

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Not For New Designs
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	1.7V ~ 1.9V
Number of Logic Elements/Blocks	8
Number of Macrocells	128
Number of Gates	-
Number of I/O	96
Operating Temperature	0°C ~ 90°C (TJ)
Mounting Type	Surface Mount
Package / Case	132-VFBGA
Supplier Device Package	132-UCBGA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4128ze-7umn132c

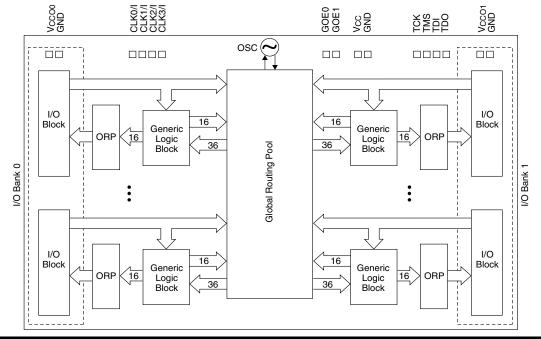
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

The high performance ispMACH 4000ZE family from Lattice offers an ultra low power CPLD solution. The new family is based on Lattice's industry-leading ispMACH 4000 architecture. Retaining the best of the previous generation, the ispMACH 4000ZE architecture focuses on significant innovations to combine high performance with low power in a flexible CPLD family. For example, the family's new Power Guard feature minimizes dynamic power consumption by preventing internal logic toggling due to unnecessary I/O pin activity.

The ispMACH 4000ZE combines high speed and low power with the flexibility needed for ease of design. With its robust Global Routing Pool and Output Routing Pool, this family delivers excellent First-Time-Fit, timing predictability, routing, pin-out retention and density migration.


The ispMACH 4000ZE family offers densities ranging from 32 to 256 macrocells. There are multiple density-I/O combinations in Thin Quad Flat Pack (TQFP), Chip Scale BGA (csBGA), and Ultra Chip Scale BGA (ucBGA) packages ranging from 32 to 144 pins/balls. Table 1 shows the macrocell, package and I/O options, along with other key parameters.

A user programmable internal oscillator and a timer are included in the device for tasks like LED control, keyboard scanner and similar housekeeping type state machines. This feature can be optionally disabled to save power.

The ispMACH 4000ZE family has enhanced system integration capabilities. It supports a 1.8V supply voltage and 3.3V, 2.5V, 1.8V and 1.5V interface voltages. Additionally, inputs can be safely driven up to 5.5V when an I/O bank is configured for 3.3V operation, making this family 5V tolerant. The ispMACH 4000ZE also offers enhanced I/O features such as slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down resistors, open drain outputs and hot socketing. Pull-up, pull-down and bus-keeper features are controllable on a "per-pin" basis. The ispMACH 4000ZE family members are 1.8V in-system programmable through the IEEE Standard 1532 interface. IEEE Standard 1149.1 boundary scan testing capability also allows product testing on automated test equipment. The 1532 interface signals TCK, TMS, TDI and TDO are referenced to V_{CC} (logic core).

Overview

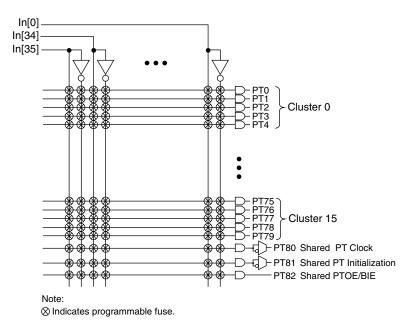
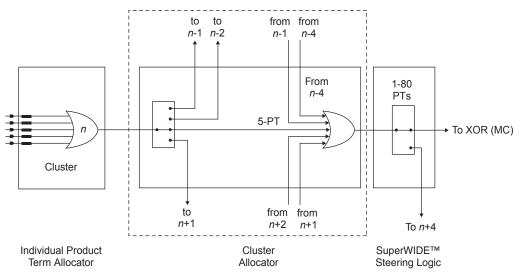

The ispMACH 4000ZE devices consist of multiple 36-input, 16-macrocell Generic Logic Blocks (GLBs) interconnected by a Global Routing Pool (GRP). Output Routing Pools (ORPs) connect the GLBs to the I/O Blocks (IOBs), which contain multiple I/O cells. This architecture is shown in Figure 1.

Figure 1. Functional Block Diagram

Figure 3. AND Array

Enhanced Logic Allocator


Within the logic allocator, product terms are allocated to macrocells in product term clusters. Each product term cluster is associated with a macrocell. The cluster size for the ispMACH 4000ZE family is 4+1 (total 5) product terms. The software automatically considers the availability and distribution of product term clusters as it fits the functions within a GLB. The logic allocator is designed to provide two speed paths: 20-PT Speed Locking path and an up to 80-PT path. The availability of these two paths lets designers trade timing variability for increased performance.

The enhanced Logic Allocator of the ispMACH 4000ZE family consists of the following blocks:

- Product Term Allocator
- Cluster Allocator
- Wide Steering Logic

Figure 4 shows a macrocell slice of the Logic Allocator. There are 16 such slices in the GLB.

Figure 4. Macrocell Slice

- Block CLK2
- Block CLK3
- PT Clock
- PT Clock Inverted
- Shared PT Clock
- Ground

Clock Enable Multiplexer

Each macrocell has a 4:1 clock enable multiplexer. This allows the clock enable signal to be selected from the following four sources:

- PT Initialization/CE
- PT Initialization/CE Inverted
- Shared PT Clock
- Logic High

Initialization Control

The ispMACH 4000ZE family architecture accommodates both block-level and macrocell-level set and reset capability. There is one block-level initialization term that is distributed to all macrocell registers in a GLB. At the macrocell level, two product terms can be "stolen" from the cluster associated with a macrocell to be used for set/reset functionality. A reset/preset swapping feature in each macrocell allows for reset and preset to be exchanged, providing flexibility.

Note that the reset/preset swapping selection feature affects power-up reset as well. All flip-flops power up to a known state for predictable system initialization. If a macrocell is configured to SET on a signal from the block-level initialization, then that macrocell will be SET during device power-up. If a macrocell is configured to RESET on a signal from the block-level initialization or is not configured for set/reset, then that macrocell will RESET on power-up. To guarantee initialization values, the V_{CC} rise must be monotonic, and the clock must be inactive until the reset delay time has elapsed.

GLB Clock Generator

Each ispMACH 4000ZE device has up to four clock pins that are also routed to the GRP to be used as inputs. These pins drive a clock generator in each GLB, as shown in Figure 6. The clock generator provides four clock signals that can be used anywhere in the GLB. These four GLB clock signals can consist of a number of combinations of the true and complement edges of the global clock signals.

Figure 6. GLB Clock Generator

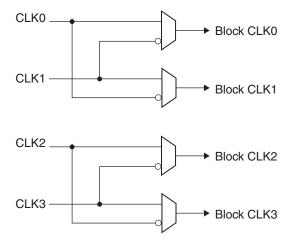
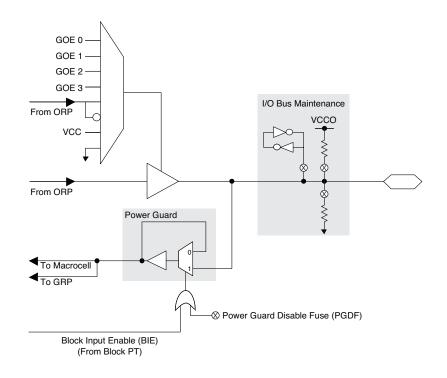



Figure 8. I/O Cell

Each output supports a variety of output standards dependent on the V_{CCO} supplied to its I/O bank. Outputs can also be configured for open drain operation. Each input can be programmed to support a variety of standards, independent of the V_{CCO} supplied to its I/O bank. The I/O standards supported are:

• LVTTL	 LVCMOS 1.8
 LVCMOS 3.3 	 LVCMOS 1.5
 LVCMOS 2.5 	 3.3V PCI Compatible

All of the I/Os and dedicated inputs have the capability to provide a bus-keeper latch, pull-up resistor or pull-down resistor selectable on a "per-pin" basis. A fourth option is to provide none of these. The default in both hardware and software is such that when the device is erased or if the user does not specify, the input structure is configured to be a Pull-down Resistor.

Each ispMACH 4000ZE device I/O has an individually programmable output slew rate control bit. Each output can be individually configured for fast slew or slow slew. The typical edge rate difference between fast and slow slew setting is 20%. For high-speed designs with long, unterminated traces, the slow-slew rate will introduce fewer reflections, less noise and keep ground bounce to a minimum. For designs with short traces or well terminated lines, the fast slew rate can be used to achieve the highest speed.

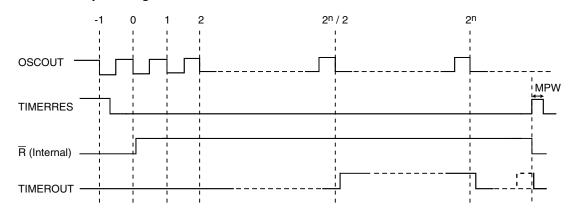
The ispMACH 4000ZE family has an always on, 200mV typical hysteresis for each input operational at 3.3V and 2.5V. This provides improved noise immunity for slow transitioning signals.

Power Guard

Power Guard allows easier achievement of standby current in the system. As shown in Figure 9, this feature consists of an enabling multiplexer between an I/O pin and input buffer, and its associated circuitry inside the device.

If the enable signal (E) is held low, all inputs (D) can be optionally isolated (guarded), such that, if any of these were toggled, it would not cause any toggle on internal pins (Q), thus, a toggling I/O pin will not cause any internal dynamic power consumption.

Figure 13. On-Chip Oscillator and Timer


Table 11. On-Chip Oscillator and Timer Signal Names

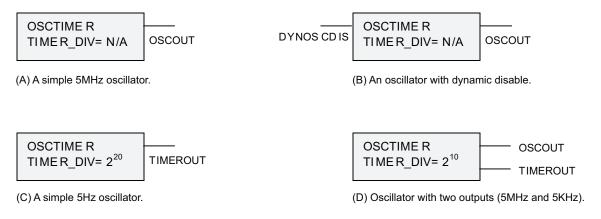
Signal Name	Input or Out- put	Optional / Required	Description
OSCOUT	Output	Optional	Oscillator Output (Nominal Frequency: 5MHz)
TIMEROUT	Output	Optional	Oscillator Frequency Divided by an integer TIMER_DIV (Default 128)
TIMERRES	Input	Optional	Reset the Timer
DYNOSCDIS	Input	Optional	Disables the Oscillator, resets the Timer and saves the power.

OSCTIMER has two outputs, OSCOUT and TIMEROUT. The outputs feed into the Global Routing Pool (GRP). From GRP, these signals can drive any macrocell input, as well as any output pin (with macrocell bypass). The output OSCOUT is the direct oscillator output with a typical frequency of 5MHz, whereas, the output TIMEROUT is the oscillator output divided by an attribute TIMER_DIV.

The attribute TIMER_DIV can be: 128 (7 bits), 1024 (10 bits) or 1,048,576 (20 bits). The divided output is provided for those user situations, where a very slow clock is desired. If even a slower toggling clock is desired, then the programmable macrocell resources can be used to further divide down the TIMEROUT output.

Figure 14 shows the simplified relationship among OSCOUT, TIMERRES and TIMEROUT. In the diagram, the signal " \overline{R} " is an internal reset signal that is used to synchronize TIMERRES to OSCOUT. This adds one extra clock cycle delay for the first timer transition after TIMERRES.

Figure 14. Relationship Among OSCOUT, TIMERRES and TIMEROUT


Note: n = Number of bits in the divider (7, 10 or 20) Metastability: If the signal TIMERRES is not synchronous to OSCOUT, it could make a difference of one or two clock cycles to the TIMEROUT going high the first time.

Some Simple Use Scenarios

The following diagrams show a few simple examples that omit optional signals for the OSCTIMER block:

- A. An oscillator giving 5MHz nominal clock
- B. An oscillator that can be disabled with an external signal (5MHz nominal clock)
- C. An oscillator giving approximately 5 Hz nominal clock (TIMER_DIV = 2^{20} (1,048,576))
- D. An oscillator giving two output clocks: ~5MHz and ~5KHz (TIMER_DIV= 2¹⁰ (1,024))

OSCTIMER Integration With CPLD Fabric

The OSCTIMER is integrated into the CPLD fabric using the Global Routing Pool (GRP). The macrocell (MC) feedback path for two macrocells is augmented with a programmable multiplexer, as shown in Figure 15. The OSC-TIMER outputs (OSCOUT and TIMEROUT) can optionally drive the GRP lines, whereas the macrocell outputs can drive the optional OSCTIMER inputs TIMERRES and DYNOSCDIS.

Figure 15. OSCTIMER Integration With CPLD Fabric

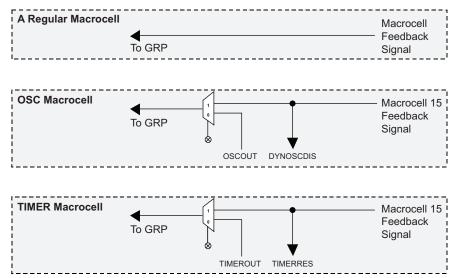


Table 12 shows how these two MCs are designated in each of the ispMACH4000ZE device.

I/O Recommended Operating Conditions

	V _{CCO} (V) ¹				
Standard	Min.	Max.			
LVTTL	3.0	3.6			
LVCMOS 3.3	3.0	3.6			
Extended LVCMOS 3.3	2.7	3.6			
LVCMOS 2.5	2.3	2.7			
LVCMOS 1.8	1.65	1.95			
LVCMOS 1.5	1.4	1.6			
PCI 3.3	3.0	3.6			

1. Typical values for V_{CCO} are the average of the min. and max. values.

DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
$I_{\rm IL}, I_{\rm IH}^{1,2}$	Input Leakage Current	$0 \le V_{IN} < V_{CCO}$	—	0.5	1	μΑ
I _{IH} ¹	Input High Leakage Current	$V_{CCO} < V_{IN} \le 5.5V$	—		10	μΑ
I _{PU}	I/O Weak Pull-up Resistor Current	$0 \le V_{IN} \le 0.7 V_{CCO}$	-20		-150	μΑ
I _{PD}	I/O Weak Pull-down Resistor Current	V_{IL} (MAX) $\leq V_{IN} \leq V_{IH}$ (MAX)	30		150	μA
I _{BHLS}	Bus Hold Low Sustaining Current	$V_{IN} = V_{IL} (MAX)$	30		—	μΑ
I _{BHHS}	Bus Hold High Sustaining Current	$V_{IN} = 0.7 V_{CCO}$	-20		—	μΑ
I _{BHLO}	Bus Hold Low Overdrive Current	$0V \le V_{IN} \le V_{BHT}$	—		150	μΑ
I _{BHHO}	Bus Hold High Overdrive Current	$V_{BHT} \le V_{IN} \le V_{CCO}$	—		-150	μΑ
V _{BHT}	Bus Hold Trip Points	—	V _{CCO} * 0.35		V _{CCO} * 0.65	V
C ₁	I/O Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V, 1.5V	—	8	—	pf
01	1/O Capacitance	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	—	0	—	рі
C ₂	Clock Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V, 1.5V	—	6	—	nf
02	Clock Capacitance	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	—	0	—	pf
C ₃	Global Input Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V, 1.5V	—	6	—	pf
\cup_3		V_{CC} = 1.8V, V_{IO} = 0 to V_{IH} (MAX)	—	0	—	Ы

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tristated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

 I_{IH} excursions of up to 1.5µA maximum per pin above the spec limit may be observed for certain voltage conditions on no more than 10% of the device's I/O pins.

3. Measured $T_A = 25^{\circ}C$, f = 1.0MHz.

Supply Current

To minimize transient current during power-on, configure CPLD I/Os to a pull-up or float state. If this logic scenario is not possible, then the recommended power sequence should assert VCC and VCCO at the same time or VCC before VCCO.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
ispMACH 4	032ZE					
		$Vcc = 1.8V, T_A = 25^{\circ}C$	—	50	—	μA
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	—	58	—	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	—	60	—	μA
		$Vcc = 1.8V, T_A = 25^{\circ}C$	_	10	—	μA
ICC ^{4, 5, 6}	Standby Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	13	25	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	_	15	40	μA
ispMACH 4	064ZE					
		$Vcc = 1.8V, T_A = 25^{\circ}C$		80	—	μA
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	89	—	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	—	92	—	μA
		$Vcc = 1.8V, T_A = 25^{\circ}C$	_	11	—	μA
ICC ^{4, 5, 6}	Standby Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	15	30	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	—	18	50	μA
ispMACH 4	128ZE	· · · · ·		•		·
		$Vcc = 1.8V, T_A = 25^{\circ}C$	—	168	_	μΑ
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	190	—	μA
		$Vcc = 1.9V$, $T_A = -40$ to $85^{\circ}C$	_	195	—	μA
		$Vcc = 1.8V, T_A = 25^{\circ}C$	—	12	_	μA
ICC ^{4, 5, 6}	Standby Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	16	40	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	—	19	60	μA
ispMACH 4	256ZE		-			
		$Vcc = 1.8V, T_A = 25^{\circ}C$		341	—	μΑ
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	-	361	—	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	-	372	—	μA
		$Vcc = 1.8V, T_A = 25^{\circ}C$	-	13	—	μA
ICC ^{4, 5, 6}	Standby Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	—	32	65	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	_	43	100	μA

1. Frequency = 1.0 MHz.

2. Device configured with 16-bit counters.

3. I_{CC} varies with specific device configuration and operating frequency.

4. V_{CCO} = 3.6V, V_{IN} = 0V or V_{CCO}, bus maintenance turned off. V_{IN} above V_{CCO} will add transient current above the specified standby I_{CC}.

5. Includes V_{CCO} current without output loading.

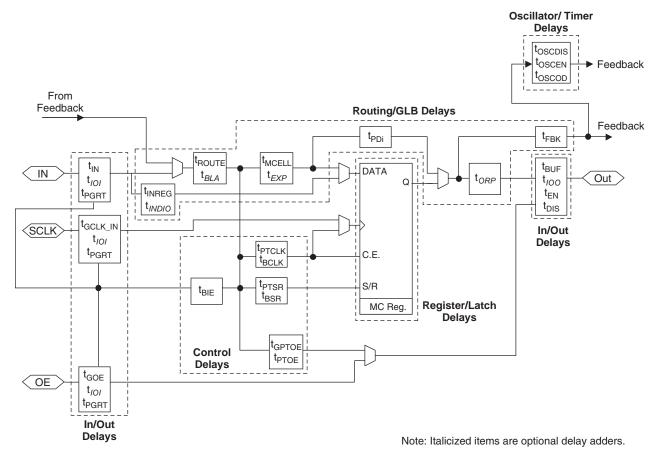
6. This operating supply current is with the internal oscillator disabled. Enabling the internal oscillator adds approximately 15µA typical current plus additional current from any logic it drives.

ispMACH 4000ZE External Switching Characteristics

	Description ^{1, 2})32ZE	LC4064ZE		All Devices				
			4	-	4	-5		-7		-
Parameter			Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PD}	20-PT combinatorial propagation delay	—	4.4	—	4.7	—	5.8	—	7.5	ns
t _S	GLB register setup time before clock	2.2	—	2.5	—	2.9	—	4.5	—	ns
t _{ST}	GLB register setup time before clock with T-type register	2.4	_	2.7	—	3.1	—	4.7	—	ns
t _{SIR}	GLB register setup time before clock, input register path	1.0	_	1.1	—	1.3	—	1.4	—	ns
t _{SIRZ}	GLB register setup time before clock with zero hold	2.0	_	2.1	—	2.9	—	4.0	—	ns
t _H	GLB register hold time after clock	0.0	_	0.0	—	0.0	—	0.0	—	ns
t _{HT}	GLB register hold time after clock with T-type register	0.0	_	0.0	—	0.0	—	0.0	—	ns
t _{HIR}	GLB register hold time after clock, input register path	1.0	_	1.0	—	1.3	—	1.3	—	ns
t _{HIRZ}	GLB register hold time after clock, input register path with zero hold	0.0	_	0.0	—	0.0	—	0.0	—	ns
t _{co}	GLB register clock-to-output delay	_	3.0	—	3.2	—	3.8	_	4.5	ns
t _R	External reset pin to output delay	—	5.0	—	6.0	—	7.5	—	9.0	ns
t _{RW}	External reset pulse duration	1.5	_	1.7	—	2.0	—	4.0	—	ns
t _{PTOE/DIS}	Input to output local product term output enable/disable	_	7.0	_	8.0	_	8.2	_	9.0	ns
t _{GPTOE/DIS}	Input to output global product term output enable/disable	_	6.5	_	7.0	_	10.0	_	10.5	ns
t _{GOE/DIS}	Global OE input to output enable/disable	_	4.5	_	4.5	_	5.5		7.0	ns
t _{CW}	Global clock width, high or low	1.0	_	1.5	—	1.8	—	2.8	—	ns
t _{GW}	Global gate width low (for low transparent) or high (for high transparent)	1.0	_	1.5	_	1.8	_	2.8	_	ns
t _{WIR}	Input register clock width, high or low	1.0	—	1.5	—	1.8	—	2.8	—	ns
f _{MAX} (Int.) ³	Clock frequency with internal feedback		260	—	241		200		172	MHz
f _{MAX} (Ext.)	clock frequency with external feedback, $[1 / (t_S + t_{CO})]$	_	192	-	175	_	149	_	111	MHz

Over Recommended Operating Conditions

1. Timing numbers are based on default LVCMOS 1.8 I/O buffers. Use timing adjusters provided to calculate other standards.


Measured using standard switching GRP loading of 1 and 1 output switching.
 Standard 16-bit counter using GRP feedback.

Timing v.0.8

Timing Model

The task of determining the timing through the ispMACH 4000ZE family, like any CPLD, is relatively simple. The timing model provided in Figure 16 shows the specific delay paths. Once the implementation of a given function is determined either conceptually or from the software report file, the delay path of the function can easily be determined from the timing model. The Lattice design tools report the timing delays based on the same timing model for a particular design. Note that the internal timing parameters are given for reference only, and are not tested. The external timing parameters are tested and guaranteed for every device. For more information on the timing model and usage, refer to TN1168, jspMACH 4000ZE Timing Model Design and Usage Guidelines.

Figure 16. ispMACH 4000ZE Timing Model

ispMACH 4000ZE Internal Timing Parameters (Cont.)

Over Recommended Operating Conditions

			LC40	32ZE	LC40	64ZE	
			-	4	-	4	
Parameter	Description		Min.	Max.	Min.	Max.	Units
LVCMOS15_out	Output Configured as 1.5V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns
LVCMOS18_out	Output Configured as 1.8V Buffer	t _{EN} , t _{DIS} , t _{BUF}	—	0.00	_	0.00	ns
LVCMOS25_out	Output Configured as 2.5V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.10	—	0.10	ns
LVCMOS33_out	Output Configured as 3.3V Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	—	0.20	ns
PCI_out	Output Configured as PCI Compati- ble Buffer	t _{EN} , t _{DIS} , t _{BUF}	_	0.20	_	0.20	ns
Slow Slew	Output Configured for Slow Slew Rate	t _{EN} , t _{BUF}	_	1.00	_	1.00	ns

Note: Internal Timing Parameters are not tested and are for reference only. Refer to the timing model in this data sheet for further details. Timing v.0.8

ispMACH 4032ZE and 4064ZE Logic Signal Connections: 48 TQFP

		ispMACH 4032ZE	ispMACH 4064ZE	
Pin Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad	
1	-	TDI	TDI	
2	0	A5	A8	
3	0	A6	A10	
4	0	A7	A11	
5	0	GND (Bank 0)	GND (Bank 0)	
6	0	VCCO (Bank 0)	VCCO (Bank 0)	
7	0	A8	B15	
8	0	A9	B12	
9	0	A10	B10	
10	0	A11	B8	
11	-	ТСК	TCK	
12	-	VCC	VCC	
13	-	GND	GND	
14	0	A12	B6	
15	0	A13	B4	
16	0	A14	B2	
17	0	A15	B0	
18	0	CLK1/I	CLK1/I	
19	1	CLK2/I	CLK2/I	
20	1	B0	CO	
21	1	B1	C1	
22	1	B2	C2	
23	1	B3	C4	
24	1	B4	C6	
25	-	TMS	TMS	
26	1	B5	C8	
27	1	B6	C10	
28	1	B7	C11	
29	1	GND (Bank 1)	GND (Bank 1)	
30	1	VCCO (Bank 1)	VCCO (Bank 1)	
31	1	B8	D15	
32	1	B9	D12	
33	1	B10	D10	
34	1	B11	D8	
35	-	TDO	TDO	
36	-	VCC	VCC	
37	-	GND	GND	
38	1	B12	D6	
39	1	B13	D4	
40	1	B14	D2	
41	1	B15/GOE1	D0/GOE1	
42	1	CLK3/I	CLK3/I	

ispMACH 4032ZE and 4064ZE Logic Signal Connections: 48 TQFP (Cont.)

		ispMACH 4032ZE	ispMACH 4064ZE
Pin Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad
43	0	CLK0/I	CLK0/I
44	0	A0/GOE0	A0/GOE0
45	0	A1	A1
46	0	A2	A2
47	0	A3	A4
48	0	A4	A6

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 100 TQFP (Cont.)

Pin Bank		LC4064ZE	LC4128ZE	LC4256ZE
Number	Number			GLB/MC/Pad
42	1	C1	E2	16
43	1	C2	E4	110
44	1	C3	E6	112
45	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
46	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
47	1	C4	E8	J2
48	1	C5	E10	J6
49	1	C6	E12	J10
50	1	C7	E14	J12
51	-	GND	GND	GND
52	-	TMS	TMS	TMS
53	1	C8	F0	K12
54	1	C9	F2	K10
55	1	C10	F4	K6
56	1	C11	F6	K2
57	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
58	1	C12	F8	L12
59	1	C13	F10	L10
60	1	C14	F12	L6
61	1	C15	F13	L4
62*	1	I	I	I
63	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)
64	1	D15	G14	M4
65	1	D14	G12	M6
66	1	D13	G10	M10
67	1	D12	G8	M12
68	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)
69	1	D11	G6	N2
70	1	D10	G5	N6
71	1	D9	G4	N10
72	1	D8	G2	N12
73*	1		I	I
74	-	TDO	TDO	TDO
75	-	VCC	VCC	VCC
76	-	GND	GND	GND
77*	1		I	I
78	1	D7	H13 O	
79	1	D6	H12	O10
80	1	D5	H10	O6
81	1	D4	H8	O2
82	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA (Cont.)

Ball Bank		LC4064ZE	LC4128ZE	LC4256ZE		
Number	Number GLB/MC/Pad		GLB/MC/Pad	GLB/MC/Pad		
J4	0	B7	D12	G6		
K4	0	B6	D10	G4		
M3	0	B5	D9	G2		
L4	0	B4	D8	G0		
H6	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)		
J5	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)		
M4	0	NC Ball	D6	H12		
L5	0	NC Ball	D5	H10		
K5	0	B3	D4	H8		
J6	0	B2	D2	H6		
M5	0	B1	D1	H4		
K6	0	B0	D0	H2		
L6	0	CLK1/I	CLK1/I	CLK1/I		
H7	1	NC Ball	GND (Bank 1)	GND (Bank 1)		
M6	1	CLK2/I	CLK2/I	CLK2/I		
H8	-	VCC	VCC	VCC		
K7	1	C0	E0	12		
M7	1	C1	E1	14		
L7	1	C2	E2	16		
J7	1	C3	E4	18		
L8	1	NC Ball	E5	110		
M8	1	NC Ball	E6	12		
J8	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)		
J9	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)		
M9	1	C4	E8	J2		
L9	1	C5	E9	J4		
K8	1	C6	E10	J6		
M10	1	C7	E12	J8		
L10	1	NC Ball	E13	J10		
K9	1	NC Ball	E14	J12		
M11	1	NC Ball	NC Ball	J14		
G7	-	GND	GND	GND		
M12	-	TMS	TMS	TMS		
H9	1	NC Ball	VCCO (Bank 1)	VCCO (Bank 1)		
L12	1	NC Ball	F0	K12		
L11	1	NC Ball	F1	K10		
K10	1	C8	F2	K8		
K12	1	C9	F4	K6		
J10	1	C10	F5	K4		
K11	1	C11	F6	K2		
G8	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)		

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA (Cont.)

Ball	Bank	LC4064ZE	LC4128ZE	LC4256ZE		
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad		
J12	1	NC Ball	NC Ball	L14		
J11	1	NC Ball	NC Ball	L12		
H10	1	NC Ball	F8	L10		
H12	1	C12	F9	L8		
G11	1	C13	F10	L6		
H11	1	C14	F12	L4		
G12	1	C15	F13	L2		
G10*	1	I	F14	LO		
G9	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)		
F12	1	D15	G14	MO		
F11	1	D14	G13	M2		
E11	1	D13	G12	M4		
E12	1	D12	G10	M6		
D10	1	NC Ball	G9	M8		
F10	1	NC Ball	G8	M10		
D12	1	NC Ball	NC Ball	M12		
F8	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)		
E10	1	D11	G6	N2		
D11	1	D10	G5	N4		
E9	1	D9	G4	N6		
C12	1	D8	G2	N8		
C11*	1	I	G1	N10		
B12	1	NC Ball	G0	N12		
F9	1	NC Ball	VCCO (Bank 1)	VCCO (Bank 1)		
B11	-	TDO	TDO	TDO		
E8	-	VCC	VCC	VCC		
F7	-	GND	GND	GND		
A12	1	NC Ball	NC Ball	O14		
C10	1	NC Ball	NC Ball	012		
B10	1	NC Ball	H14	O10		
A11*	1		H13	O8		
D9	1	D7	H12	O6		
B9	1	D6	H10	04		
C9	1	D5	H9	02		
A10	1	D4	H8	O0		
E7	1	GND (Bank 1)	GND (Bank 1)	GND (Bank 1)		
D8	1	VCCO (Bank 1)	VCCO (Bank 1)	VCCO (Bank 1)		
A9	1	NC Ball	H6	P12		
B8	1	NC Ball	H5	P10		
C8	1	D3	H4	P8		
A8	1	D2	H2	P6		
D7	1	D1	H1	P4		
R7	1		H0/GOE1	P2/GOE1		

ispMACH 4128ZE and 4256ZE Logic Signal Connections: 144 TQFP

		LC4128ZE	LC4256ZE	
Pin Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad	
1	-	GND	GND	
2	-	TDI	TDI	
3	0	VCCO (Bank 0)	VCCO (Bank 0)	
4	0	B0	C12	
5	0	B1	C10	
6	0	B2	C8	
7	0	B4	C6	
8	0	B5	C4	
9	0	B6	C2	
10	0	GND (Bank 0)	GND (Bank 0)	
11	0	B8	D14	
12	0	B9	D12	
13	0	B10	D10	
14	0	B12	D8	
15	0	B13	D6	
16	0	B14	D4	
17*	0	NC	l	
18	0	GND (Bank 0)	NC	
19	0	VCCO (Bank 0)	VCCO (Bank 0)	
20*	0	NC	l	
21	0	C14	E2	
22	0	C13	E4	
23	0	C12	E6	
24	0	C10	E8	
25	0	C9	E10	
26	0	C8	E12	
27	0	GND (Bank 0)	GND (Bank 0)	
28	0	C6	F2	
29	0	C5	F4	
30	0	C4	F6	
31	0	C2	F8	
32	0	C1	F10	
33	0	C0	F12	
34	0	VCCO (Bank 0)	VCCO (Bank 0)	
35	-	ТСК	TCK	
36	-	VCC	VCC	
37	-	GND	GND	
38*	0	NC	I	
39	0	D14	G12	
40	0	D13	G10	
41	0	D12	G8	
42	0	D10	G6	

ispMACH 4128ZE and 4256ZE Logic Signal Connections: 144 TQFP (Cont.)

		LC4128ZE	LC4256ZE	
Pin Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad	
43	0	D9	G4	
44	0	D8	G2	
45*	0	NC	I	
46	0	GND (Bank 0)	GND (Bank 0)	
47	0	VCCO (Bank 0)	VCCO (Bank 0)	
48	0	D6	H12	
49	0	D5	H10	
50	0	D4	H8	
51	0	D2	H6	
52	0	D1	H4	
53	0	D0	H2	
54	0	CLK1/I	CLK1/I	
55	1	GND (Bank 1)	GND (Bank 1)	
56	1	CLK2/I	CLK2/I	
57	-	VCC	VCC	
58	1	E0	12	
59	1	E1	14	
60	1	E2	16	
61	1	E4	18	
62	1	E5	110	
63	1	E6	112	
64	1	VCCO (Bank 1)	VCCO (Bank 1)	
65	1	GND (Bank 1)	GND (Bank 1)	
66	1	E8	J2	
67	1	E9	J4	
68	1	E10	J6	
69	1	E12	J8	
70	1	E13	J10	
71	1	E14	J12	
72*	1	NC	I	
73	-	GND	GND	
74	-	TMS	TMS	
75	1	VCCO (Bank 1)	VCCO (Bank 1)	
76	1	F0	K12	
77	1	F1	K10	
78	1	F2	K8	
79	1	F4	K6	
80	1	F5	K4	
81	1	F6	K2	
82	1	GND (Bank 1)	GND (Bank 1)	
83	1	F8	L14	
84	1	F9	L12	
85	1	F10	L10	

ispMACH 4128ZE and 4256ZE Logic Signal Connections: 144 TQFP (Cont.)

		LC4128ZE	LC4256ZE GLB/MC/Pad	
Pin Number	Bank Number	GLB/MC/Pad		
86	1	F12	L8	
87	1	F13	L6	
88	1	F14	L4	
89*	1	NC	I	
90	1	GND (Bank 1)	NC	
91	1	VCCO (Bank 1)	VCCO (Bank 1)	
92*	1	NC	I	
93	1	G14	M2	
94	1	G13	M4	
95	1	G12	M6	
96	1	G10	M8	
97	1	G9	M10	
98	1	G8	M12	
99	1	GND (Bank 1)	GND (Bank 1)	
100	1	G6	N2	
101	1	G5	N4	
102	1	G4	N6	
103	1	G2	N8	
104	1	G1	N10	
105	1	G0	N12	
106	1	VCCO (Bank 1)	VCCO (Bank 1)	
107	-	TDO	TDO	
108	-	VCC	VCC	
109	-	GND	GND	
110*	1	NC	I	
111	1	H14	O12	
112	1	H13	O10	
113	1	H12	O8	
114	1	H10	O6	
115	1	H9	04	
116	1	H8	02	
117*	1	NC	I	
118	1	GND (Bank 1)	GND (Bank 1)	
119	1	VCCO (Bank 1)	VCCO (Bank 1)	
120	1	H6	P12	
121	1	H5	P10	
122	1	H4	P8	
123	1	H2	P6	
124	1	H1	P4	
125	1	H0/GOE1	P2/GOE1	
126	1	CLK3/I	CLK3/I	
127	0	GND (Bank 0)	GND (Bank 0)	
128	0	CLK0/I	CLK0/I	

Industrial										
Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade		
LC4032ZE	LC4032ZE-5TN48I	32	1.8	5.8	Lead-Free TQFP	48	32	Ι		
	LC4032ZE-7TN48I	32	1.8	7.5	Lead-Free TQFP	48	32	Ι		
	LC4032ZE-5MN64I	32	1.8	5.8	Lead-Free csBGA	64	32	Ι		
	LC4032ZE-7MN64I	32	1.8	7.5	Lead-Free csBGA	64	32	Ι		
	LC4064ZE-5TN48I	64	1.8	5.8	Lead-Free TQFP	48	32	Ι		
	LC4064ZE-7TN48I	64	1.8	7.5	Lead-Free TQFP	48	32	Ι		
	LC4064ZE-5TN100I	64	1.8	5.8	Lead-Free TQFP	100	64	Ι		
	LC4064ZE-7TN100I	64	1.8	7.5	Lead-Free TQFP	100	64	Ι		
	LC4064ZE-5MN64I	64	1.8	5.8	Lead-Free csBGA	64	48	Ι		
LC4064ZE	LC4064ZE-7MN64I	64	1.8	7.5	Lead-Free csBGA	64	48	Ι		
	LC4064ZE-5UMN64I	64	1.8	5.8	Lead-Free ucBGA	64	48	Ι		
	LC4064ZE-7UMN64I	64	1.8	7.5	Lead-Free ucBGA	64	48	Ι		
	LC4064ZE-5MN144I	64	1.8	5.8	Lead-Free csBGA	144	64	Ι		
	LC4064ZE-7MN144I	64	1.8	7.5	Lead-Free csBGA	144	64	Ι		
	LC4128ZE-7TN100I	128	1.8	7.5	Lead-Free TQFP	100	64	I		
LC4128ZE	LC4128ZE-7UMN132I	128	1.8	7.5	Lead-Free ucBGA	132	96	Ι		
LC41282E	LC4128ZE-7TN144I	128	1.8	7.5	Lead-Free TQFP	144	96	Ι		
	LC4128ZE-7MN144I	128	1.8	7.5	Lead-Free csBGA	144	96	Ι		
	LC4256ZE-7TN100I	256	1.8	7.5	Lead-Free TQFP	100	64	Ι		
LC4256ZE	LC4256ZE-7TN144I	256	1.8	7.5	Lead-Free TQFP	144	96	Ι		
	LC4256ZE-7MN144I	256	1.8	7.5	Lead-Free csBGA	144	108	I		

1. Contact factory for product availability.

For Further Information

In addition to this data sheet, the following technical notes may be helpful when designing with the ispMACH 4000ZE family:

- TN1168, ispMACH 4000ZE Timing Model Design and Usage Guidelines
- TN1174, Advanced Features of the ispMACH 4000ZE Family
- TN1187, Power Estimation in ispMACH 4000ZE Devices
- Package Diagrams

Technical Support Assistance

- Hotline: 1-800-LATTICE (North America)
 - +1-503-268-8001 (Outside North America)
- e-mail: techsupport@latticesemi.com
- Internet: <u>www.latticesemi.com</u>