2.50		2.70	ns
t _{EN}	Output Disable Time		2.50		2.70	ns
t _{DIS}	Input Power Guard Setup Time		4.30		5.60	ns
t _{PGSU}	Input Power Guard Hold Time		0.00		0.00	
t _{PGH}		_				ns
t _{PGPW}	Input Power Guard BIE Minimum Pulse Width		6.00		8.00	ns
t _{PGRT}	Input Power Guard Recovery Time Following BIE Dis- sertation	—	5.00	—	7.00	ns
Routing Delays						
t _{ROUTE}	Delay through GRP	_	2.25	_	2.50	ns
t _{PDi}	Macrocell Propagation Delay		0.45	—	0.50	ns
t _{MCELL}	Macrocell Delay		0.65	—	1.00	ns
t _{INREG}	Input Buffer to Macrocell Register Delay		1.00	_	1.00	ns
t _{FBK}	Internal Feedback Delay	_	0.75	<u> </u>	0.30	ns
t _{ORP}	Output Routing Pool Delay		0.30	_	0.30	ns
Register/Latch	n Delays				I	
t _S	D-Register Setup Time (Global Clock)	0.90	—	1.25	—	ns
t _{S_PT}	D-Register Setup Time (Product Term Clock)	2.00	_	2.35		ns
t _H	D-Register Hold Time	2.00	_	3.25		ns
t _{ST}	T-Register Setup Time (Global Clock)	1.10	_	1.45		ns
t _{ST_PT}	T-register Setup Time (Product Term Clock)	2.20	_	2.65		ns
<u>t_{HT}</u>	T-Resister Hold Time	2.00	_	3.25		ns
t _{SIR}	D-Input Register Setup Time (Global Clock)	1.20	_	0.65		ns
t _{SIR_PT}	D-Input Register Setup Time (Product Term Clock)	1.45	_	1.45		ns
t _{HIR}	D-Input Register Hold Time (Global Clock)	1.40	_	2.05		ns
t _{HIR_PT}	D-Input Register Hold Time (Product Term Clock)	1.10	_	1.20		ns
t _{COi}	Register Clock to Output/Feedback MUX Time	_	0.45	_	0.75	ns
t _{CES}	Clock Enable Setup Time	2.00	_	2.00	_	ns
t _{CEH}	Clock Enable Hold Time	0.00		0.00		ns
t _{SL}	Latch Setup Time (Global Clock)	0.90		1.55		ns
t _{SL_PT}	Latch Setup Time (Product Term Clock)	2.00		2.05		ns
	Latch Hold Time	2.00		1.17		ns
t _{HL}	Latch Gate to Output/Feedback MUX Time		0.35		0.33	ns
t _{GOi}	Propagation Delay through Transparent Latch to Output/					115
t _{PDLi}	Feedback MUX	—	0.25	—	0.25	ns
t _{SRi}	Asynchronous Reset or Set to Output/Feedback MUX Delay	—	0.95	—	0.28	ns

Switching Test Conditions

Figure 17 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 13.

Figure 17. Output Test Load, LVTTL and LVCMOS Standards

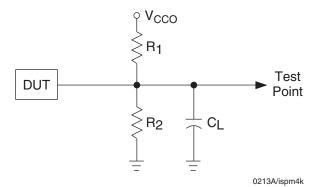


Table 13. Test Fixture Required Components

Test Condition	R ₁	R ₂	CL1	Timing Ref.	V _{cco}
				LVCMOS 3.3 = 1.5V	LVCMOS 3.3 = 3.0V
				LVCMOS 2.5 = $\frac{V_{CCO}}{2}$	LVCMOS 2.5 = 2.3V
LVCMOS I/O, (L -> H, H -> L)	106Ω	106Ω	35pF	LVCMOS 1.8 = $\frac{V_{CCO}}{2}$	LVCMOS 1.8 = 1.65V
				LVCMOS 1.5 = $\frac{V_{CCO}}{2}$	LVCMOS 1.5 = 1.4V
LVCMOS I/O (Z -> H)	∞	106Ω	35pF	1.5V	3.0V
LVCMOS I/O (Z -> L)	106Ω	×	35pF	1.5V	3.0V
LVCMOS I/O (H -> Z)	∞	106Ω	5pF	V _{OH} - 0.3	3.0V
LVCMOS I/O (L -> Z)	106Ω	8	5pF	V _{OL} + 0.3	3.0V

1. C_L includes test fixtures and probe capacitance.

Signal Descriptions

Signal Names	Desci	ription			
TMS	Input – This pin is the IEEE 1149.1 Test Mode Select input, which is used to control the state machine.				
тск	Input – This pin is the IEEE 1149.1 Test Clock input pin, used to clock through the state machine.				
TDI	Input – This pin is the IEEE 1149.1 Test D	ata In pin, used to load data.			
TDO	Output – This pin is the IEEE 1149.1 Test	Data Out pin used to shift data out.			
GOE0/IO, GOE1/IO	These pins are configured to be either Global Output Enable Input or as general I/O pins.				
GND	Ground				
NC	Not Connected				
V _{CC}	The power supply pins for logic core and J	ITAG port.			
CLK0/I, CLK1/I, CLK2/I, CLK3/I	These pins are configured to be either CLI	K input or as an input.			
V _{CCO0} , V _{CCO1}	The power supply pins for each I/O bank.				
	Input/Output ¹ – These are the general pur reference (alpha) and z is macrocell reference				
	ispMACH 4032ZE	y: A-B			
yzz	ispMACH 4064ZE	y: A-D			
	ispMACH 4128ZE	y: A-H			
	ispMACH 4256ZE	y: A-P			

1. In some packages, certain I/Os are only available for use as inputs. See the Logic Signal Connections tables for details.

ORP Reference Table

	4032ZE		4064ZE		412	8ZE		4256ZE	
Number of I/Os	32	32	48	64	64	96	64	96	108
Number of GLBs	2	4	4	4	8	8	16	16	16
Number of I/Os per GLB	16	8	Mixture of 9, 10, 14, 15	16	8	12	4	6	Mixture of 6, 7, 8
Reference ORP Table (I/Os per GLB)	16	8	9, 10, 14, 15	16	8	12	4	6	6, 7, 8

ispMACH 4032ZE and 4064ZE Logic Signal Connections: 64 csBGA (Cont.)

		ispMACH 4032ZE	ispMACH 4064ZE
Ball Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad
E7	1	NC	D14
E6	1	B9	D13
D7	1	B10	D12
D8	1	NC	D11
C5	1	NC	D10
C7	1	B11	D9
C8	1	NC	D8
B8	-	TDO	TDO
D5	-	VCC	VCC
GND*	-	GND	GND
A8	1	B12	D7
A7	1	NC	D6
B7	1	NC	D5
A6	1	B13	D4
GND*	1	NC	GND (Bank 1)
C6	1	NC	VCCO (Bank 1)
B6	1	B14	D3
A5	1	NC	D2
B5	1	B15/GOE1	D0/GOE1
A4	1	CLK3/I	CLK3/I
C4	0	CLK0/I	CLK0/I
B4	0	A0/GOE0	A0/GOE0
B3	0	A1	A1
A3	0	A2	A2
A2	0	A3	A4
A1	0	A4	A6

* All bonded grounds are connected to the following two balls, D4 and E5.

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 100 TQFP (Cont.)

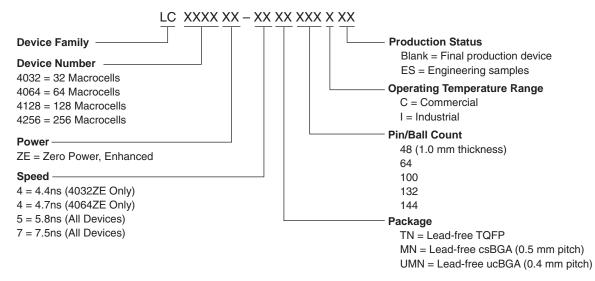
Pin	Bank	LC4064ZE	LC4128ZE	LC4256ZE
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad
42	1	C1	E2	16
43	1	C2	E4	110
44	1	C3	E6	112
45	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
46	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
47	1	C4	E8	J2
48	1	C5	E10	J6
49	1	C6	E12	J10
50	1	C7	E14	J12
51	-	GND	GND	GND
52	-	TMS	TMS	TMS
53	1	C8	F0	K12
54	1	C9	F2	K10
55	1	C10	F4	K6
56	1	C11	F6	K2
57	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
58	1	C12	F8	L12
59	1	C13	F10	L10
60	1	C14	F12	L6
61	1	C15	F13	L4
62*	1	I	I	I
63	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
64	1	D15	G14	M4
65	1	D14	G12	M6
66	1	D13	G10	M10
67	1	D12	G8	M12
68	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
69	1	D11	G6	N2
70	1	D10	G5	N6
71	1	D9	G4	N10
72	1	D8	G2	N12
73*	1		I	I
74	-	TDO	TDO	TDO
75	-	VCC	VCC	VCC
76	-	GND	GND	GND
77*	1		I	I
78	1	D7	H13	012
79	1	D6	H12	O10
80	1	D5	H10	O6
81	1	D4	H8	O2
82	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)

ispMACH 4128ZE Logic Signal Connections: 132 ucBGA

Ball Number	Bank Number	GLB/MC/Pad
GND*	-	GND
A1	-	TDI
B1	0	VCCO (Bank 0)
D3	0	B0
C1	0	B1
D2	0	B2
D1	0	B4
E4	0	B5
F3	0	B6
E2	0	GND (Bank 0)
E1	0	B8
E3	0	B9
F4	0	B10
G4	0	B12
F2	0	B13
G3	0	B14
H4	0	VCCO (Bank 0)
F1	0	C14
G2	0	C13
G1	0	C12
H3	0	C10
J4	0	C9
H1	0	C8
H2	0	GND (Bank 0)
J3	0	C6
J1	0	C5
J2	0	C4
K3	0	C2
K2	0	C1
K1	0	CO
L2	0	VCCO (Bank 0)
L1	-	ТСК
M1	-	VCC
GND*	-	GND
L3	0	D14
M2	0	D13
K4	0	D12
M3	0	D10
K5	0	D9
L4	0	D8
M4	0	GND (Bank 0)
J5	0	VCCO (Bank 0)
L5	0	D6

ispMACH 4128ZE Logic Signal Connections: 132 ucBGA (Cont.)

Ball Number	Bank Number	GLB/MC/Pad
D10	1	G9
E12	1	G8
E9	1	GND (Bank 1)
D12	1	G6
D11	1	G5
C12	1	G4
C10	1	G2
C11	1	G1
B11	1	G0
D9	1	VCCO (Bank 1)
B12	-	TDO
A12	-	VCC
GND*	-	GND
A10	1	H14
A11	1	H13
B10	1	H12
C9	1	H10
D8	1	Н9
C8	1	Н8
A9	1	GND (Bank 1)
C7	1	VCCO (Bank 1)
B9	1	H6
B8	1	H5
D7	1	H4
A8	1	H2
A7	1	H1
B6	1	H0/GOE1
C6	1	CLK3/I
B7	0	GND (Bank 0)
D6	0	CLK0/I
B5	-	VCC
A6	0	A0/GOE0
C5	0	A1
B4	0	A2
A5	0	A4
C4	0	A5
D5	0	A6
A4	0	VCCO (Bank 0)
B3	0	GND (Bank 0)
D4	0	A8
A3	0	A9
C3	0	A10
B2	0	A12
C2	0	A13



ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA (Cont.)

Ball	Bank	LC4064ZE	LC4128ZE	LC4256ZE
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad
J4	0	B7	D12	G6
K4	0	B6	D10	G4
M3	0	B5	D9	G2
L4	0	B4	D8	G0
H6	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
J5	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)
M4	0	NC Ball	D6	H12
L5	0	NC Ball	D5	H10
K5	0	B3	D4	H8
J6	0	B2	D2	H6
M5	0	B1	D1	H4
K6	0	B0	D0	H2
L6	0	CLK1/I	CLK1/I	CLK1/I
H7	1	NC Ball	GND (Bank 1)	GND (Bank 1)
M6	1	CLK2/I	CLK2/I	CLK2/I
H8	-	VCC	VCC	VCC
K7	1	C0	E0	12
M7	1	C1	E1	14
L7	1	C2	E2	16
J7	1	C3	E4	18
L8	1	NC Ball	E5	110
M8	1	NC Ball	E6	12
J8	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
J9	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
M9	1	C4	E8	J2
L9	1	C5	E9	J4
K8	1	C6	E10	J6
M10	1	C7	E12	J8
L10	1	NC Ball	E13	J10
K9	1	NC Ball	E14	J12
M11	1	NC Ball	NC Ball	J14
G7	-	GND	GND	GND
M12	-	TMS	TMS	TMS
H9	1	NC Ball	VCCO (Bank 1)	VCCO (Bank 1)
L12	1	NC Ball	F0	K12
L11	1	NC Ball	F1	K10
K10	1	C8	F2	K8
K12	1	C9	F4	K6
J10	1	C10	F5	K4
K11	1	C11	F6	K2
G8	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)

Part Number Description

ispMACH 4000ZE Family Speed Grade Offering

	-4	-4 -5			-7		
	Commercial	Commercial	Industrial	Commercial	Industrial		
ispMACH 4032ZE	~	~	\checkmark	~	✓		
ispMACH 4064ZE	~	~	~	~	\checkmark		
ispMACH 4128ZE		~		~	\checkmark		
ispMACH 4256ZE		\checkmark		✓	\checkmark		

Ordering Information

Note: ispMACH 4000ZE devices are dual marked except for the slowest commercial speed grade. For example, the commercial speed grade LC4128ZE-5TN100C is also marked with the industrial grade -7I. The commercial grade is always one speed grade faster than the associated dual mark industrial grade. The slowest commercial speed grade devices are marked as commercial grade only. The markings appear as follows:

Figure 18. Mark Format for 100 TQFP and 144 TQFP Packages

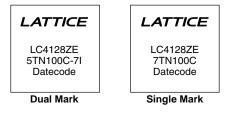
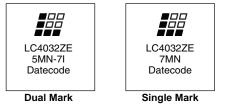



Figure 19. Mark Format for 48 TQFP, 64 csBGA and 144 csBGA Packages

