

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	1.7V ~ 1.9V
Number of Logic Elements/Blocks	8
Number of Macrocells	128
Number of Gates	-
Number of I/O	96
Operating Temperature	0°C ~ 90°C (TJ)
Mounting Type	Surface Mount
Package / Case	144-TFBGA, CSPBGA
Supplier Device Package	144-CSBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4128ze-7mn144c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

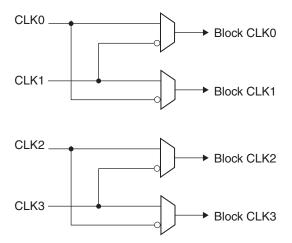
- Block CLK2
- Block CLK3
- PT Clock
- PT Clock Inverted
- Shared PT Clock
- Ground

Clock Enable Multiplexer

Each macrocell has a 4:1 clock enable multiplexer. This allows the clock enable signal to be selected from the following four sources:

- PT Initialization/CE
- PT Initialization/CE Inverted
- Shared PT Clock
- Logic High

Initialization Control

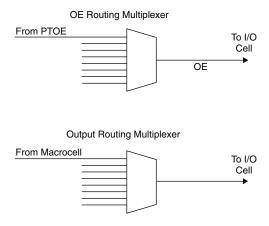

The ispMACH 4000ZE family architecture accommodates both block-level and macrocell-level set and reset capability. There is one block-level initialization term that is distributed to all macrocell registers in a GLB. At the macrocell level, two product terms can be "stolen" from the cluster associated with a macrocell to be used for set/reset functionality. A reset/preset swapping feature in each macrocell allows for reset and preset to be exchanged, providing flexibility.

Note that the reset/preset swapping selection feature affects power-up reset as well. All flip-flops power up to a known state for predictable system initialization. If a macrocell is configured to SET on a signal from the block-level initialization, then that macrocell will be SET during device power-up. If a macrocell is configured to RESET on a signal from the block-level initialization or is not configured for set/reset, then that macrocell will RESET on power-up. To guarantee initialization values, the V_{CC} rise must be monotonic, and the clock must be inactive until the reset delay time has elapsed.

GLB Clock Generator

Each ispMACH 4000ZE device has up to four clock pins that are also routed to the GRP to be used as inputs. These pins drive a clock generator in each GLB, as shown in Figure 6. The clock generator provides four clock signals that can be used anywhere in the GLB. These four GLB clock signals can consist of a number of combinations of the true and complement edges of the global clock signals.

Figure 6. GLB Clock Generator


Output Routing Pool (ORP)

The Output Routing Pool allows macrocell outputs to be connected to any of several I/O cells within an I/O block. This provides greater flexibility in determining the pinout and allows design changes to occur without affecting the pinout. The output routing pool also provides a parallel capability for routing macrocell-level OE product terms. This allows the OE product term to follow the macrocell output as it is switched between I/O cells. The enhanced ORP of the ispMACH 4000ZE family consists of the following elements:

- Output Routing Multiplexers
- OE Routing Multiplexers

Figure 7 shows the structure of the ORP from the I/O cell perspective. This is referred to as an ORP slice. Each ORP has as many ORP slices as there are I/O cells in the corresponding I/O block.

Figure 7. ORP Slice

Output Routing Multiplexers

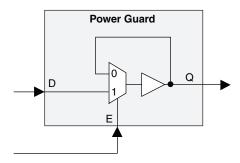
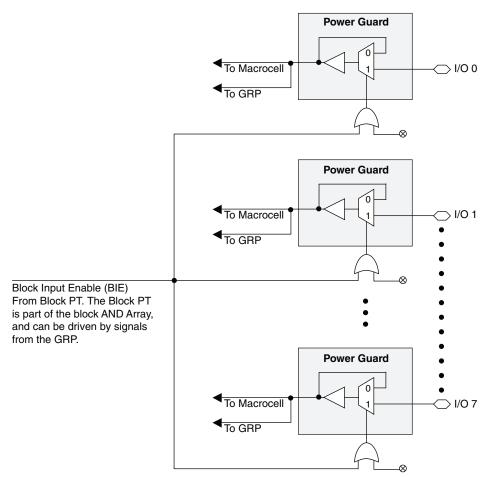

The details of connections between the macrocells and the I/O cells vary across devices and within a device dependent on the maximum number of I/Os available. Tables 5-7 provide the connection details.

Table 5. GLB/MC/ORP Combinations for ispMACH 4256ZE

GLB/MC	ORP Mux Input Macrocells
[GLB] [MC 0]	M0, M1, M2, M3, M4, M5, M6, M7
[GLB] [MC 1]	M2, M3, M4, M5, M6, M7, M8, M9
[GLB] [MC 2]	M4, M5, M6, M7, M8, M9, M10, M11
[GLB] [MC 3]	M6, M7, M8, M9, M10, M11, M12, M13
[GLB] [MC 4]	M8, M9, M10, M11, M12, M13, M14, M15
[GLB] [MC 5]	M10, M11, M12, M13, M14, M15, M0, M1
[GLB] [MC 6]	M12, M13, M14, M15, M0, M1, M2, M3
[GLB] [MC 7]	M14, M15, M0, M1, M2, M3, M4, M5

Figure 9. Power Guard



All the I/O pins in a block share a common Power Guard Enable signal. For a block of I/Os, this signal is called a Block Input Enable (BIE) signal. BIE can be internally generated using MC logic, or could come from external sources using one of the user I/O or input pins.

Any I/O pin in the block can be programmed to ignore the BIE signal. Thus, the feature can be enabled or disabled on a pin-by-pin basis.

Figure 10 shows Power Guard and BIE across multiple I/Os in a block that has eight I/Os.

Figure 10. Power Guard and BIE in a Block with 8 I/Os

The number of BIE inputs, thus the number of Power Guard "Blocks" that can exist in a device, depends on the device size. Table 8 shows the number of BIE signals available in the ispMACH 4000ZE family. The number of I/Os available in each block is shown in the Ordering Information section of this data sheet.

Table 8. Number of BIE Signals Available in ispMACH 4000ZE Devices

Device	Number of Logic Blocks, Power Guard Blocks and BIE Signals
ispMACH 4032ZE	Two (Blocks: A and B)
ispMACH 4064ZE	Four (Blocks: A, B, C and D)
ispMACH 4128ZE	Eight (Blocks: A, B, C,, H)
ispMACH 4256ZE	Sixteen (Blocks: A, B, C,, P)

Power Guard for Dedicated Inputs

Power Guard can optionally be applied to the dedicated inputs. The dedicated inputs and clocks are controlled by the BIE of the logic blocks shown in Tables 9 and 10.

Table 9. Dedicated Clock Inputs to BIE Association

CLK/I	32 MC Block	64MC Block	128MC Block	256MC Block
CLK0 / I	Α	Α	Α	Α
CLK1 / I	Α	В	D	Н
CLK2 / I	В	С	Е	I
CLK3 / I	В	D	Н	Р

Table 10. Dedicated Inputs to BIE Association

Dedicated Input	4064ZE Block	4128ZE Block	4256ZE Block
0	Α	В	D
1	В	С	E
2	В	D	G
3	С	F	G
4	D	G	J
5	D	Н	L
6	_	_	M
7	_	_	0
8	_	_	0
9	_	_	В

For more information on the Power Guard function refer to TN1174, <u>Advanced Features of the ispMACH 4000ZE Family</u>.

Global OE (GOE) and Block Input Enable (BIE) Generation

Most ispMACH 4000ZE family devices have a 4-bit wide Global OE (GOE) Bus (Figure 11), except the ispMACH 4032 device that has a 2-bit wide Global OE Bus (Figure 12). This bus is derived from a 4-bit internal global OE (GOE) PT bus and two dual purpose I/O or GOE pins. Each signal that drives the bus can optionally be inverted.

Each GLB has a block-level OE PT that connects to all bits of the Global OE PT bus with four fuses. Hence, for a 256-macrocell device (with 16 blocks), each line of the bus is driven from 16 OE product terms. Figures 9 and 10 show a graphical representation of the global OE generation.

mated test equipment. This equipment can then be used to program ispMACH 4000ZE devices during the testing of a circuit board.

User Electronic Signature

The User Electronic Signature (UES) allows the designer to include identification bits or serial numbers inside the device, stored in E²CMOS memory. The ispMACH 4000ZE device contains 32 UES bits that can be configured by the user to store unique data such as ID codes, revision numbers or inventory control codes.

Security Bit

A programmable security bit is provided on the ispMACH 4000ZE devices as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. Programming and verification are also defeated by the security bit. The bit can only be reset by erasing the entire device.

Hot Socketing

The ispMACH 4000ZE devices are well-suited for applications that require hot socketing capability. Hot socketing a device requires that the device, during power-up and down, can tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of I/O pin loading be minimal on active signals. The isp-MACH 4000ZE devices provide this capability for input voltages in the range 0V to 3.0V.

Density Migration

The ispMACH 4000ZE family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted for a high density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

I/O Recommended Operating Conditions

	V _{CCO} (V) ¹			
Standard	Min.	Max.		
LVTTL	3.0	3.6		
LVCMOS 3.3	3.0	3.6		
Extended LVCMOS 3.3	2.7	3.6		
LVCMOS 2.5	2.3	2.7		
LVCMOS 1.8	1.65	1.95		
LVCMOS 1.5	1.4	1.6		
PCI 3.3	3.0	3.6		

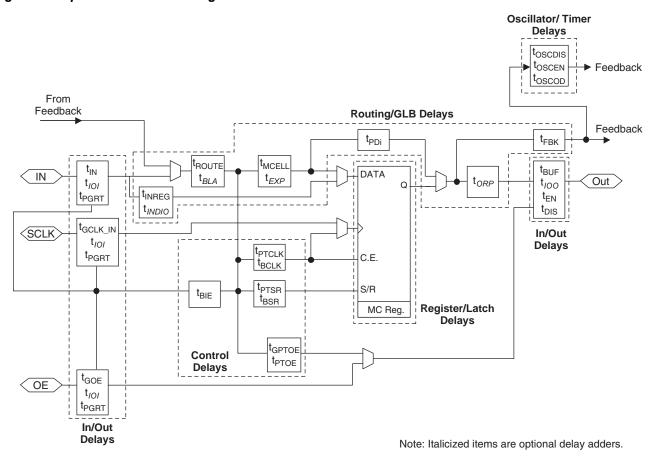
^{1.} Typical values for $\ensuremath{V_{\text{CCO}}}$ are the average of the min. and max. values.

DC Electrical Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{IL} , I _{IH} ^{1, 2}	Input Leakage Current	$0 \le V_{IN} < V_{CCO}$	_	0.5	1	μΑ
I _{IH} ¹	Input High Leakage Current	$V_{CCO} < V_{IN} \le 5.5V$	_	—	10	μΑ
I _{PU}	I/O Weak Pull-up Resistor Current	$0 \le V_{IN} \le 0.7V_{CCO}$	-20		-150	μΑ
I _{PD}	I/O Weak Pull-down Resistor Current	V_{IL} (MAX) $\leq V_{IN} \leq V_{IH}$ (MAX)	30	_	150	μΑ
I _{BHLS}	Bus Hold Low Sustaining Current	V _{IN} = V _{IL} (MAX)	30		_	μΑ
I _{BHHS}	Bus Hold High Sustaining Current	$V_{IN} = 0.7 V_{CCO}$	-20	_	_	μΑ
I _{BHLO}	Bus Hold Low Overdrive Current	$0V \le V_{IN} \le V_{BHT}$	_	_	150	μΑ
I _{BHHO}	Bus Hold High Overdrive Current	$V_{BHT} \le V_{IN} \le V_{CCO}$	_		-150	μΑ
V _{BHT}	Bus Hold Trip Points	_	V _{CCO} * 0.35	_	V _{CCO} * 0.65	V
C ₁	I/O Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V, 1.5V	_	8	_	pf
O ₁	1/O Capacitance	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	_	0	_	ρι
C	Clock Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V, 1.5V	_	6	_	nf
C ₂	Опоск Сараспансе	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	_	O	_	pf
C-	Global Input Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V, 1.5V	_	6	_	nf
C ₃		$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	_	O	_	pf

^{1.} Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tristated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

^{2.} I_{IH} excursions of up to 1.5μA maximum per pin above the spec limit may be observed for certain voltage conditions on no more than 10% of the device's I/O pins.


^{3.} Measured $T_A = 25$ °C, f = 1.0MHz.

Timing Model

The task of determining the timing through the ispMACH 4000ZE family, like any CPLD, is relatively simple. The timing model provided in Figure 16 shows the specific delay paths. Once the implementation of a given function is determined either conceptually or from the software report file, the delay path of the function can easily be determined from the timing model. The Lattice design tools report the timing delays based on the same timing model for a particular design. Note that the internal timing parameters are given for reference only, and are not tested. The external timing parameters are tested and guaranteed for every device. For more information on the timing model and usage, refer to TN1168, ispMACH 4000ZE Timing Model Design and Usage Guidelines.

Figure 16. ispMACH 4000ZE Timing Model

ispMACH 4000ZE Internal Timing Parameters

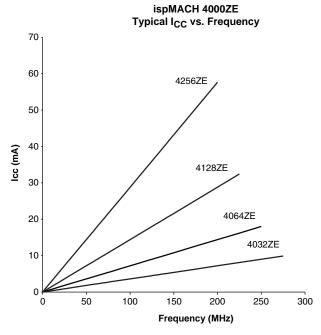
		LC40	32ZE	LC4064ZE		
			4	-4		
Parameter	Description	Min.	Max.	Min.	Max.	Units
In/Out Delays			•	1	•	•
t _{IN}	Input Buffer Delay	_	0.85	_	0.90	ns
t _{GCLK_IN}	Global Clock Input Buffer Delay	_	1.60	—	1.60	ns
t _{GOE}	Global OE Pin Delay	_	2.25	_	2.25	ns
t _{BUF}	Delay through Output Buffer	_	0.75	_	0.90	ns
t _{EN}	Output Enable Time	_	2.25	_	2.25	ns
t _{DIS}	Output Disable Time	_	1.35	_	1.35	ns
t _{PGSU}	Input Power Guard Setup Time	_	3.30	_	3.55	ns
t _{PGH}	Input Power Guard Hold Time	_	0.00	_	0.00	ns
t _{PGPW}	Input Power Guard BIE Minimum Pulse Width	_	5.00	_	5.00	ns
t _{PGRT}	Input Power Guard Recovery Time Following BIE Dissertation	_	5.00	_	5.00	ns
Routing Delays			1	ı	1	ı
t _{ROUTE}	Delay through GRP	_	1.60	_	1.70	ns
t _{PDi}	Macrocell Propagation Delay	_	0.25	_	0.25	ns
t _{MCELL}	Macrocell Delay	_	0.65	_	0.65	ns
t _{INREG}	Input Buffer to Macrocell Register Delay	_	0.90	_	1.00	ns
t _{FBK}	Internal Feedback Delay	_	0.55	_	0.55	ns
t _{ORP}	Output Routing Pool Delay	_	0.30	_	0.30	ns
Register/Latcl	n Delays		I	<u> </u>	I	.
t _S	D-Register Setup Time (Global Clock)	0.70	_	0.85	_	ns
t _{S_PT}	D-Register Setup Time (Product Term Clock)	1.25	_	1.85	_	ns
t _H	D-Register Hold Time	1.50	_	1.65	_	ns
t _{ST}	T-Register Setup Time (Global Clock)	0.90	_	1.05	_	ns
t _{ST_PT}	T-register Setup Time (Product Term Clock)	1.45	_	1.65	_	ns
t _{HT}	T-Resister Hold Time	1.50	_	1.65	_	ns
t _{SIR}	D-Input Register Setup Time (Global Clock)	0.85	_	0.80	_	ns
t _{SIR_PT}	D-Input Register Setup Time (Product Term Clock)	1.45	_	1.45	_	ns
t _{HIR}	D-Input Register Hold Time (Global Clock)	1.15	_	1.30	_	ns
t _{HIR_PT}	D-Input Register Hold Time (Product Term Clock)	0.90	_	1.10	_	ns
t _{COi}	Register Clock to Output/Feedback MUX Time	_	0.35	_	0.40	ns
t _{CES}	Clock Enable Setup Time	1.00	_	2.00	_	ns
t _{CEH}	Clock Enable Hold Time	0.00	_	0.00	_	ns
t _{SL}	Latch Setup Time (Global Clock)	0.70	_	0.95	_	ns
t _{SL_PT}	Latch Setup Time (Product Term Clock)	1.45	_	1.85	_	ns
t _{HL}	Latch Hold Time	1.40	_	1.80	_	ns
t _{GOi}	Latch Gate to Output/Feedback MUX Time	_	0.40	_	0.35	ns
	Propagation Delay through Transparent Latch to Output/					
t _{PDLi}	Feedback MUX	_	0.30	_	0.25	ns
t _{SRi}	Asynchronous Reset or Set to Output/Feedback MUX Delay	_	0.30	_	0.30	ns

ispMACH 4000ZE Internal Timing Parameters (Cont.)

			LC40)32ZE	LC4064ZE		
				-4	-	-4	
Parameter	Description		Min.	Max.	Min.	Max.	Units
t _{SRR}	Asynchronous Reset or Set Recove	ery Delay	_	2.00	_	1.70	ns
Control Delays							
t _{BCLK}	GLB PT Clock Delay		_	1.20	_	1.30	ns
t _{PTCLK}	Macrocell PT Clock Delay		_	1.40	_	1.50	ns
t _{BSR}	Block PT Set/Reset Delay		_	1.10	_	1.85	ns
t _{PTSR}	Macrocell PT Set/Reset Delay		_	1.20	_	1.90	ns
t _{BIE}	Power Guard Block Input Enable D	elay	_	1.60	_	1.70	ns
t _{PTOE}	Macrocell PT OE Delay		_	2.30	_	3.15	ns
t _{GPTOE}	Global PT OE Delay		_	1.80	_	2.15	ns
Internal Oscillat	or						
t _{OSCSU}	Oscillator DYNOSCDIS Setup Time)	5.00	_	5.00	_	ns
tosch	Oscillator DYNOSCDIS Hold Time		5.00	_	5.00	_	ns
t _{OSCEN}	Oscillator OSCOUT Enable Time (Го Stable)	_	5.00	_	5.00	ns
t _{OSCOD}	Oscillator Output Delay		_	4.00	_	4.00	ns
toscnom	Oscillator OSCOUT Nominal Frequency	-		5.00		5.00	MHz
t _{OSCvar}	Oscillator Variation of Nominal Fred	• •	_	30	_	30	%
t _{TMRCO20}	Oscillator TIMEROUT Clock (Negative Edge) to Out (20-Bit Divider)		_	12.50	_	12.50	ns
t _{TMRCO10}	Oscillator TIMEROUT Clock (Negative Edge) to Out (10-Bit Divider)		_	7.50	_	7.50	ns
t _{TMRCO7}	Oscillator TIMEROUT Clock (Negative Edge) to Out (7-Bit Divider)		_	6.00	_	6.00	ns
t _{TMRRSTO}	Oscillator TIMEROUT Reset to Out	(Going Low)	_	5.00	_	5.00	ns
t _{TMRRR}	Oscillator TIMEROUT Asynchronous Reset Recovery Delay		_	4.00	_	4.00	ns
t _{TMRRSTPW}	Oscillator TIMEROUT Reset Minim	um Pulse Width	3.00	_	3.00	_	ns
Optional Delay	Adjusters	Base Parameter		I.		I.	
t _{INDIO}	Input Register Delay	t _{INREG}	_	1.00	_	1.00	ns
t _{EXP}	Product Term Expander Delay	t _{MCELL}	_	0.40	_	0.40	ns
t _{BLA}	Additional Block Loading Adders	t _{ROUTE}	_	0.04	_	0.05	ns
t _{IOI} Input Buffer	Delays	-	•	1		1	
LVTTL_in	Using LVTTL Standard with Hysteresis	$t_{\text{IN}}, t_{\text{GCLK_IN}}, t_{\text{GOE}}$	_	0.60	_	0.60	ns
LVCMOS15_in	Using LVCMOS 1.5 Standard	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.20	_	0.20	ns
LVCMOS18_in	Using LVCMOS 1.8 Standard	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.00	_	0.00	ns
LVCMOS25_in	Using LVCMOS 2.5 Standard with Hysteresis	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.80	_	0.80	ns
LVCMOS33_in	Using LVCMOS 3.3 Standard with Hysteresis	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.80	_	0.80	ns
PCI_in	Using PCI Compatible Input with Hysteresis	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.80	_	0.80	ns
t _{IOO} Output Buff	fer Delays		1	1	ı	1	1
LVTTL_out	Output Configured as TTL Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns

ispMACH 4000ZE Internal Timing Parameters (Cont.)

			All De	evices		
			-5	-	7	
Parameter	Description	Min.	Max.	Min.	Max.	Units
In/Out Delays	·					
t _{IN}	Input Buffer Delay	_	1.05	_	1.90	ns
t _{GCLK_IN}	Global Clock Input Buffer Delay	_	1.95	_	2.15	ns
t _{GOE}	Global OE Pin Delay	_	3.00	_	4.30	ns
t _{BUF}	Delay through Output Buffer	_	1.10	_	1.30	ns
t _{EN}	Output Enable Time	_	2.50	_	2.70	ns
t _{DIS}	Output Disable Time	_	2.50	_	2.70	ns
t _{PGSU}	Input Power Guard Setup Time	_	4.30	_	5.60	ns
t _{PGH}	Input Power Guard Hold Time	_	0.00	_	0.00	ns
t _{PGPW}	Input Power Guard BIE Minimum Pulse Width	_	6.00	_	8.00	ns
t _{PGRT}	Input Power Guard Recovery Time Following BIE Dissertation	_	5.00	_	7.00	ns
Routing Delays	; ;					
t _{ROUTE}	Delay through GRP	_	2.25	_	2.50	ns
t _{PDi}	Macrocell Propagation Delay	_	0.45	_	0.50	ns
t _{MCELL}	Macrocell Delay	_	0.65	_	1.00	ns
t _{INREG}	Input Buffer to Macrocell Register Delay	_	1.00	_	1.00	ns
t _{FBK}	Internal Feedback Delay	_	0.75	_	0.30	ns
t _{ORP}	Output Routing Pool Delay	_	0.30	_	0.30	ns
Register/Latc						
t _S	D-Register Setup Time (Global Clock)	0.90	_	1.25	_	ns
t _{S_PT}	D-Register Setup Time (Product Term Clock)	2.00	_	2.35	_	ns
t _H	D-Register Hold Time	2.00	_	3.25	_	ns
t _{ST}	T-Register Setup Time (Global Clock)	1.10	_	1.45	_	ns
t _{ST_PT}	T-register Setup Time (Product Term Clock)	2.20	_	2.65	_	ns
t _{HT}	T-Resister Hold Time	2.00	_	3.25	_	ns
t _{SIR}	D-Input Register Setup Time (Global Clock)	1.20	_	0.65	_	ns
t _{SIR_PT}	D-Input Register Setup Time (Product Term Clock)	1.45	_	1.45	_	ns
t _{HIR}	D-Input Register Hold Time (Global Clock)	1.40	_	2.05	_	ns
t _{HIR_PT}	D-Input Register Hold Time (Product Term Clock)	1.10	_	1.20	_	ns
t _{COi}	Register Clock to Output/Feedback MUX Time	_	0.45	_	0.75	ns
t _{CES}	Clock Enable Setup Time	2.00	_	2.00	_	ns
t _{CEH}	Clock Enable Hold Time	0.00	_	0.00	_	ns
t _{SL}	Latch Setup Time (Global Clock)	0.90	_	1.55	_	ns
t _{SL_PT}	Latch Setup Time (Product Term Clock)	2.00	_	2.05	_	ns
t _{HL}	Latch Hold Time	2.00	_	1.17	_	ns
t _{GOi}	Latch Gate to Output/Feedback MUX Time		0.35	_	0.33	ns
t _{PDLi}	Propagation Delay through Transparent Latch to Output/ Feedback MUX	_	0.25	_	0.25	ns
t _{SRi}	Asynchronous Reset or Set to Output/Feedback MUX Delay	_	0.95	_	0.28	ns



ispMACH 4000ZE Internal Timing Parameters (Cont.)

			All Devices				
				·5	-	7	
Parameter	Description		Min.	Max.	Min.	Max.	Units
t _{SRR}	Asynchronous Reset or Set Recover	ery Delay	_	1.80	_	1.67	ns
Control Delays							
t _{BCLK}	GLB PT Clock Delay		_	1.45	_	0.95	ns
t _{PTCLK}	Macrocell PT Clock Delay		_	1.45	_	1.15	ns
t _{BSR}	Block PT Set/Reset Delay		_	1.85	_	1.83	ns
t _{PTSR}	Macrocell PT Set/Reset Delay		_	1.85	_	2.72	ns
t _{BIE}	Power Guard Block Input Enable D	elay	_	1.75	_	1.95	ns
t _{PTOE}	Macrocell PT OE Delay		_	2.40	_	1.90	ns
t _{GPTOE}	Global PT OE Delay		_	4.20	_	3.40	ns
Internal Oscillat	or						
toscsu	Oscillator DYNOSCDIS Setup Time	9	5.00	_	5.00	_	ns
tosch	Oscillator DYNOSCDIS Hold Time		5.00	_	5.00	_	ns
t _{OSCEN}	Oscillator OSCOUT Enable Time (To Stable)	_	5.00	_	5.00	ns
t _{OSCOD}	Oscillator Output Delay		_	4.00	_	4.00	ns
toscnom	Oscillator OSCOUT Nominal Frequency	iency		5.00		5.00	MHz
t _{OSCvar}	Oscillator Variation of Nominal Fred	quency	_	30	_	30	%
t _{TMRCO20}	Oscillator TIMEROUT Clock (Negative Edge) to Out (20-Bit Divider)		_	12.50	_	14.50	ns
t _{TMRCO10}	Oscillator TIMEROUT Clock (Negative Edge) to Out (10-Bit Divider)		_	7.50	_	9.50	ns
t _{TMRCO7}	Oscillator TIMEROUT Clock (Negative Edge) to Out (7-Bit Divider)		_	6.00	_	8.00	ns
t _{TMRRSTO}	Oscillator TIMEROUT Reset to Out	t (Going Low)	_	5.00	_	7.00	ns
t _{TMRRR}	Oscillator TIMEROUT Asynchronous Reset Recovery Delay		_	4.00	_	6.00	ns
t _{TMRRSTPW}	Oscillator TIMEROUT Reset Minim	um Pulse Width	3.00	_	5.00	_	ns
Optional Delay	Adjusters	Base Parameter					
t _{INDIO}	Input Register Delay	t _{INREG}	_	1.60	_	2.60	ns
t _{EXP}	Product Term Expander Delay	t _{MCELL}	_	0.45	_	0.50	ns
t _{BLA}	Additional Block Loading Adders	t _{ROUTE}	_	0.05	_	0.05	ns
t _{IOI} Input Buffer	Delays		I				I
LVTTL_in	Using LVTTL Standard with Hysteresis	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.60	_	0.60	ns
LVCMOS15_in	Using LVCMOS 1.5 Standard	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.20	_	0.20	ns
LVCMOS18_in	Using LVCMOS 1.8 Standard	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.00	_	0.00	ns
LVCMOS25_in	Using LVCMOS 2.5 Standard with Hysteresis	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.80	_	0.80	ns
LVCMOS33_in	Using LVCMOS 3.3 Standard with Hysteresis	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.80	_	0.80	ns
PCI_in	Using PCI Compatible Input with Hysteresis	t _{IN} , t _{GCLK_IN} , t _{GOE}	_	0.80	_	0.80	ns
t _{IOO} Output Buff	er Delays	l		1	1		
LVTTL_out	Output Configured as TTL Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns

Power Consumption

Power Estimation Coefficients¹

Device	Α	В
ispMACH 4032ZE	0.010	0.009
ispMACH 4064ZE	0.011	0.009
ispMACH 4128ZE	0.012	0.009
ispMACH 4256ZE	0.013	0.009

For further information about the use of these coefficients, refer to TN1187, <u>Power Estimation in ispMACH 4000ZE Devices</u>.

Signal Descriptions

Signal Names	Descr	Description			
TMS	Input – This pin is the IEEE 1149.1 Test M the state machine.	Input – This pin is the IEEE 1149.1 Test Mode Select input, which is used to control the state machine.			
TCK	Input – This pin is the IEEE 1149.1 Test Cl state machine.	Input – This pin is the IEEE 1149.1 Test Clock input pin, used to clock through the state machine.			
TDI	Input – This pin is the IEEE 1149.1 Test Da	ata In pin, used to load data.			
TDO	Output – This pin is the IEEE 1149.1 Test	Data Out pin used to shift data out.			
GOE0/IO, GOE1/IO	These pins are configured to be either Glo pins.	These pins are configured to be either Global Output Enable Input or as general I/O pins.			
GND	Ground	Ground			
NC	Not Connected	Not Connected			
V _{CC}	The power supply pins for logic core and J	The power supply pins for logic core and JTAG port.			
CLK0/I, CLK1/I, CLK2/I, CLK3/I	These pins are configured to be either CLI	These pins are configured to be either CLK input or as an input.			
V _{CCO0} , V _{CCO1}	The power supply pins for each I/O bank.	The power supply pins for each I/O bank.			
	Input/Output ¹ – These are the general purpose I/O used by the logic array. y is reference (alpha) and z is macrocell reference (numeric). z: 0-15.				
	ispMACH 4032ZE	y: A-B			
yzz	ispMACH 4064ZE	y: A-D			
	ispMACH 4128ZE	y: A-H			
	ispMACH 4256ZE	y: A-P			

^{1.} In some packages, certain I/Os are only available for use as inputs. See the Logic Signal Connections tables for details.

ORP Reference Table

	4032ZE		4064ZE		412	8ZE		4256ZE	
Number of I/Os	32	32	48	64	64	96	64	96	108
Number of GLBs	2	4	4	4	8	8	16	16	16
Number of I/Os per GLB	16	8	Mixture of 9, 10, 14, 15	16	8	12	4	6	Mixture of 6, 7, 8
Reference ORP Table (I/Os per GLB)	16	8	9, 10, 14, 15	16	8	12	4	6	6, 7, 8

ispMACH 4032ZE and 4064ZE Logic Signal Connections: 64 csBGA

		ispMACH 4032ZE	ispMACH 4064ZE
Ball Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad
B2	-	TDI	TDI
B1	0	A5	A8
C2	0	A6	A10
C1	0	A7	A11
GND*	0	GND (Bank 0)	GND (Bank 0)
C3	0	NC	A12
E3	0	VCCO (Bank 0)	VCCO (Bank 0)
D1	0	A8	B15
D2	0	NC	B14
E1	0	A9	B13
D3	0	A10	B12
F1	0	A11	B11
E2	0	NC	B10
G1	0	NC	B9
F2	0	NC	B8
H1	-	TCK	TCK
E4	-	VCC	VCC
GND*	-	GND	GND
G2	0	A12	B6
H2	0	NC	B5
H3	0	A13	B4
GND*	0	NC	GND (Bank 0)
F4	0	NC	VCCO (Bank 0)
G3	0	A14	B3
F3	0	NC	B2
H4	0	A15	В0
G4	0	CLK1/I	CLK1/I
H5	1	CLK2/I	CLK2/I
F5	1	B0	C0
G5	1	B1	C1
G6	1	B2	C2
H6	1	B3	C4
F6	1	B4	C5
H7	1	NC	C6
H8	-	TMS	TMS
G 7	1	B5	C8
F7	1	B6	C10
G8	1	B7	C11
GND*	1	GND (Bank 0)	GND (Bank 1)
F8	1	NC	C12
D6	1	VCCO (Bank 1)	VCCO (Bank 1)
E8	1	B8	D15

ispMACH 4032ZE and 4064ZE Logic Signal Connections: 64 csBGA (Cont.)

		ispMACH 4032ZE	ispMACH 4064ZE
Ball Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad
E7	1	NC	D14
E6	1	B9	D13
D7	1	B10	D12
D8	1	NC	D11
C5	1	NC	D10
C7	1	B11	D9
C8	1	NC	D8
B8	-	TDO	TDO
D5	-	VCC	VCC
GND*	-	GND	GND
A8	1	B12	D7
A7	1	NC	D6
B7	1	NC	D5
A6	1	B13	D4
GND*	1	NC	GND (Bank 1)
C6	1	NC	VCCO (Bank 1)
B6	1	B14	D3
A5	1	NC	D2
B5	1	B15/GOE1	D0/GOE1
A4	1	CLK3/I	CLK3/I
C4	0	CLK0/I	CLK0/I
B4	0	A0/GOE0	A0/GOE0
B3	0	A1	A1
A3	0	A2	A2
A2	0	A3	A4
A1	0	A4	A6

^{*} All bonded grounds are connected to the following two balls, D4 and E5.

ispMACH 4064ZE Logic Signal Connections: 64 ucBGA (Cont.)

Ball Number	Bank Number	GLB/MC/Pad
E7	1	D13
E6	1	D12
D8	1	D11
D7	1	D10
D6	1	D9
C8	1	D8
C7	-	TDO
D5	-	VCC
GND*	-	GND
B8	1	D7
A8	1	D6
B7	1	D5
A7	1	D4
GND*	1	GND (Bank 1)
A6	1	VCCO (Bank 1)
B6	1	D3
C6	1	D2
A5	1	D0/GOE1
B5	1	CLK3/I
C5	0	CLK0/I
A4	0	A0/GOE0
B4	0	A1
C4	0	A2
A3	0	A4
A2	0	A6

^{*} All bonded grounds are connected to the following two balls, D4 and E5.

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 100 TQFP (Cont.)

Pin	Bank	LC4064ZE	LC4128ZE	LC4256ZE
Number		GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad
83	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
84	1	D3	H6	P12
85	1	D2	H4	P10
86	1	D1	H2	P6
87	1	D0/GOE1	H0/GOE1	P2/GOE1
88	1	CLK3/I	CLK3/I	CLK3/I
89	0	CLK0/I	CLK0/I	CLK0/I
90	-	VCC	VCC	VCC
91	0	A0/GOE0	A0/GOE0	A2/GOE0
92	0	A1	A2	A6
93	0	A2	A4	A10
94	0	А3	A6	A12
95	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)
96	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
97	0	A4	A8	B2
98	0	A5	A10	B6
99	0	A6	A12	B10
100	0	A7	A14	B12

^{*} This pin is input only.

ispMACH 4128ZE Logic Signal Connections: 132 ucBGA

Ball Number	Bank Number	GLB/MC/Pad
GND*	-	GND
A1	-	TDI
B1	0	VCCO (Bank 0)
D3	0	В0
C1	0	B1
D2	0	B2
D1	0	B4
E4	0	B5
F3	0	B6
E2	0	GND (Bank 0)
E1	0	B8
E3	0	В9
F4	0	B10
G4	0	B12
F2	0	B13
G3	0	B14
H4	0	VCCO (Bank 0)
F1	0	C14
G2	0	C13
G1	0	C12
H3	0	C10
J4	0	C9
H1	0	C8
H2	0	GND (Bank 0)
J3	0	C6
J1	0	C5
J2	0	C4
КЗ	0	C2
K2	0	C1
K1	0	C0
L2	0	VCCO (Bank 0)
L1	-	TCK
M1	-	VCC
GND*	-	GND
L3	0	D14
M2	0	D13
K4	0	D12
M3	0	D10
K5	0	D9
L4	0	D8
M4	0	GND (Bank 0)
J5	0	VCCO (Bank 0)
L5	0	D6

ispMACH 4128ZE and 4256ZE Logic Signal Connections: 144 TQFP

		LC4128ZE	LC4256ZE
Pin Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad
1	-	GND	GND
2	-	TDI	TDI
3	0	VCCO (Bank 0)	VCCO (Bank 0)
4	0	В0	C12
5	0	B1	C10
6	0	B2	C8
7	0	B4	C6
8	0	B5	C4
9	0	B6	C2
10	0	GND (Bank 0)	GND (Bank 0)
11	0	B8	D14
12	0	B9	D12
13	0	B10	D10
14	0	B12	D8
15	0	B13	D6
16	0	B14	D4
17*	0	NC	I
18	0	GND (Bank 0)	NC
19	0	VCCO (Bank 0)	VCCO (Bank 0)
20*	0	NC	I
21	0	C14	E2
22	0	C13	E4
23	0	C12	E6
24	0	C10	E8
25	0	C9	E10
26	0	C8	E12
27	0	GND (Bank 0)	GND (Bank 0)
28	0	C6	F2
29	0	C5	F4
30	0	C4	F6
31	0	C2	F8
32	0	C1	F10
33	0	C0	F12
34	0	VCCO (Bank 0)	VCCO (Bank 0)
35	-	TCK	TCK
36	-	VCC	VCC
37	-	GND	GND
38*	0	NC	I
39	0	D14	G12
40	0	D13	G10
41	0	D12	G8
42	0	D10	G6

ispMACH 4128ZE and 4256ZE Logic Signal Connections: 144 TQFP (Cont.)

		LC4128ZE	LC4256ZE
Pin Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad
86	1	F12	L8
87	1	F13	L6
88	1	F14	L4
89*	1	NC	1
90	1	GND (Bank 1)	NC
91	1	VCCO (Bank 1)	VCCO (Bank 1)
92*	1	NC	1
93	1	G14	M2
94	1	G13	M4
95	1	G12	M6
96	1	G10	M8
97	1	G9	M10
98	1	G8	M12
99	1	GND (Bank 1)	GND (Bank 1)
100	1	G6	N2
101	1	G5	N4
102	1	G4	N6
103	1	G2	N8
104	1	G1	N10
105	1	G0	N12
106	1	VCCO (Bank 1)	VCCO (Bank 1)
107	-	TDO	TDO
108	-	VCC	VCC
109	-	GND	GND
110*	1	NC	1
111	1	H14	012
112	1	H13	O10
113	1	H12	O8
114	1	H10	O6
115	1	H9	04
116	1	H8	02
117*	1	NC	I
118	1	GND (Bank 1)	GND (Bank 1)
119	1	VCCO (Bank 1)	VCCO (Bank 1)
120	1	H6	P12
121	1	H5	P10
122	1	H4	P8
123	1	H2	P6
124	1	H1	P4
125	1	H0/GOE1	P2/GOE1
126	1	CLK3/I	CLK3/I
127	0	GND (Bank 0)	GND (Bank 0)
128	0	CLK0/I	CLK0/I