

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	1.7V ~ 1.9V
Number of Logic Elements/Blocks	8
Number of Macrocells	128
Number of Gates	-
Number of I/O	96
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	144-TFBGA, CSPBGA
Supplier Device Package	144-CSBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4128ze-7mn144i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The I/Os in the ispMACH 4000ZE are split into two banks. Each bank has a separate I/O power supply. Inputs can support a variety of standards independent of the chip or bank power supply. Outputs support the standards compatible with the power supply provided to the bank. Support for a variety of standards helps designers implement designs in mixed voltage environments. In addition, 5V tolerant inputs are specified within an I/O bank that is connected to a V_{CCO} of 3.0V to 3.6V for LVCMOS 3.3, LVTTL and PCI interfaces.

Architecture

There are a total of two GLBs in the ispMACH 4032ZE, increasing to 16 GLBs in the ispMACH 4256ZE. Each GLB has 36 inputs. All GLB inputs come from the GRP and all outputs from the GLB are brought back into the GRP to be connected to the inputs of any other GLB on the device. Even if feedback signals return to the same GLB, they still must go through the GRP. This mechanism ensures that GLBs communicate with each other with consistent and predictable delays. The outputs from the GLB are also sent to the ORP. The ORP then sends them to the associated I/O cells in the I/O block.

Generic Logic Block

The ispMACH 4000ZE GLB consists of a programmable AND array, logic allocator, 16 macrocells and a GLB clock generator. Macrocells are decoupled from the product terms through the logic allocator and the I/O pins are decoupled from macrocells through the ORP. Figure 2 illustrates the GLB.

Figure 2. Generic Logic Block

AND Array

The programmable AND Array consists of 36 inputs and 83 output product terms. The 36 inputs from the GRP are used to form 72 lines in the AND Array (true and complement of the inputs). Each line in the array can be connected to any of the 83 output product terms via a wired-AND. Each of the 80 logic product terms feed the logic allocator with the remaining three control product terms feeding the Shared PT Clock, Shared PT Initialization and Shared PT OE. The Shared PT Clock and Shared PT Initialization signals can optionally be inverted before being fed to the macrocells.

Every set of five product terms from the 80 logic product terms forms a product term cluster starting with PT0. There is one product term cluster for every macrocell in the GLB. Figure 3 is a graphical representation of the AND Array.

Figure 3. AND Array

Enhanced Logic Allocator

Within the logic allocator, product terms are allocated to macrocells in product term clusters. Each product term cluster is associated with a macrocell. The cluster size for the ispMACH 4000ZE family is 4+1 (total 5) product terms. The software automatically considers the availability and distribution of product term clusters as it fits the functions within a GLB. The logic allocator is designed to provide two speed paths: 20-PT Speed Locking path and an up to 80-PT path. The availability of these two paths lets designers trade timing variability for increased performance.

The enhanced Logic Allocator of the ispMACH 4000ZE family consists of the following blocks:

- Product Term Allocator
- Cluster Allocator
- Wide Steering Logic

Figure 4 shows a macrocell slice of the Logic Allocator. There are 16 such slices in the GLB.

Figure 4. Macrocell Slice

Figure 9. Power Guard

All the I/O pins in a block share a common Power Guard Enable signal. For a block of I/Os, this signal is called a Block Input Enable (BIE) signal. BIE can be internally generated using MC logic, or could come from external sources using one of the user I/O or input pins.

Any I/O pin in the block can be programmed to ignore the BIE signal. Thus, the feature can be enabled or disabled on a pin-by-pin basis.

Figure 10 shows Power Guard and BIE across multiple I/Os in a block that has eight I/Os.

Figure 10. Power Guard and BIE in a Block with 8 I/Os

Figure 13. On-Chip Oscillator and Timer

Table 11. On-Chip Oscillator and Timer Signal Names

Signal Name	Input or Out- put	Optional / Required	Description
OSCOUT	Output	Optional	Oscillator Output (Nominal Frequency: 5MHz)
TIMEROUT	Output	Optional	Oscillator Frequency Divided by an integer TIMER_DIV (Default 128)
TIMERRES	Input	Optional	Reset the Timer
DYNOSCDIS	Input	Optional	Disables the Oscillator, resets the Timer and saves the power.

OSCTIMER has two outputs, OSCOUT and TIMEROUT. The outputs feed into the Global Routing Pool (GRP). From GRP, these signals can drive any macrocell input, as well as any output pin (with macrocell bypass). The output OSCOUT is the direct oscillator output with a typical frequency of 5MHz, whereas, the output TIMEROUT is the oscillator output divided by an attribute TIMER_DIV.

The attribute TIMER_DIV can be: 128 (7 bits), 1024 (10 bits) or 1,048,576 (20 bits). The divided output is provided for those user situations, where a very slow clock is desired. If even a slower toggling clock is desired, then the programmable macrocell resources can be used to further divide down the TIMEROUT output.

Figure 14 shows the simplified relationship among OSCOUT, TIMERRES and TIMEROUT. In the diagram, the signal " \overline{R} " is an internal reset signal that is used to synchronize TIMERRES to OSCOUT. This adds one extra clock cycle delay for the first timer transition after TIMERRES.

Figure 14. Relationship Among OSCOUT, TIMERRES and TIMEROUT

Note: n = Number of bits in the divider (7, 10 or 20) Metastability: If the signal TIMERRES is not synchronous to OSCOUT, it could make a difference of one or two clock cycles to the TIMEROUT going high the first time.

Supply Current

To minimize transient current during power-on, configure CPLD I/Os to a pull-up or float state. If this logic scenario is not possible, then the recommended power sequence should assert VCC and VCCO at the same time or VCC before VCCO.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units			
ispMACH 4032ZE									
		$Vcc = 1.8V, T_A = 25^{\circ}C$		50	—	μA			
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		58	—	μΑ			
		Vcc = 1.9V, $T_A = -40$ to $85^{\circ}C$		60	—	μA			
		$Vcc = 1.8V, T_A = 25^{\circ}C$		10	—	μA			
ICC ^{4, 5, 6}	Standby Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		13	25	μA			
		Vcc = 1.9V, $T_A = -40$ to $85^{\circ}C$		15	40	μA			
ispMACH 4	064ZE								
		$Vcc = 1.8V, T_A = 25^{\circ}C$		80		μA			
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		89	_	μΑ			
		Vcc = 1.9V, T _A = -40 to 85°C		92	—	μA			
		$Vcc = 1.8V, T_A = 25^{\circ}C$		11	—	μA			
ICC ^{4, 5, 6}	Standby Power Supply Current	Vcc = 1.9V, $T_A = 0$ to $70^{\circ}C$		15	30	μA			
		Vcc = 1.9V, T _A = -40 to 85°C		18	50	μΑ			
ispMACH 4	128ZE		•		•				
		$Vcc = 1.8V, T_A = 25^{\circ}C$	—	168		μΑ			
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		190	_	μΑ			
		Vcc = 1.9V, T_A = -40 to 85°C		195	_	μΑ			
		$Vcc = 1.8V, T_A = 25^{\circ}C$		12		μΑ			
ICC ^{4, 5, 6}	Standby Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		16	40	μA			
		Vcc = 1.9V, T_A = -40 to 85°C	—	19	60	μΑ			
ispMACH 4	256ZE								
		$Vcc = 1.8V, T_A = 25^{\circ}C$		341		μΑ			
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		361	_	μΑ			
		Vcc = 1.9V, T_A = -40 to 85°C		372	_	μΑ			
		$Vcc = 1.8V, T_A = 25^{\circ}C$	—	13	—	μA			
ICC ^{4, 5, 6}	Standby Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C	—	32	65	μA			
		Vcc = 1.9V, T_A = -40 to 85°C	—	43	100	μA			

1. Frequency = 1.0 MHz.

2. Device configured with 16-bit counters.

3. I_{CC} varies with specific device configuration and operating frequency.

4. V_{CCO} = 3.6V, V_{IN} = 0V or V_{CCO}, bus maintenance turned off. V_{IN} above V_{CCO} will add transient current above the specified standby I_{CC}.

5. Includes V_{CCO} current without output loading.

6. This operating supply current is with the internal oscillator disabled. Enabling the internal oscillator adds approximately 15µA typical current plus additional current from any logic it drives.

ispMACH 4000ZE Internal Timing Parameters (Cont.)

	-		LC4032ZE		LC4064ZE		
			-	4	-	4	
Parameter	Description	Min.	Max.	Min.	Max.	Units	
t _{SRR}	Asynchronous Reset or Set Recover	ery Delay	—	2.00		1.70	ns
Control Delays							
t _{BCLK}	GLB PT Clock Delay		—	1.20	_	1.30	ns
t _{PTCLK}	Macrocell PT Clock Delay			1.40		1.50	ns
t _{BSR}	Block PT Set/Reset Delay		_	1.10	—	1.85	ns
t _{PTSR}	Macrocell PT Set/Reset Delay			1.20	—	1.90	ns
t _{BIE}	Power Guard Block Input Enable De	elay	—	1.60	_	1.70	ns
t _{PTOE}	Macrocell PT OE Delay			2.30		3.15	ns
t _{GPTOE}	Global PT OE Delay			1.80	—	2.15	ns
Internal Oscillat	or						
t _{OSCSU}	Oscillator DYNOSCDIS Setup Time)	5.00	—	5.00	_	ns
t _{OSCH}	Oscillator DYNOSCDIS Hold Time		5.00	—	5.00	—	ns
t _{OSCEN}	Oscillator OSCOUT Enable Time (1	ō Stable)		5.00		5.00	ns
t _{OSCOD}	Oscillator Output Delay		—	4.00	_	4.00	ns
t _{OSCNOM}	Oscillator OSCOUT Nominal Frequ	ency		5.00		5.00	MHz
t _{OSCvar}	Oscillator Variation of Nominal Freq	luency	—	30	_	30	%
t _{TMRCO20}	Oscillator TIMEROUT Clock (Negative Edge) to Out (20-Bit Divider)			12.50	—	12.50	ns
t _{TMRCO10}	Oscillator TIMEROUT Clock (Negative Edge) to Out (10-Bit Divider)			7.50	_	7.50	ns
t _{TMRCO7}	Oscillator TIMEROUT Clock (Negative Edge) to Out (7-Bit Divider)			6.00	_	6.00	ns
t _{TMRRSTO}	Oscillator TIMEROUT Reset to Out (Going Low)			5.00		5.00	ns
t _{TMRRR}	Oscillator TIMEROUT Asynchronou Delay	is Reset Recovery	_	4.00	_	4.00	ns
t _{TMRRSTPW}	Oscillator TIMEROUT Reset Minim	um Pulse Width	3.00	—	3.00		ns
Optional Delay	Adjusters	Base Parameter					
t _{INDIO}	Input Register Delay	t _{INREG}	_	1.00		1.00	ns
t _{EXP}	Product Term Expander Delay	t _{MCELL}	—	0.40	—	0.40	ns
t _{BLA}	Additional Block Loading Adders	t _{ROUTE}	—	0.04		0.05	ns
t _{IOI} Input Buffer	Delays	-					
LVTTL_in	Using LVTTL Standard with Hysteresis	t _{IN} , t _{GCLK_IN} , t _{GOE}		0.60	_	0.60	ns
LVCMOS15_in	Using LVCMOS 1.5 Standard	t _{IN} , t _{GCLK IN} , t _{GOE}	—	0.20		0.20	ns
LVCMOS18_in	Using LVCMOS 1.8 Standard t _{IN} , t _{GCLK IN} , t _{GCE}		_	0.00		0.00	ns
LVCMOS25_in	Using LVCMOS 2.5 Standard with Hysteresis			0.80		0.80	ns
LVCMOS33_in	Using LVCMOS 3.3 Standard with Hysteresis	LVCMOS 3.3 Standard with t _{IN} , t _{GCLK_IN} , t _{GOE}		0.80	_	0.80	ns
PCI_in	Using PCI Compatible Input with HIN, t _{GCLK_IN} , t _{GOE}		_	0.80	_	0.80	ns
t _{IOO} Output Buff	er Delays	1	I	1	I	1	I
LVTTL_out	Output Configured as TTL Buffer	t _{EN} , t _{DIS} , t _{BUF}		0.20	—	0.20	ns
	1		1	1			1

ispMACH 4000ZE Internal Timing Parameters (Cont.)

			All Device		evices		
			-	5	-7		
Parameter	Description		Min.	Max.	Min.	Max.	Units
t _{SRR}	Asynchronous Reset or Set Recovered	ery Delay	_	1.80		1.67	ns
Control Delays							
t _{BCLK}	GLB PT Clock Delay		—	1.45	_	0.95	ns
t _{PTCLK}	Macrocell PT Clock Delay		—	1.45	—	1.15	ns
t _{BSR}	Block PT Set/Reset Delay		_	1.85		1.83	ns
t _{PTSR}	Macrocell PT Set/Reset Delay		—	1.85	_	2.72	ns
t _{BIE}	Power Guard Block Input Enable D	elay	_	1.75		1.95	ns
t _{PTOE}	Macrocell PT OE Delay		_	2.40		1.90	ns
t _{GPTOE}	Global PT OE Delay		_	4.20		3.40	ns
Internal Oscillat	or						
t _{OSCSU}	Oscillator DYNOSCDIS Setup Time	9	5.00		5.00		ns
t _{OSCH}	Oscillator DYNOSCDIS Hold Time		5.00	—	5.00	—	ns
t _{OSCEN}	Oscillator OSCOUT Enable Time (To Stable)	_	5.00		5.00	ns
t _{OSCOD}	Oscillator Output Delay		—	4.00	—	4.00	ns
t _{OSCNOM}	Oscillator OSCOUT Nominal Frequ	ency		5.00		5.00	MHz
t _{OSCvar}	Oscillator Variation of Nominal Free	quency	_	30		30	%
t _{TMRCO20}	Oscillator TIMEROUT Clock (Negative Edge) to Out (20-Bit Divider)			12.50	_	14.50	ns
t _{TMRCO10}	Oscillator TIMEROUT Clock (Negative Edge) to Out (10-Bit Divider)			7.50	_	9.50	ns
t _{TMRCO7}	Oscillator TIMEROUT Clock (Negative Edge) to Out (7-Bit Divider)			6.00		8.00	ns
t _{TMRRSTO}	Oscillator TIMEROUT Reset to Out (Going Low)			5.00		7.00	ns
t _{TMRRR}	Oscillator TIMEROUT Asynchronous Reset Recovery Delay			4.00		6.00	ns
t _{TMRRSTPW}	Oscillator TIMEROUT Reset Minim	um Pulse Width	3.00	—	5.00		ns
Optional Delay	Adjusters	Base Parameter					
t _{INDIO}	Input Register Delay	t _{INREG}	—	1.60		2.60	ns
t _{EXP}	Product Term Expander Delay	t _{MCELL}	—	0.45	—	0.50	ns
t _{BLA}	Additional Block Loading Adders	t _{ROUTE}	—	0.05	_	0.05	ns
t _{IOI} Input Buffer	Delays						
LVTTL_in	Using LVTTL Standard with Hysteresis	t _{IN} , t _{GCLK_IN} , t _{GOE}		0.60		0.60	ns
LVCMOS15_in	Using LVCMOS 1.5 Standard	CMOS 1.5 Standard t _{IN} , t _{GCLK IN} , t _{GOE}		0.20	—	0.20	ns
LVCMOS18_in	Using LVCMOS 1.8 Standard	CMOS 1.8 Standard t _{IN} , t _{GCLK} IN, t _{GOF}		0.00	_	0.00	ns
LVCMOS25_in	Using LVCMOS 2.5 Standard with Hysteresis	MOS 2.5 Standard with t _{IN} , t _{GCLK_IN} , t _{GOE}		0.80	_	0.80	ns
LVCMOS33_in	Using LVCMOS 3.3 Standard with Hysteresis	tandard with t _{IN} , t _{GCLK_IN} , t _{GOE}		0.80	—	0.80	ns
PCI_in	Using PCI Compatible Input with Hysteresis	Jsing PCI Compatible Input with Aysteresis		0.80	_	0.80	ns
t _{IOO} Output Buff	er Delays	1	I	1	I	I	
LVTTL_out	Output Configured as TTL Buffer	t _{EN} , t _{DIS} , t _{BUF}		0.20	—	0.20	ns
L	-		I	L	I		

Boundary Scan Waveforms and Timing Specifications

Symbol	Parameter	Min.	Max.	Units
t _{BTCP}	TCK [BSCAN test] clock cycle	40	—	ns
t _{BTCH}	TCK [BSCAN test] pulse width high	20	—	ns
t _{BTCL}	TCK [BSCAN test] pulse width low	20	—	ns
t _{BTSU}	TCK [BSCAN test] setup time	8	—	ns
t _{BTH}	TCK [BSCAN test] hold time	10	—	ns
t _{BRF}	TCK [BSCAN test] rise and fall time	50	—	mV/ns
t _{BTCO}	TAP controller falling edge of clock to valid output	_	10	ns
t _{BTOZ}	TAP controller falling edge of clock to data output disable	_	10	ns
t _{BTVO}	TAP controller falling edge of clock to data output enable	_	10	ns
t _{BTCPSU}	BSCAN test Capture register setup time	8	—	ns
t _{BTCPH}	BSCAN test Capture register hold time	10	—	ns
t _{BTUCO}	BSCAN test Update reg, falling edge of clock to valid output	_	25	ns
t _{BTUOZ}	BSCAN test Update reg, falling edge of clock to output disable	—	25	ns
t _{BTUOV}	BSCAN test Update reg, falling edge of clock to output enable	—	25	ns

Power Consumption

Power Estimation Coefficients¹

Device	Α	В
ispMACH 4032ZE	0.010	0.009
ispMACH 4064ZE	0.011	0.009
ispMACH 4128ZE	0.012	0.009
ispMACH 4256ZE	0.013	0.009

1. For further information about the use of these coefficients, refer to TN1187, <u>Power Esti-</u> mation in ispMACH 4000ZE Devices.

Switching Test Conditions

Figure 17 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 13.

Figure 17. Output Test Load, LVTTL and LVCMOS Standards

Table 13. Test Fixture Required Components

Test Condition	R ₁	R ₂	CL1	Timing Ref.	V _{cco}
		106Ω	35pF	LVCMOS 3.3 = 1.5V	LVCMOS 3.3 = 3.0V
				LVCMOS 2.5 = $\frac{V_{CCO}}{2}$	LVCMOS 2.5 = 2.3V
LVCMOS I/O, (L -> H, H -> L)	106Ω			LVCMOS 1.8 = $\frac{V_{CCO}}{2}$	LVCMOS 1.8 = 1.65V
				LVCMOS 1.5 = $\frac{V_{CCO}}{2}$	LVCMOS 1.5 = 1.4V
LVCMOS I/O (Z -> H)	∞	106Ω	35pF	1.5V	3.0V
LVCMOS I/O (Z -> L)	106Ω	×	35pF	1.5V	3.0V
LVCMOS I/O (H -> Z)	∞	106Ω	5pF	V _{OH} - 0.3	3.0V
LVCMOS I/O (L -> Z)	106 Ω	×	5pF	V _{OL} + 0.3	3.0V

1. C_L includes test fixtures and probe capacitance.

ispMACH 4000ZE Power Supply and NC Connections¹ (Cont.)

Signal	132 ucBGA ³	144 csBGA ³	144 TQFP ²
VCC	M1, M7, A12, B5	H5, H8, E8, E5	36, 57, 108, 129
VCCO0 VCCO (Bank 0)	B1, H4, L2, J5, A4	E4, F4, G4, J5, D5	3, 19, 34, 47, 136
VCCO1 VCCO (Bank 1)	K9, L12, F12, D9, C7	J8, H9, G9, F9, D8	64, 75, 91, 106, 119
GND	E5, E8, H5, H8	F6, G6, G7, F7	1, 37, 73, 109
GND (Bank 0)	E2, H2, M4, B7, B3	G5, H4, H6, E6, F5	10, 184, 27, 46, 127, 137
GND (Bank 1)	L7, J9, H12, E9, A9	H7, J9, G8, F8, E7	55, 65, 82, 90⁴, 99, 118
NC		4064ZE: E4, B2, B1, D2, D3, E1, H1, H3, H2, L1, G4, M1, K3, M2, M4, L5, H7, L8, M8, L10, K9, M11, H9, L12, L11, J12, J11, H10, D10, F10, D12, B12, F9, A12, C10, B10, A9, B8, E6, B5, A5, C4, B3, A2 4128ZE: D2, D3, H2, M1, K3, M11, J12, J11, D12, A12, C10, A2	4128ZE: 17, 20, 38, 45, 72, 89, 92, 110, 117, 144 4256ZE: 18, 90

1. All grounds must be electrically connected at the board level. However, for the purposes of I/O current loading, grounds are associated with the bank shown.

2. Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.

3. Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.

4. For the LC4256ZE, pins 18 and 90 are no connects.

ispMACH 4032ZE and 4064ZE Logic Signal Connections: 48 TQFP (Cont.)

		ispMACH 4032ZE	ispMACH 4064ZE
Pin Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad
43	0	CLK0/I	CLK0/I
44	0	A0/GOE0	A0/GOE0
45	0	A1	A1
46	0	A2	A2
47	0	A3	A4
48	0	A4	A6

ispMACH 4032ZE and 4064ZE Logic Signal Connections: 64 csBGA (Cont.)

		ispMACH 4032ZE	ispMACH 4064ZE	
Ball Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad	
E7	1	NC	D14	
E6	1	B9	D13	
D7	1	B10	D12	
D8	1	NC	D11	
C5	1	NC	D10	
C7	1	B11	D9	
C8	1	NC	D8	
B8	-	TDO	TDO	
D5	-	VCC	VCC	
GND*	-	GND	GND	
A8	1	B12	D7	
A7	1	NC	D6	
B7	1	NC	D5	
A6	1	B13	D4	
GND*	1	NC	GND (Bank 1)	
C6	1	NC	VCCO (Bank 1)	
B6	1	B14	D3	
A5	1	NC	D2	
B5	1	B15/GOE1	D0/GOE1	
A4	1	CLK3/I	CLK3/I	
C4	0	CLK0/I	CLK0/I	
B4	0	A0/GOE0	A0/GOE0	
B3	0	A1	A1	
A3	0	A2	A2	
A2	0	A3	A4	
A1	0	A4	A6	

* All bonded grounds are connected to the following two balls, D4 and E5.

ispMACH 4064ZE Logic Signal Connections: 64 ucBGA

Ball Number	Bank Number	GLB/MC/Pad
A1	-	TDI
B1	0	A8
B2	0	A10
B3	0	A11
GND*	0	GND (Bank 0)
C1	0	A12
C3	0	VCCO (Bank 0)
C2	0	B15
D1	0	B14
D2	0	B13
D3	0	B12
E1	0	B11
E2	0	B10
E3	0	B9
F1	0	B8
F2	-	ТСК
E4	-	VCC
GND*	-	GND
H2	0	B6
H1	0	B5
G1	0	B4
GND*	0	GND (Bank 0)
F3	0	VCCO (Bank 0)
G2	0	B3
G3	0	B2
H3	0	B0
G4	0	CLK1/I
F4	1	CLK2/I
H4	1	CO
H5	1	C1
G5	1	C2
H6	1	C4
H7	1	C5
H8	1	C6
G8	-	TMS
G7	1	C8
G6	1	C10
F8	1	C11
GND*	1	GND (Bank 1)
F7	1	C12
F6	1	VCCO (Bank 1)
F5	1	D15
E8	1	D14
	I	

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 100 TQFP (Cont.)

Pin	Bank	LC4064ZE	LC4128ZE	LC4256ZE
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad
42	1	C1	E2	16
43	1	C2	E4	110
44	1	C3	E6	112
45	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
46	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
47	1	C4	E8	J2
48	1	C5	E10	J6
49	1	C6	E12	J10
50	1	C7	E14	J12
51	-	GND	GND	GND
52	-	TMS	TMS	TMS
53	1	C8	F0	K12
54	1	C9	F2	K10
55	1	C10	F4	K6
56	1	C11	F6	K2
57	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
58	1	C12	F8	L12
59	1	C13	F10	L10
60	1	C14	F12	L6
61	1	C15	F13	L4
62*	1	I	I	1
63	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
64	1	D15	G14	M4
65	1	D14	G12	M6
66	1	D13	G10	M10
67	1	D12	G8	M12
68	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
69	1	D11	G6	N2
70	1	D10	G5	N6
71	1	D9	G4	N10
72	1	D8	G2	N12
73*	1	I	I	I
74	-	TDO	TDO	TDO
75	-	VCC	VCC	VCC
76	-	GND	GND	GND
77*	1	I	I	I
78	1	D7	H13	012
79	1	D6	H12	O10
80	1	D5	H10	O6
81	1	D4	H8	02
82	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 100 TQFP (Cont.)

Pin	Bank	LC4064ZE	LC4128ZE	LC4256ZE	
Number Number		GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad	
83	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)	
84	1	D3	H6	P12	
85	1	D2	H4	P10	
86	1	D1	H2	P6	
87	1	D0/GOE1	H0/GOE1	P2/GOE1	
88	1	CLK3/I	CLK3/I	CLK3/I	
89	0	CLK0/I	CLK0/I	CLK0/I	
90	-	VCC	VCC	VCC	
91	0	A0/GOE0	A0/GOE0	A2/GOE0	
92	0	A1	A2	A6	
93	0	A2	A4	A10	
94	0	A3 A6		A12	
95	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)	
96	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)	
97	0	A4	A8	B2	
98	0	A5	A10	B6	
99	0	A6	A12	B10	
100	0	A7	A14	B12	

* This pin is input only.

ispMACH 4128ZE Logic Signal Connections: 132 ucBGA (Cont.)

Ball Number	Bank Number	GLB/MC/Pad
A2	0	A14

* All bonded core grounds are connected to the following four balls, E5, E8, H5 and H8.

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA (Cont.)

Ball	Bank	LC4064ZE	LC4128ZE	LC4256ZE
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad
J12	1	NC Ball	NC Ball	L14
J11	1	NC Ball	NC Ball	L12
H10	1	NC Ball	F8	L10
H12	1	C12	F9	L8
G11	1	C13	F10	L6
H11	1	C14	F12	L4
G12	1	C15	F13	L2
G10*	1	I	F14	LO
G9	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
F12	1	D15	G14	MO
F11	1	D14	G13	M2
E11	1	D13	G12	M4
E12	1	D12	G10	M6
D10	1	NC Ball	G9	M8
F10	1	NC Ball	G8	M10
D12	1	NC Ball	NC Ball	M12
F8	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
E10	1	D11	G6	N2
D11	1	D10	G5	N4
E9	1	D9	G4	N6
C12	1	D8	G2	N8
C11*	1	I	G1	N10
B12	1	NC Ball	G0	N12
F9	1	NC Ball	VCCO (Bank 1)	VCCO (Bank 1)
B11	-	TDO	TDO	TDO
E8	-	VCC	VCC	VCC
F7	-	GND	GND	GND
A12	1	NC Ball	NC Ball	O14
C10	1	NC Ball	NC Ball	O12
B10	1	NC Ball	H14	O10
A11*	1	I	H13	O8
D9	1	D7	H12	O6
B9	1	D6	H10	O4
C9	1	D5	H9	O2
A10	1	D4	H8	O0
E7	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
D8	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
A9	1	NC Ball	H6	P12
B8	1	NC Ball	H5	P10
C8	1	D3	H4	P8
A8	1	D2	H2	P6
D7	1	D1	H1	P4
R7	1	D0/GOE1	HQ/GOE1	P2/GOE1

Part Number Description

ispMACH 4000ZE Family Speed Grade Offering

	-4	-5		-7		
	Commercial	Commercial	Industrial	Commercial	Industrial	
ispMACH 4032ZE	~	~	✓	~	✓	
ispMACH 4064ZE	~	~	✓	~	✓	
ispMACH 4128ZE		✓		~	~	
ispMACH 4256ZE		✓		✓	\checkmark	

Ordering Information

Note: ispMACH 4000ZE devices are dual marked except for the slowest commercial speed grade. For example, the commercial speed grade LC4128ZE-5TN100C is also marked with the industrial grade -7I. The commercial grade is always one speed grade faster than the associated dual mark industrial grade. The slowest commercial speed grade devices are marked as commercial grade only. The markings appear as follows:

Figure 18. Mark Format for 100 TQFP and 144 TQFP Packages

Figure 19. Mark Format for 48 TQFP, 64 csBGA and 144 csBGA Packages

Industrial								
Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
1.0400075	LC4032ZE-5TN48I	32	1.8	5.8	Lead-Free TQFP	48	32	Ι
	LC4032ZE-7TN48I	32	1.8	7.5	Lead-Free TQFP	48	32	Ι
LU4032ZE	LC4032ZE-5MN64I	32	1.8	5.8	Lead-Free csBGA	64	32	Ι
	LC4032ZE-7MN64I	32	1.8	7.5	Lead-Free csBGA	64	32	Ι
	LC4064ZE-5TN48I	64	1.8	5.8	Lead-Free TQFP	48	32	Ι
	LC4064ZE-7TN48I	64	1.8	7.5	Lead-Free TQFP	48	32	
	LC4064ZE-5TN100I	64	1.8	5.8	Lead-Free TQFP	100	64	
	LC4064ZE-7TN100I	64	1.8	7.5	Lead-Free TQFP	100	64	I
1 0406475	LC4064ZE-5MN64I	64	1.8	5.8	Lead-Free csBGA	64	48	I
LC4004ZE	LC4064ZE-7MN64I	64	1.8	7.5	Lead-Free csBGA	64	48	I
	LC4064ZE-5UMN64I	64	1.8	5.8	Lead-Free ucBGA	64	48	Ι
	LC4064ZE-7UMN64I	64	1.8	7.5	Lead-Free ucBGA	64	48	
	LC4064ZE-5MN144I	64	1.8	5.8	Lead-Free csBGA	144	64	Ι
	LC4064ZE-7MN144I	64	1.8	7.5	Lead-Free csBGA	144	64	I
	LC4128ZE-7TN100I	128	1.8	7.5	Lead-Free TQFP	100	64	I
LC/1287E	LC4128ZE-7UMN132I	128	1.8	7.5	Lead-Free ucBGA	132	96	Ι
L041202L	LC4128ZE-7TN144I	128	1.8	7.5	Lead-Free TQFP	144	96	
	LC4128ZE-7MN144I	128	1.8	7.5	Lead-Free csBGA	144	96	
	LC4256ZE-7TN100I	256	1.8	7.5	Lead-Free TQFP	100	64	I
LC4256ZE	LC4256ZE-7TN144I	256	1.8	7.5	Lead-Free TQFP	144	96	I
	LC4256ZE-7MN144I	256	1.8	7.5	Lead-Free csBGA	144	108	I

1. Contact factory for product availability.

For Further Information

In addition to this data sheet, the following technical notes may be helpful when designing with the ispMACH 4000ZE family:

- TN1168, ispMACH 4000ZE Timing Model Design and Usage Guidelines
- TN1174, Advanced Features of the ispMACH 4000ZE Family
- TN1187, Power Estimation in ispMACH 4000ZE Devices
- Package Diagrams

Technical Support Assistance

- Hotline: 1-800-LATTICE (North America)
 - +1-503-268-8001 (Outside North America)
- e-mail: techsupport@latticesemi.com
- Internet: <u>www.latticesemi.com</u>