E: Lattice Semiconductor Corporation - LC4128ZE-7TN144C Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	1.7V ~ 1.9V
Number of Logic Elements/Blocks	8
Number of Macrocells	128
Number of Gates	-
Number of I/O	96
Operating Temperature	0°C ~ 90°C (TJ)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4128ze-7tn144c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The I/Os in the ispMACH 4000ZE are split into two banks. Each bank has a separate I/O power supply. Inputs can support a variety of standards independent of the chip or bank power supply. Outputs support the standards compatible with the power supply provided to the bank. Support for a variety of standards helps designers implement designs in mixed voltage environments. In addition, 5V tolerant inputs are specified within an I/O bank that is connected to a V_{CCO} of 3.0V to 3.6V for LVCMOS 3.3, LVTTL and PCI interfaces.

Architecture

There are a total of two GLBs in the ispMACH 4032ZE, increasing to 16 GLBs in the ispMACH 4256ZE. Each GLB has 36 inputs. All GLB inputs come from the GRP and all outputs from the GLB are brought back into the GRP to be connected to the inputs of any other GLB on the device. Even if feedback signals return to the same GLB, they still must go through the GRP. This mechanism ensures that GLBs communicate with each other with consistent and predictable delays. The outputs from the GLB are also sent to the ORP. The ORP then sends them to the associated I/O cells in the I/O block.

Generic Logic Block

The ispMACH 4000ZE GLB consists of a programmable AND array, logic allocator, 16 macrocells and a GLB clock generator. Macrocells are decoupled from the product terms through the logic allocator and the I/O pins are decoupled from macrocells through the ORP. Figure 2 illustrates the GLB.

Figure 2. Generic Logic Block

AND Array

The programmable AND Array consists of 36 inputs and 83 output product terms. The 36 inputs from the GRP are used to form 72 lines in the AND Array (true and complement of the inputs). Each line in the array can be connected to any of the 83 output product terms via a wired-AND. Each of the 80 logic product terms feed the logic allocator with the remaining three control product terms feeding the Shared PT Clock, Shared PT Initialization and Shared PT OE. The Shared PT Clock and Shared PT Initialization signals can optionally be inverted before being fed to the macrocells.

Every set of five product terms from the 80 logic product terms forms a product term cluster starting with PT0. There is one product term cluster for every macrocell in the GLB. Figure 3 is a graphical representation of the AND Array.

Product Term Allocator

The product term allocator assigns product terms from a cluster to either logic or control applications as required by the design being implemented. Product terms that are used as logic are steered into a 5-input OR gate associated with the cluster. Product terms that used for control are steered either to the macrocell or I/O cell associated with the cluster. Table 2 shows the available functions for each of the five product terms in the cluster.

Table 2. Individua	I PT Steering
--------------------	---------------

Product Term	Logic	Control
PT <i>n</i>	Logic PT	Single PT for XOR/OR
PT <i>n</i> +1	Logic PT	Individual Clock (PT Clock)
PT <i>n</i> +2	Logic PT	Individual Initialization or Individual Clock Enable (PT Initialization/CE)
PT <i>n</i> +3	Logic PT	Individual Initialization (PT Initialization)
PT <i>n</i> +4	Logic PT	Individual OE (PTOE)

Cluster Allocator

The cluster allocator allows clusters to be steered to neighboring macrocells, thus allowing the creation of functions with more product terms. Table 3 shows which clusters can be steered to which macrocells. Used in this manner, the cluster allocator can be used to form functions of up to 20 product terms. Additionally, the cluster allocator accepts inputs from the wide steering logic. Using these inputs, functions up to 80 product terms can be created.

Macrocell		Available	e Clusters	
MO	—	CO	C1	C2
M1	C0	C1	C2	C3
M2	C1	C2	C3	C4
M3	C2	C3	C4	C5
M4	C3	C4	C5	C6
M5	C4	C5	C6	C7
M6	C5	C6	C7	C8
M7	C6	C7	C8	C9
M8	C7	C8	C9	C10
M9	C8	C9	C10	C11
M10	C9	C10	C11	C12
M11	C10	C11	C12	C13
M12	C11	C12	C13	C14
M13	C12	C13	C14	C15
M14	C13	C14	C15	
M15	C14	C15		

Table 3. Available Clusters for Each Macrocell

Wide Steering Logic

The wide steering logic allows the output of the cluster allocator n to be connected to the input of the cluster allocator n+4. Thus, cluster chains can be formed with up to 80 product terms, supporting wide product term functions and allowing performance to be increased through a single GLB implementation. Table 4 shows the product term chains.

- Block CLK2
- Block CLK3
- PT Clock
- PT Clock Inverted
- Shared PT Clock
- Ground

Clock Enable Multiplexer

Each macrocell has a 4:1 clock enable multiplexer. This allows the clock enable signal to be selected from the following four sources:

- PT Initialization/CE
- PT Initialization/CE Inverted
- Shared PT Clock
- Logic High

Initialization Control

The ispMACH 4000ZE family architecture accommodates both block-level and macrocell-level set and reset capability. There is one block-level initialization term that is distributed to all macrocell registers in a GLB. At the macrocell level, two product terms can be "stolen" from the cluster associated with a macrocell to be used for set/reset functionality. A reset/preset swapping feature in each macrocell allows for reset and preset to be exchanged, providing flexibility.

Note that the reset/preset swapping selection feature affects power-up reset as well. All flip-flops power up to a known state for predictable system initialization. If a macrocell is configured to SET on a signal from the block-level initialization, then that macrocell will be SET during device power-up. If a macrocell is configured to RESET on a signal from the block-level initialization or is not configured for set/reset, then that macrocell will RESET on power-up. To guarantee initialization values, the V_{CC} rise must be monotonic, and the clock must be inactive until the reset delay time has elapsed.

GLB Clock Generator

Each ispMACH 4000ZE device has up to four clock pins that are also routed to the GRP to be used as inputs. These pins drive a clock generator in each GLB, as shown in Figure 6. The clock generator provides four clock signals that can be used anywhere in the GLB. These four GLB clock signals can consist of a number of combinations of the true and complement edges of the global clock signals.

Figure 6. GLB Clock Generator

Output Routing Pool (ORP)

The Output Routing Pool allows macrocell outputs to be connected to any of several I/O cells within an I/O block. This provides greater flexibility in determining the pinout and allows design changes to occur without affecting the pinout. The output routing pool also provides a parallel capability for routing macrocell-level OE product terms. This allows the OE product term to follow the macrocell output as it is switched between I/O cells. The enhanced ORP of the ispMACH 4000ZE family consists of the following elements:

- Output Routing Multiplexers
- OE Routing Multiplexers

Figure 7 shows the structure of the ORP from the I/O cell perspective. This is referred to as an ORP slice. Each ORP has as many ORP slices as there are I/O cells in the corresponding I/O block.

Figure 7. ORP Slice

Output Routing Multiplexer

Output Routing Multiplexers

The details of connections between the macrocells and the I/O cells vary across devices and within a device dependent on the maximum number of I/Os available. Tables 5-7 provide the connection details.

Table 5. GLB/MC/ORP Combinations for ispMACH 4256ZE

GLB/MC	ORP Mux Input Macrocells
[GLB] [MC 0]	M0, M1, M2, M3, M4, M5, M6, M7
[GLB] [MC 1]	M2, M3, M4, M5, M6, M7, M8, M9
[GLB] [MC 2]	M4, M5, M6, M7, M8, M9, M10, M11
[GLB] [MC 3]	M6, M7, M8, M9, M10, M11, M12, M13
[GLB] [MC 4]	M8, M9, M10, M11, M12, M13, M14, M15
[GLB] [MC 5]	M10, M11, M12, M13, M14, M15, M0, M1
[GLB] [MC 6]	M12, M13, M14, M15, M0, M1, M2, M3
[GLB] [MC 7]	M14, M15, M0, M1, M2, M3, M4, M5

Table 6. GLB/MC/ORP Combinations for ispMACH 4128ZE

GLB/MC	ORP Mux Input Macrocells
[GLB] [MC 0]	M0, M1, M2, M3, M4, M5, M6, M7
[GLB] [MC 1]	M1, M2, M3, M4, M5, M6, M7, M8
[GLB] [MC 2]	M2, M3, M4, M5, M6, M7, M8, M9
[GLB] [MC 3]	M4, M5, M6, M7, M8, M9, M10, M11
[GLB] [MC 4]	M5, M6, M7, M8, M9, M10, M11, M12
[GLB] [MC 5]	M6, M7, M8, M9, M10, M11, M12, M13
[GLB] [MC 6]	M8, M9, M10, M11, M12, M13, M14, M15
[GLB] [MC 7]	M9, M10, M11, M12, M13, M14, M15, M0
[GLB] [MC 8]	M10, M11, M12, M13, M14, M15, M0, M1
[GLB] [MC 9]	M12, M13, M14, M15, M0, M1, M2, M3
[GLB] [MC 10]	M13, M14, M15, M0, M1, M2, M3, M4
[GLB] [MC 11]	M14, M15, M0, M1, M2, M3, M4, M5

Table 7. GLB/MC/ORP Combinations for ispMACH 4032ZE and 4064ZE

GLB/MC	ORP Mux Input Macrocells
[GLB] [MC 0]	M0, M1, M2, M3, M4, M5, M6, M7
[GLB] [MC 1]	M1, M2, M3, M4, M5, M6, M7, M8
[GLB] [MC 2]	M2, M3, M4, M5, M6, M7, M8, M9
[GLB] [MC 3]	M3, M4, M5, M6, M7, M8, M9, M10
[GLB] [MC 4]	M4, M5, M6, M7, M8, M9, M10, M11
[GLB] [MC 5]	M5, M6, M7, M8, M9, M10, M11, M12
[GLB] [MC 6]	M6, M7, M8, M9, M10, M11, M12, M13
[GLB] [MC 7]	M7, M8, M9, M10, M11, M12, M13, M14
[GLB] [MC 8]	M8, M9, M10, M11, M12, M13, M14, M15
[GLB] [MC 9]	M9, M10, M11, M12, M13, M14, M15, M0
[GLB] [MC 10]	M10, M11, M12, M13, M14, M15, M0, M1
[GLB] [MC 11]	M11, M12, M13, M14, M15, M0, M1, M2
[GLB] [MC 12]	M12, M13, M14, M15, M0, M1, M2, M3
[GLB] [MC 13]	M13, M14, M15, M0, M1, M2, M3, M4
[GLB] [MC 14]	M14, M15, M0, M1, M2, M3, M4, M5
[GLB] [MC 15]	M15, M0, M1, M2, M3, M4, M5, M6

Output Enable Routing Multiplexers

The OE Routing Pool provides the corresponding local output enable (OE) product term to the I/O cell.

I/O Cell

The I/O cell contains the following programmable elements: output buffer, input buffer, OE multiplexer, Power Guard and bus maintenance circuitry. Figure 8 details the I/O cell.

Figure 9. Power Guard

All the I/O pins in a block share a common Power Guard Enable signal. For a block of I/Os, this signal is called a Block Input Enable (BIE) signal. BIE can be internally generated using MC logic, or could come from external sources using one of the user I/O or input pins.

Any I/O pin in the block can be programmed to ignore the BIE signal. Thus, the feature can be enabled or disabled on a pin-by-pin basis.

Figure 10 shows Power Guard and BIE across multiple I/Os in a block that has eight I/Os.

Figure 10. Power Guard and BIE in a Block with 8 I/Os

Some Simple Use Scenarios

The following diagrams show a few simple examples that omit optional signals for the OSCTIMER block:

- A. An oscillator giving 5MHz nominal clock
- B. An oscillator that can be disabled with an external signal (5MHz nominal clock)
- C. An oscillator giving approximately 5 Hz nominal clock (TIMER_DIV = 2^{20} (1,048,576))
- D. An oscillator giving two output clocks: ~5MHz and ~5KHz (TIMER_DIV= 2¹⁰ (1,024))

OSCTIMER Integration With CPLD Fabric

The OSCTIMER is integrated into the CPLD fabric using the Global Routing Pool (GRP). The macrocell (MC) feedback path for two macrocells is augmented with a programmable multiplexer, as shown in Figure 15. The OSC-TIMER outputs (OSCOUT and TIMEROUT) can optionally drive the GRP lines, whereas the macrocell outputs can drive the optional OSCTIMER inputs TIMERRES and DYNOSCDIS.

Figure 15. OSCTIMER Integration With CPLD Fabric

Table 12 shows how these two MCs are designated in each of the ispMACH4000ZE device.

Table 12. OSC and TIMER MC Designation

Device	Macrocell	Block Number	MC Number
ispMACH 4032ZE	OSC MC	A	15
	TIMER MC	B	15
ispMACH 4064ZE	OSC MC	A	15
	TIMER MC	D	15
ispMACH 4128ZE	OSC MC	A	15
	TIMER MC	G	15
ispMACH 4256ZE	OSC MC	C	15
	TIMER MC	F	15

Zero Power/Low Power and Power Management

The ispMACH 4000ZE family is designed with high speed low power design techniques to offer both high speed and low power. With an advanced E² low power cell and non sense-amplifier design approach (full CMOS logic approach), the ispMACH 4000ZE family offers fast pin-to-pin speeds, while simultaneously delivering low standby power without needing any "turbo bits" or other power management schemes associated with a traditional sense-amplifier approach.

The zero power ispMACH 4000ZE is based on the 1.8V ispMACH 4000Z family. With innovative circuit design changes, the ispMACH 4000ZE family is able to achieve the industry's lowest static power.

IEEE 1149.1-Compliant Boundary Scan Testability

All ispMACH 4000ZE devices have boundary scan cells and are compliant to the IEEE 1149.1 standard. This allows functional testing of the circuit board on which the device is mounted through a serial scan path that can access all critical logic notes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test node data to be captured and shifted out for verification. In addition, these devices can be linked into a board-level serial scan path for more board-level testing. The test access port operates with an LVCMOS interface that corresponds to the power supply voltage.

I/O Quick Configuration

To facilitate the most efficient board test, the physical nature of the I/O cells must be set before running any continuity tests. As these tests are fast, by nature, the overhead and time that is required for configuration of the I/Os' physical nature should be minimal so that board test time is minimized. The ispMACH 4000ZE family of devices allows this by offering the user the ability to quickly configure the physical nature of the I/O cells. This quick configuration takes milliseconds to complete, whereas it takes seconds for the entire device to be programmed. Lattice's ispVM[™] System programming software can either perform the quick configuration through the PC parallel port, or can generate the ATE or test vectors necessary for a third-party test system.

IEEE 1532-Compliant In-System Programming

Programming devices in-system provides a number of significant benefits including: rapid prototyping, lower inventory levels, higher quality and the ability to make in-field modifications. All ispMACH 4000ZE devices provide In-System Programming (ISP[™]) capability through the Boundary Scan Test Access Port. This capability has been implemented in a manner that ensures that the port remains complaint to the IEEE 1149.1 standard. By using IEEE 1149.1 as the communication interface through which ISP is achieved, users get the benefit of a standard, welldefined interface. All ispMACH 4000ZE devices are also compliant with the IEEE 1532 standard.

The ispMACH 4000ZE devices can be programmed across the commercial temperature and voltage range. The PC-based Lattice software facilitates in-system programming of ispMACH 4000ZE devices. The software takes the JEDEC file output produced by the design implementation software, along with information about the scan chain, and creates a set of vectors used to drive the scan chain. The software can use these vectors to drive a scan chain via the parallel port of a PC. Alternatively, the software can output files in formats understood by common auto-

Supply Current

To minimize transient current during power-on, configure CPLD I/Os to a pull-up or float state. If this logic scenario is not possible, then the recommended power sequence should assert VCC and VCCO at the same time or VCC before VCCO.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units	
ispMACH 4032ZE							
		$Vcc = 1.8V, T_A = 25^{\circ}C$		50	—	μA	
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		58	—	μΑ	
		Vcc = 1.9V, $T_A = -40$ to $85^{\circ}C$		60	—	μA	
		$Vcc = 1.8V, T_A = 25^{\circ}C$		10	—	μA	
ICC ^{4, 5, 6}	Standby Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		13	25	μA	
		Vcc = 1.9V, $T_A = -40$ to $85^{\circ}C$		15	40	μA	
ispMACH 4	064ZE						
		$Vcc = 1.8V, T_A = 25^{\circ}C$		80		μA	
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		89	_	μΑ	
		Vcc = 1.9V, T _A = -40 to 85°C		92	—	μA	
		$Vcc = 1.8V, T_A = 25^{\circ}C$		11	—	μA	
ICC ^{4, 5, 6}	Standby Power Supply Current	Vcc = 1.9V, $T_A = 0$ to $70^{\circ}C$		15	30	μA	
		Vcc = 1.9V, T _A = -40 to 85°C		18	50	μΑ	
ispMACH 4	128ZE		•		•		
		$Vcc = 1.8V, T_A = 25^{\circ}C$	—	168	—	μΑ	
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		190	_	μΑ	
		Vcc = 1.9V, T_A = -40 to 85°C		195	_	μΑ	
		$Vcc = 1.8V, T_A = 25^{\circ}C$		12		μΑ	
ICC ^{4, 5, 6}	Standby Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		16	40	μA	
		Vcc = 1.9V, T_A = -40 to 85°C	—	19	60	μΑ	
ispMACH 4	256ZE						
		$Vcc = 1.8V, T_A = 25^{\circ}C$		341		μΑ	
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C		361	_	μΑ	
		Vcc = 1.9V, T_A = -40 to 85°C		372	_	μΑ	
		$Vcc = 1.8V, T_A = 25^{\circ}C$	—	13	—	μA	
ICC ^{4, 5, 6}	Standby Power Supply Current	Vcc = 1.9V, $T_A = 0$ to 70°C	—	32	65	μA	
		Vcc = 1.9V, T_A = -40 to 85°C	—	43	100	μA	

1. Frequency = 1.0 MHz.

2. Device configured with 16-bit counters.

3. I_{CC} varies with specific device configuration and operating frequency.

4. V_{CCO} = 3.6V, V_{IN} = 0V or V_{CCO}, bus maintenance turned off. V_{IN} above V_{CCO} will add transient current above the specified standby I_{CC}.

5. Includes V_{CCO} current without output loading.

6. This operating supply current is with the internal oscillator disabled. Enabling the internal oscillator adds approximately 15µA typical current plus additional current from any logic it drives.

I/O DC Electrical Characteristics

e e e e e e e e e e e e e e e e e e e									
	V _{IL}		V _{IH}		Vol	VOH			
Standard	Min (V)	Max (V)	Min (V)	Max (V)	Max (V)	Min (V)	(mĀ)	(mA)	
	0.2	0.90	2.0	5.5	0.40	V _{CCO} - 0.40	8.0	-4.0	
	-0.5	0.00			0.20	V _{CCO} - 0.20	0.1	-0.1	
	-0.3	0.80	2.0	5.5	0.40	V _{CCO} - 0.40	8.0	-4.0	
LVCIVIOS 5.5	-0.3				0.20	V _{CCO} - 0.20	0.1	-0.1	
LVCMOS 2.5	-0.3	0.70	1.70	3.6	0.40	V _{CCO} - 0.40	8.0	-4.0	
					0.20	V _{CCO} - 0.20	0.1	-0.1	
	-0.3	0.35 * V	0.65 * V	36	0.40	V _{CCO} - 0.45	2.0	-2.0	
LVCIVIOS 1.8	-0.5	0.35 VCC	0.03 VCC	5.0	0.20	V _{CCO} - 0.20	0.1	-0.1	
LVCMOS 1.5 ²	0.2		0.65 * V _{CC}	3.6	0.40	V _{CCO} - 0.45	2.0	-2.0	
	-0.5	0.55 VCC			0.20	V _{CCO} - 0.20	0.1	-0.1	
PCI 3.3	-0.3	0.3 * 3.3 * (V _{CC} / 1.8)	0.5 * 3.3 * (V _{CC} / 1.8)	5.5	0.1 V _{CCO}	0.9 V _{CCO}	1.5	-0.5	

Over Recommended Operating Conditions

 The average DC current drawn by I/Os between adjacent bank GND connections, or between the last GND in an I/O bank and the end of the I/O bank, as shown in the logic signals connection table, shall not exceed n*8mA. Where n is the number of I/Os between bank GND connections or between the last GND in a bank and the end of a bank.

2. For 1.5V inputs, there may be an additional DC current drawn from V_{CC} , if the ispMACH 4000ZE V_{CC} and the V_{CC} of the driving device (V_{CC} d-d; that determines steady state V_{IH}) are in the extreme range of their specifications. Typically, DC current drawn from V_{CC} will be 2µA per input.

ispMACH 4000ZE Internal Timing Parameters

		LC4032ZE		LC4064ZE		
			4	-4		
Parameter	Description	Min.	Max.	Min.	Max.	Units
In/Out Delays	·					
t _{IN}	Input Buffer Delay	—	0.85	_	0.90	ns
t _{GCLK_IN}	Global Clock Input Buffer Delay	_	1.60	_	1.60	ns
t _{GOE}	Global OE Pin Delay	_	2.25		2.25	ns
t _{BUF}	Delay through Output Buffer	_	0.75	_	0.90	ns
t _{EN}	Output Enable Time	—	2.25	_	2.25	ns
t _{DIS}	Output Disable Time	_	1.35	_	1.35	ns
t _{PGSU}	Input Power Guard Setup Time	_	3.30	_	3.55	ns
t _{PGH}	Input Power Guard Hold Time		0.00	_	0.00	ns
t _{PGPW}	Input Power Guard BIE Minimum Pulse Width		5.00	_	5.00	ns
t _{PGRT}	Input Power Guard Recovery Time Following BIE Dissertation		5.00	_	5.00	ns
Routing Delays						
t _{ROUTE}	Delay through GRP	—	1.60	—	1.70	ns
t _{PDi}	Macrocell Propagation Delay	_	0.25	_	0.25	ns
t _{MCELL}	Macrocell Delay		0.65		0.65	ns
t _{INREG}	Input Buffer to Macrocell Register Delay		0.90		1.00	ns
t _{FBK}	Internal Feedback Delay		0.55	_	0.55	ns
t _{ORP}	Output Routing Pool Delay	_	0.30		0.30	ns
Register/Latch	Delays					
t _S	D-Register Setup Time (Global Clock)	0.70	—	0.85	—	ns
t _{S_PT}	D-Register Setup Time (Product Term Clock)	1.25		1.85	—	ns
t _H	D-Register Hold Time	1.50		1.65	—	ns
t _{ST}	T-Register Setup Time (Global Clock)	0.90		1.05	—	ns
t _{ST_PT}	T-register Setup Time (Product Term Clock)	1.45		1.65	—	ns
t _{HT}	T-Resister Hold Time	1.50	_	1.65	—	ns
t _{SIR}	D-Input Register Setup Time (Global Clock)	0.85	_	0.80	—	ns
t _{SIR_PT}	D-Input Register Setup Time (Product Term Clock)	1.45	_	1.45	—	ns
t _{HIR}	D-Input Register Hold Time (Global Clock)	1.15	_	1.30	—	ns
t _{HIR_PT}	D-Input Register Hold Time (Product Term Clock)	0.90		1.10	—	ns
t _{COi}	Register Clock to Output/Feedback MUX Time		0.35		0.40	ns
t _{CES}	Clock Enable Setup Time	1.00		2.00	_	ns
t _{CEH}	Clock Enable Hold Time	0.00		0.00	—	ns
t _{SL}	Latch Setup Time (Global Clock)	0.70		0.95	_	ns
t _{SL_PT}	Latch Setup Time (Product Term Clock)	1.45		1.85	_	ns
t _{HL}	Latch Hold Time	1.40	—	1.80	—	ns
t _{GOi}	Latch Gate to Output/Feedback MUX Time		0.40	_	0.35	ns
t _{PDLi}	Propagation Delay through Transparent Latch to Output/ Feedback MUX	_	0.30	_	0.25	ns
t _{SRi}	Asynchronous Reset or Set to Output/Feedback MUX Delay	_	0.30	_	0.30	ns

ispMACH 4000ZE Internal Timing Parameters (Cont.)

Over Recommended Operating Conditions

			All Devices				
			-	5	-	7	
Parameter	Description		Min.	Max.	Min.	Max.	Units
LVCMOS15_out	Output Configured as 1.5V Buffer	t _{EN} , t _{DIS} , t _{BUF}	—	0.20	—	0.20	ns
LVCMOS18_out	Output Configured as 1.8V Buffer	t _{EN} , t _{DIS} , t _{BUF}	—	0.00	—	0.00	ns
LVCMOS25_out	Output Configured as 2.5V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.10	—	0.10	ns
LVCMOS33_out	Output Configured as 3.3V Buffer	t _{EN} , t _{DIS} , t _{BUF}		0.20	—	0.20	ns
PCI_out	Output Configured as PCI Compati- ble Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns
Slow Slew	Output Configured for Slow Slew Rate	t _{EN} , t _{BUF}	_	1.00	—	1.00	ns

Note: Internal Timing Parameters are not tested and are for reference only. Refer to the timing model in this data sheet for further details. Timing v.0.8

ispMACH 4000ZE Power Supply and NC Connections¹

Signal	48 TQFP ²	64 csBGA ^{3, 4}	64 ucBGA ^{3, 4}	100 TQFP ²
VCC	12, 36	E4, D5	E4, D5	25, 40, 75, 90
VCCO0 VCCO (Bank 0)	6	4032ZE: E3 4064ZE: E3, F4	C3, F3	13, 33, 95
VCCO1 VCCO (Bank 1)	30	4032ZE: D6 4064ZE: D6, C6	F6, A6	45, 63, 83
GND	13, 37	D4, E5	D4, D5	1, 26, 51, 76
GND (Bank 0)	5	D4, E5	D4, D5	7, 18, 32, 96
GND (Bank 1)	29	D4, E5	D4, D5	46, 57, 68, 82
NC	_		—	—

1. All grounds must be electrically connected at the board level. However, for the purposes of I/O current loading, grounds are associated with the bank shown.

2. Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.

3. Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.

4. All bonded grounds are connected to the following two balls, D4 and E5.

ispMACH 4032ZE and 4064ZE Logic Signal Connections: 48 TQFP (Cont.)

		ispMACH 4032ZE	ispMACH 4064ZE
Pin Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad
43	0	CLK0/I	CLK0/I
44	0	A0/GOE0	A0/GOE0
45	0	A1	A1
46	0	A2	A2
47	0	A3	A4
48	0	A4	A6

ispMACH 4128ZE Logic Signal Connections: 132 ucBGA

Ball Number	Bank Number	GLB/MC/Pad
GND*	-	GND
A1	-	TDI
B1	0	VCCO (Bank 0)
D3	0	B0
C1	0	B1
D2	0	B2
D1	0	B4
E4	0	B5
F3	0	B6
E2	0	GND (Bank 0)
E1	0	B8
E3	0	B9
F4	0	B10
G4	0	B12
F2	0	B13
G3	0	B14
H4	0	VCCO (Bank 0)
F1	0	C14
G2	0	C13
G1	0	C12
H3	0	C10
J4	0	C9
H1	0	C8
H2	0	GND (Bank 0)
J3	0	C6
J1	0	C5
J2	0	C4
К3	0	C2
K2	0	C1
К1	0	CO
L2	0	VCCO (Bank 0)
L1	-	ТСК
M1	-	VCC
GND*	-	GND
L3	0	D14
M2	0	D13
K4	0	D12
M3	0	D10
K5	0	D9
L4	0	D8
M4	0	GND (Bank 0)
J5	0	VCCO (Bank 0)
L5	0	D6

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA

Ball	Bank	LC4064ZE	LC4128ZE	LC4256ZE
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad
F6	-	GND	GND	GND
A1	-	TDI	TDI	TDI
E4	0	NC Ball	VCCO (Bank 0)	VCCO (Bank 0)
B2	0	NC Ball	B0	C12
B1	0	NC Ball	B1	C10
C3	0	A8	B2	C8
C2	0	A9	B4	C6
C1	0	A10	B5	C4
D1	0	A11	B6	C2
G5	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
D2	0	NC Ball	NC Ball	D14
D3	0	NC Ball	NC Ball	D12
E1	0	NC Ball	B8	D10
E2	0	A12	B9	D8
F2	0	A13	B10	D6
D4	0	A14	B12	D4
F1	0	A15	B13	D2
F3*	0	I	B14	D0
F4	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)
G1	0	B15	C14	E0
E3	0	B14	C13	E2
G2	0	B13	C12	E4
G3	0	B12	C10	E6
H1	0	NC Ball	C9	E8
H3	0	NC Ball	C8	E10
H2	0	NC Ball	NC Ball	E12
H4	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
J1	0	B11	C6	F2
J3	0	B10	C5	F4
J2	0	B9	C4	F6
K1	0	B8	C2	F8
K2*	0	Ι	C1	F10
L1	0	NC Ball	C0	F12
G4	0	NC Ball	VCCO (Bank 0)	VCCO (Bank 0)
L2	-	ТСК	ТСК	ТСК
H5	-	VCC	VCC	VCC
G6	-	GND	GND	GND
M1	0	NC Ball	NC Ball	G14
K3	0	NC Ball	NC Ball	G12
M2	0	NC Ball	D14	G10
L3*	0	I	D13	G8

ispMACH 4128ZE and 4256ZE Logic Signal Connections: 144 TQFP (Cont.)

		L C41287F	L C42567E		
Pin Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad		
86	1	F12	L8		
87	1	F13	L6		
88	1	F14	L4		
89*	1	NC			
90	1	GND (Bank 1)	NC		
91	1	VCCO (Bank 1)	VCCO (Bank 1)		
92*	1	NC	I		
93	1	G14	M2		
94	1	G13	M4		
95	1	G12	M6		
96	1	G10	M8		
97	1	G9	M10		
98	1	G8	M12		
99	1	GND (Bank 1)	GND (Bank 1)		
100	1	G6	N2		
101	1	G5	N4		
102	1	G4	N6		
103	1	G2	N8		
104	1	G1	N10		
105	1	G0	N12		
106	1	VCCO (Bank 1)	VCCO (Bank 1)		
107	-	TDO	TDO		
108	-	VCC	VCC		
109	-	GND	GND		
110*	1	NC	I		
111	1	H14	O12		
112	1	H13	O10		
113	1	H12	O8		
114	1	H10	O6		
115	1	H9	O4		
116	1	H8	O2		
117*	1	NC	I		
118	1	GND (Bank 1)	GND (Bank 1)		
119	1	VCCO (Bank 1)	VCCO (Bank 1)		
120	1	H6	P12		
121	1	H5	P10		
122	1	H4	P8		
123	1	H2	P6		
124	1	H1	P4		
125	1	H0/GOE1	P2/GOE1		
126	1	CLK3/I	CLK3/I		
127	0	GND (Bank 0)	GND (Bank 0)		
128	0	CLK0/I	CLK0/I		

ispMACH 4128ZE and 4256ZE Logic Signal Connections: 144 TQFP (Cont.)

		LC4128ZE	LC4256ZE
Pin Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad
129	-	VCC	VCC
130	0	A0/GOE0	A2/GOE0
131	0	A1	A4
132	0	A2	A6
133	0	A4	A8
134	0	A5	A10
135	0	A6	A12
136	0	VCCO (Bank 0)	VCCO (Bank 0)
137	0	GND (Bank 0)	GND (Bank 0)
138	0	A8	B2
139	0	A9	B4
140	0	A10	B6
141	0	A12	B8
142	0	A13	B10
143	0	A14	B12
144*	0	NC	I

* This pin is input only for the LC4256ZE.

Part Number Description

ispMACH 4000ZE Family Speed Grade Offering

	-4	-5		-7		
	Commercial	Commercial	Industrial	Commercial	Industrial	
ispMACH 4032ZE	~	~	✓	~	✓	
ispMACH 4064ZE	~	~	✓	~	✓	
ispMACH 4128ZE		✓		✓	~	
ispMACH 4256ZE		✓		✓	\checkmark	

Ordering Information

Note: ispMACH 4000ZE devices are dual marked except for the slowest commercial speed grade. For example, the commercial speed grade LC4128ZE-5TN100C is also marked with the industrial grade -7I. The commercial grade is always one speed grade faster than the associated dual mark industrial grade. The slowest commercial speed grade devices are marked as commercial grade only. The markings appear as follows:

Figure 18. Mark Format for 100 TQFP and 144 TQFP Packages

Figure 19. Mark Format for 48 TQFP, 64 csBGA and 144 csBGA Packages

Figure 20. Mark Format for 64 ucBGA and 132 ucBGA Packages

LC4064ZE 4UN-5I Datecode	LC4128ZE 7UN Datecode
Dual Mark	Single Mark

Lead-Free Packaging

Commercial

Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
	LC4032ZE-4TN48C	32	1.8	4.4	Lead-Free TQFP	48	32	С
	LC4032ZE-5TN48C	32	1.8	5.8	Lead-Free TQFP	48	32	С
10400075	LC4032ZE-7TN48C	32	1.8	7.5	Lead-Free TQFP	48	32	С
LC4032ZE	LC4032ZE-4MN64C	32	1.8	4.4	Lead-Free csBGA	64	32	С
	LC4032ZE-5MN64C	32	1.8	5.8	Lead-Free csBGA	64	32	С
	LC4032ZE-7MN64C	32	1.8	7.5	Lead-Free csBGA	64	32	С
	LC4064ZE-4TN48C	64	1.8	4.7	Lead-Free TQFP	48	32	С
	LC4064ZE-5TN48C	64	1.8	5.8	Lead-Free TQFP	48	32	С
	LC4064ZE-7TN48C	64	1.8	7.5	Lead-Free TQFP	48	32	С
	LC4064ZE-4TN100C	64	1.8	4.7	Lead-Free TQFP	100	64	С
	LC4064ZE-5TN100C	64	1.8	5.8	Lead-Free TQFP	100	64	С
	LC4064ZE-7TN100C	64	1.8	7.5	Lead-Free TQFP	100	64	С
LC4064ZE -	LC4064ZE-4MN64C	64	1.8	4.7	Lead-Free csBGA	64	48	С
	LC4064ZE-5MN64C	64	1.8	5.8	Lead-Free csBGA	64	48	С
	LC4064ZE-7MN64C	64	1.8	7.5	Lead-Free csBGA	64	48	С
	LC4064ZE-4MN144C	64	1.8	4.7	Lead-Free csBGA	144	64	С
	LC4064ZE-5MN144C	64	1.8	5.8	Lead-Free csBGA	144	64	С
	LC4064ZE-7MN144C	64	1.8	7.5	Lead-Free csBGA	144	64	С
	LC4128ZE-5TN100C	128	1.8	5.8	Lead-Free TQFP	100	64	С
	LC4128ZE-7TN100C	128	1.8	7.5	Lead-Free TQFP	100	64	С
	LC4128ZE-5TN144C	128	1.8	5.8	Lead-Free TQFP	144	96	С
10412975	LC4128ZE-7TN144C	128	1.8	7.5	Lead-Free TQFP	144	96	С
LU4120ZE	LC4128ZE-5UMN132C	128	1.8	5.8	Lead-Free ucBGA	132	96	С
	LC4128ZE-7UMN132C	128	1.8	7.5	Lead-Free ucBGA	132	96	С
	LC4128ZE-5MN144C	128	1.8	5.8	Lead-Free csBGA	144	96	С
	LC4128ZE-7MN144C	128	1.8	7.5	Lead-Free csBGA	144	96	С
	LC4256ZE-5TN100C	256	1.8	5.8	Lead-Free TQFP	100	64	С
	LC4256ZE-7TN100C	256	1.8	7.5	Lead-Free TQFP	100	64	С
	LC4256ZE-5TN144C	256	1.8	5.8	Lead-Free TQFP	144	96	С
LU4200ZE	LC4256ZE-7TN144C	256	1.8	7.5	Lead-Free TQFP	144	96	С
	LC4256ZE-5MN144C	256	1.8	5.8	Lead-Free csBGA	144	108	С
	LC4256ZE-7MN144C	256	1.8	7.5	Lead-Free csBGA	144	108	С