

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

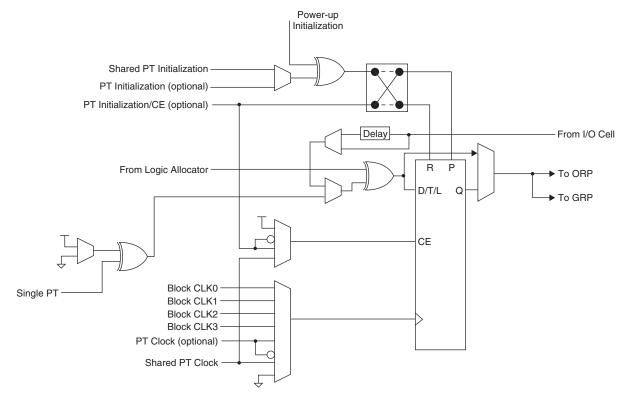
Details

Product Status	Not For New Designs
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	1.7V ~ 1.9V
Number of Logic Elements/Blocks	8
Number of Macrocells	128
Number of Gates	-
Number of I/O	96
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	132-VFBGA
Supplier Device Package	132-UCBGA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lc4128ze-7umn132i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Expansion Chains	Macrocells Associated with Expansion Chain (with Wrap Around)	Max PT/ Macrocell
Chain-0	M0 Õ M4 Õ M8 Õ M12 Õ M0	75
Chain-1	M1 Õ M5 Õ M9 Õ M13 Õ M1	80
Chain-2	M2 Õ M6 Õ M10 Õ M14 Õ M2	75
Chain-3	M3 Õ M7 Õ M11 Õ M15 Õ M3	70

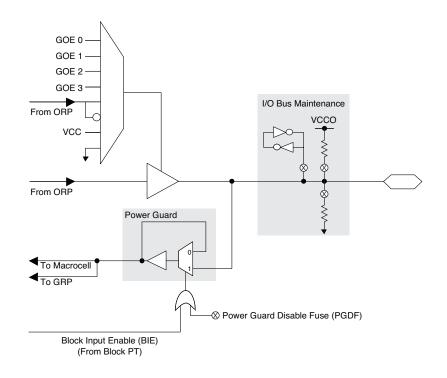

Table 4. Product Term Expansion Capability

Every time the super cluster allocator is used, there is an incremental delay of t_{EXP} . When the super cluster allocator is used, all destinations other than the one being steered to, are given the value of ground (i.e., if the super cluster is steered to M (n+4), then M (n) is ground).

Macrocell

The 16 macrocells in the GLB are driven by the 16 outputs from the logic allocator. Each macrocell contains a programmable XOR gate, a programmable register/latch, along with routing for the logic and control functions. Figure 5 shows a graphical representation of the macrocell. The macrocells feed the ORP and GRP. A direct input from the I/O cell allows designers to use the macrocell to construct high-speed input registers. A programmable delay in this path allows designers to choose between the fastest possible set-up time and zero hold time.

Figure 5. Macrocell


Enhanced Clock Multiplexer

The clock input to the flip-flop can select any of the four block clocks along with the shared PT clock, and true and complement forms of the optional individual term clock. An 8:1 multiplexer structure is used to select the clock. The eight sources for the clock multiplexer are as follows:

- Block CLK0
- Block CLK1

Figure 8. I/O Cell

Each output supports a variety of output standards dependent on the V_{CCO} supplied to its I/O bank. Outputs can also be configured for open drain operation. Each input can be programmed to support a variety of standards, independent of the V_{CCO} supplied to its I/O bank. The I/O standards supported are:

• LVTTL	 LVCMOS 1.8
 LVCMOS 3.3 	 LVCMOS 1.5
 LVCMOS 2.5 	 3.3V PCI Compatible

All of the I/Os and dedicated inputs have the capability to provide a bus-keeper latch, pull-up resistor or pull-down resistor selectable on a "per-pin" basis. A fourth option is to provide none of these. The default in both hardware and software is such that when the device is erased or if the user does not specify, the input structure is configured to be a Pull-down Resistor.

Each ispMACH 4000ZE device I/O has an individually programmable output slew rate control bit. Each output can be individually configured for fast slew or slow slew. The typical edge rate difference between fast and slow slew setting is 20%. For high-speed designs with long, unterminated traces, the slow-slew rate will introduce fewer reflections, less noise and keep ground bounce to a minimum. For designs with short traces or well terminated lines, the fast slew rate can be used to achieve the highest speed.

The ispMACH 4000ZE family has an always on, 200mV typical hysteresis for each input operational at 3.3V and 2.5V. This provides improved noise immunity for slow transitioning signals.

Power Guard

Power Guard allows easier achievement of standby current in the system. As shown in Figure 9, this feature consists of an enabling multiplexer between an I/O pin and input buffer, and its associated circuitry inside the device.

If the enable signal (E) is held low, all inputs (D) can be optionally isolated (guarded), such that, if any of these were toggled, it would not cause any toggle on internal pins (Q), thus, a toggling I/O pin will not cause any internal dynamic power consumption.

The number of BIE inputs, thus the number of Power Guard "Blocks" that can exist in a device, depends on the device size. Table 8 shows the number of BIE signals available in the ispMACH 4000ZE family. The number of I/Os available in each block is shown in the Ordering Information section of this data sheet.

Device	Number of Logic Blocks, Power Guard Blocks and BIE Signals	
ispMACH 4032ZE	Two (Blocks: A and B)	
ispMACH 4064ZE	Four (Blocks: A, B, C and D)	
ispMACH 4128ZE	Eight (Blocks: A, B, C,, H)	
ispMACH 4256ZE	Sixteen (Blocks: A, B, C,, P)	

Table 8. Number of BIE Signals Available in ispMACH 4000ZE Devices

Power Guard for Dedicated Inputs

Power Guard can optionally be applied to the dedicated inputs. The dedicated inputs and clocks are controlled by the BIE of the logic blocks shown in Tables 9 and 10.

Table 9. Dedicated Clock Inputs to BIE Association

CLK/I	32 MC Block	64MC Block	128MC Block	256MC Block
CLK0 / I	A	A	A	A
CLK1 / I	A	В	D	Н
CLK2 / I	В	С	E	I
CLK3 / I	В	D	Н	Р

Table 10. Dedicated Inputs to BIE Association

Dedicated Input	4064ZE Block	4128ZE Block	4256ZE Block
0	A	В	D
1	В	С	E
2	В	D	G
3	С	F	G
4	D	G	J
5	D	Н	L
6	—	—	М
7	_	—	0
8	_	—	0
9		—	В

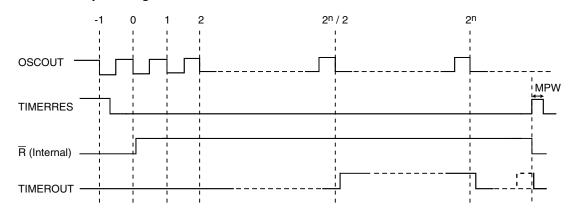
For more information on the Power Guard function refer to TN1174, <u>Advanced Features of the ispMACH 4000ZE</u> <u>Family</u>.

Global OE (GOE) and Block Input Enable (BIE) Generation

Most ispMACH 4000ZE family devices have a 4-bit wide Global OE (GOE) Bus (Figure 11), except the ispMACH 4032 device that has a 2-bit wide Global OE Bus (Figure 12). This bus is derived from a 4-bit internal global OE (GOE) PT bus and two dual purpose I/O or GOE pins. Each signal that drives the bus can optionally be inverted.

Each GLB has a block-level OE PT that connects to all bits of the Global OE PT bus with four fuses. Hence, for a 256-macrocell device (with 16 blocks), each line of the bus is driven from 16 OE product terms. Figures 9 and 10 show a graphical representation of the global OE generation.

Figure 13. On-Chip Oscillator and Timer


Table 11. On-Chip Oscillator and Timer Signal Names

Signal Name	Input or Out- put	Optional / Required	Description
OSCOUT	Output	Optional	Oscillator Output (Nominal Frequency: 5MHz)
TIMEROUT	Output	Optional	Oscillator Frequency Divided by an integer TIMER_DIV (Default 128)
TIMERRES	Input	Optional	Reset the Timer
DYNOSCDIS	Input	Optional	Disables the Oscillator, resets the Timer and saves the power.

OSCTIMER has two outputs, OSCOUT and TIMEROUT. The outputs feed into the Global Routing Pool (GRP). From GRP, these signals can drive any macrocell input, as well as any output pin (with macrocell bypass). The output OSCOUT is the direct oscillator output with a typical frequency of 5MHz, whereas, the output TIMEROUT is the oscillator output divided by an attribute TIMER_DIV.

The attribute TIMER_DIV can be: 128 (7 bits), 1024 (10 bits) or 1,048,576 (20 bits). The divided output is provided for those user situations, where a very slow clock is desired. If even a slower toggling clock is desired, then the programmable macrocell resources can be used to further divide down the TIMEROUT output.

Figure 14 shows the simplified relationship among OSCOUT, TIMERRES and TIMEROUT. In the diagram, the signal " \overline{R} " is an internal reset signal that is used to synchronize TIMERRES to OSCOUT. This adds one extra clock cycle delay for the first timer transition after TIMERRES.

Figure 14. Relationship Among OSCOUT, TIMERRES and TIMEROUT

Note: n = Number of bits in the divider (7, 10 or 20) Metastability: If the signal TIMERRES is not synchronous to OSCOUT, it could make a difference of one or two clock cycles to the TIMEROUT going high the first time.

Absolute Maximum Ratings^{1, 2, 3, 4}

Supply Voltage (V_CC) \ldots
Output Supply Voltage (V_{CCO})
Input or I/O Tristate Voltage Applied ^{5, 6}
Storage Temperature65 to 150°C
Junction Temperature (Tj) with Power Applied55 to 150°C

- 1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
- 2. Compliance with Lattice Thermal Management document is required.
- 3. All voltages referenced to GND.
- 4. Please refer to the Lattice ispMACH 4000V/B/C/ZC/ZE Product Family Qualification Summary for complete data, including the ESD performance data.
- 5. Undershoot of -2V and overshoot of (V_{IH} (MAX) + 2V), up to a total pin voltage of 6V is permitted for a duration of <20ns.
- 6. Maximum of 64 I/Os per device with VIN > 3.6V is allowed.

Recommended Operating Conditions

Symbol	Parameter			Max.	Units
		Standard Voltage Operation	1.7	1.9	V
V _{CC}	Supply Voltage	Extended Voltage Operation	1.6 ¹	1.9	V
т	Junction Temperature (Commercial)		0	90	°C
'j	Junction Temperature (Industrial)		-40	105	°C

1. Devices operating at 1.6V can expect performance degradation up to 35%.

Erase Reprogram Specifications

Parameter	Min.	Max.	Units
Erase/Reprogram Cycle	1,000		Cycles

Note: Valid over commercial temperature range.

Hot Socketing Characteristics^{1,2,3}

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I	Input or I/O Leakage Current	$0 \le V_{IN} \le 3.0V$, Tj = 105°C		±30	±150	μΑ
DK	Input of I/O Leakage Current	$0 \le V_{IN} \le 3.0V$, Tj = $130^{\circ}C$	-	±30	±200	μΑ

1. Insensitive to sequence of V_{CC} or V_{CCO.} However, assumes monotonic rise/fall rates for V_{CC} and V_{CCO,} provided (V_{IN} - V_{CCO}) \leq 3.6V.

2. $0 < V_{CC} < V_{CC}$ (MAX), $0 < V_{CCO} < V_{CCO}$ (MAX).

3. I_{DK} is additive to I_{PU} , I_{PD} or I_{BH} . Device defaults to pull-up until fuse circuitry is active.

I/O Recommended Operating Conditions

	V _{CCO} (V) ¹		
Standard	Min.	Max.	
LVTTL	3.0	3.6	
LVCMOS 3.3	3.0	3.6	
Extended LVCMOS 3.3	2.7	3.6	
LVCMOS 2.5	2.3	2.7	
LVCMOS 1.8	1.65	1.95	
LVCMOS 1.5	1.4	1.6	
PCI 3.3	3.0	3.6	

1. Typical values for V_{CCO} are the average of the min. and max. values.

DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
$I_{\rm IL}, I_{\rm IH}^{1,2}$	Input Leakage Current	$0 \le V_{IN} < V_{CCO}$	—	0.5	1	μΑ
I _{IH} ¹	Input High Leakage Current	$V_{CCO} < V_{IN} \le 5.5V$	—		10	μΑ
I _{PU}	I/O Weak Pull-up Resistor Current	$0 \le V_{IN} \le 0.7 V_{CCO}$	-20		-150	μΑ
I _{PD}	I/O Weak Pull-down Resistor Current	V_{IL} (MAX) $\leq V_{IN} \leq V_{IH}$ (MAX)	30		150	μA
I _{BHLS}	Bus Hold Low Sustaining Current	$V_{IN} = V_{IL} (MAX)$	30		—	μΑ
I _{BHHS}	Bus Hold High Sustaining Current	$V_{IN} = 0.7 V_{CCO}$	-20		—	μΑ
I _{BHLO}	Bus Hold Low Overdrive Current	$0V \le V_{IN} \le V_{BHT}$	—		150	μΑ
I _{BHHO}	Bus Hold High Overdrive Current	$V_{BHT} \le V_{IN} \le V_{CCO}$	—		-150	μΑ
V _{BHT}	Bus Hold Trip Points	—	V _{CCO} * 0.35		V _{CCO} * 0.65	V
C ₁	I/O Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V, 1.5V	—	8	—	pf
01	1/O Capacitance	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	—	0	—	рі
C ₂	Clock Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V, 1.5V	—	6	—	nf
02	Clock Capacitance	$V_{CC} = 1.8V$, $V_{IO} = 0$ to V_{IH} (MAX)	—	0	—	pf
<u>^</u>	Global Input Capacitance ³	V _{CCO} = 3.3V, 2.5V, 1.8V, 1.5V	—	6	—	pf
C ₃		V_{CC} = 1.8V, V_{IO} = 0 to V_{IH} (MAX)	—	0	—	Ы

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tristated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

 I_{IH} excursions of up to 1.5µA maximum per pin above the spec limit may be observed for certain voltage conditions on no more than 10% of the device's I/O pins.

3. Measured $T_A = 25^{\circ}C$, f = 1.0MHz.

Supply Current

To minimize transient current during power-on, configure CPLD I/Os to a pull-up or float state. If this logic scenario is not possible, then the recommended power sequence should assert VCC and VCCO at the same time or VCC before VCCO.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
ispMACH 4	032ZE		•			
		$Vcc = 1.8V$, $T_A = 25^{\circ}C$	—	50	—	μA
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	—	58	—	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	—	60	—	μA
		$Vcc = 1.8V, T_A = 25^{\circ}C$	_	10	—	μA
ICC ^{4, 5, 6}	Standby Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	13	25	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	_	15	40	μA
ispMACH 4	064ZE		•			
		$Vcc = 1.8V, T_A = 25^{\circ}C$		80	—	μA
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	89	—	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	—	92	—	μA
		$Vcc = 1.8V, T_A = 25^{\circ}C$	_	11	—	μA
ICC ^{4, 5, 6}	Standby Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	15	30	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	—	18	50	μA
ispMACH 4	128ZE	· · · · ·		•		·
		$Vcc = 1.8V, T_A = 25^{\circ}C$	—	168	_	μΑ
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	190	—	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	_	195	—	μA
		$Vcc = 1.8V, T_A = 25^{\circ}C$	—	12	_	μA
ICC ^{4, 5, 6}	Standby Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	_	16	40	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	—	19	60	μΑ
ispMACH 4	256ZE		-			
		$Vcc = 1.8V, T_A = 25^{\circ}C$		341	—	μΑ
ICC ^{1, 2, 3, 5, 6}	Operating Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	-	361	—	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	-	372	—	μA
		$Vcc = 1.8V, T_A = 25^{\circ}C$	-	13	—	μA
ICC ^{4, 5, 6}	Standby Power Supply Current	$Vcc = 1.9V, T_A = 0 \text{ to } 70^{\circ}C$	—	32	65	μA
		$Vcc = 1.9V, T_A = -40 \text{ to } 85^{\circ}C$	_	43	100	μA

1. Frequency = 1.0 MHz.

2. Device configured with 16-bit counters.

3. I_{CC} varies with specific device configuration and operating frequency.

4. V_{CCO} = 3.6V, V_{IN} = 0V or V_{CCO}, bus maintenance turned off. V_{IN} above V_{CCO} will add transient current above the specified standby I_{CC}.

5. Includes V_{CCO} current without output loading.

6. This operating supply current is with the internal oscillator disabled. Enabling the internal oscillator adds approximately 15µA typical current plus additional current from any logic it drives.

ispMACH 4000ZE External Switching Characteristics

	Description ^{1, 2})32ZE	LC4064ZE -4		All Devices				
			4			-5		-7		
Parameter			Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PD}	20-PT combinatorial propagation delay	—	4.4	—	4.7	—	5.8	—	7.5	ns
t _S	GLB register setup time before clock	2.2	—	2.5	—	2.9	—	4.5	—	ns
t _{ST}	GLB register setup time before clock with T-type register	2.4	_	2.7	—	3.1	—	4.7	—	ns
t _{SIR}	GLB register setup time before clock, input register path	1.0	_	1.1	—	1.3	—	1.4	—	ns
t _{SIRZ}	GLB register setup time before clock with zero hold	2.0	_	2.1	—	2.9	—	4.0	—	ns
t _H	GLB register hold time after clock	0.0	_	0.0	—	0.0	—	0.0	—	ns
t _{HT}	GLB register hold time after clock with T-type register	0.0	_	0.0	—	0.0	—	0.0	—	ns
t _{HIR}	GLB register hold time after clock, input register path	1.0	_	1.0	—	1.3	—	1.3	—	ns
t _{HIRZ}	GLB register hold time after clock, input register path with zero hold	0.0	_	0.0	—	0.0	—	0.0	—	ns
t _{co}	GLB register clock-to-output delay	—	3.0	—	3.2	—	3.8	_	4.5	ns
t _R	External reset pin to output delay	—	5.0	—	6.0	—	7.5	—	9.0	ns
t _{RW}	External reset pulse duration	1.5	_	1.7	—	2.0	—	4.0	—	ns
t _{PTOE/DIS}	Input to output local product term output enable/disable	_	7.0	—	8.0	_	8.2	_	9.0	ns
t _{GPTOE/DIS}	Input to output global product term output enable/disable	_	6.5	_	7.0	_	10.0	_	10.5	ns
t _{GOE/DIS}	Global OE input to output enable/disable	_	4.5	_	4.5	—	5.5		7.0	ns
t _{CW}	Global clock width, high or low	1.0	_	1.5	—	1.8	—	2.8	—	ns
t _{GW}	Global gate width low (for low transparent) or high (for high transparent)	1.0	_	1.5	_	1.8	_	2.8	_	ns
t _{WIR}	Input register clock width, high or low	1.0	—	1.5	—	1.8	—	2.8	—	ns
f _{MAX} (Int.) ³	Clock frequency with internal feedback		260	—	241		200		172	MHz
f _{MAX} (Ext.)	clock frequency with external feedback, $[1 / (t_S + t_{CO})]$	—	192	-	175	_	149	_	111	MHz

Over Recommended Operating Conditions

1. Timing numbers are based on default LVCMOS 1.8 I/O buffers. Use timing adjusters provided to calculate other standards.

Measured using standard switching GRP loading of 1 and 1 output switching.
 Standard 16-bit counter using GRP feedback.

Timing v.0.8

ispMACH 4000ZE Internal Timing Parameters (Cont.)

Over Recommended Operating Conditions

			LC40)32ZE	LC40	64ZE	
	Description			-4	-4		1
Parameter				Max.	Min.	Max.	Units
t _{SRR}	Asynchronous Reset or Set Recover	ery Delay		2.00		1.70	ns
Control Delays							
t _{BCLK}	GLB PT Clock Delay		—	1.20	_	1.30	ns
t _{PTCLK}	Macrocell PT Clock Delay			1.40	—	1.50	ns
t _{BSR}	Block PT Set/Reset Delay		—	1.10	—	1.85	ns
t _{PTSR}	Macrocell PT Set/Reset Delay			1.20	—	1.90	ns
t _{BIE}	Power Guard Block Input Enable D	elay		1.60	—	1.70	ns
t _{PTOE}	Macrocell PT OE Delay		—	2.30	—	3.15	ns
t _{GPTOE}	Global PT OE Delay			1.80	—	2.15	ns
Internal Oscillat	or				•	•	
toscsu	Oscillator DYNOSCDIS Setup Time)	5.00	—	5.00	—	ns
t _{OSCH}	Oscillator DYNOSCDIS Hold Time		5.00	—	5.00	—	ns
t _{OSCEN}	Oscillator OSCOUT Enable Time (7	Fo Stable)	—	5.00	—	5.00	ns
toscod	Oscillator Output Delay			4.00	—	4.00	ns
t _{OSCNOM}	Oscillator OSCOUT Nominal Frequ	ency		5.00		5.00	MHz
t _{OSCvar}	Oscillator Variation of Nominal Free	luency		30	—	30	%
t _{TMRCO20}	Oscillator TIMEROUT Clock (Negative Edge) to Out (20-Bit Divider)		_	12.50	_	12.50	ns
t _{TMRCO10}	Oscillator TIMEROUT Clock (Negative Edge) to Out (10-Bit Divider)			7.50	_	7.50	ns
t _{TMRCO7}	Oscillator TIMEROUT Clock (Negative Edge) to Out (7-Bit Divider)			6.00	_	6.00	ns
t _{TMRRSTO}	Oscillator TIMEROUT Reset to Out	(Going Low)		5.00		5.00	ns
t _{TMRRR}	Oscillator TIMEROUT Asynchronou Delay	us Reset Recovery		4.00	_	4.00	ns
t _{TMRRSTPW}	Oscillator TIMEROUT Reset Minim	um Pulse Width	3.00	—	3.00	—	ns
Optional Delay	Adjusters	Base Parameter					
t _{INDIO}	Input Register Delay	t _{INREG}		1.00		1.00	ns
t _{EXP}	Product Term Expander Delay	t _{MCELL}	_	0.40	—	0.40	ns
t _{BLA}	Additional Block Loading Adders	t _{ROUTE}		0.04		0.05	ns
t _{IOI} Input Buffer	Delays						
LVTTL_in	Using LVTTL Standard with Hysteresis	$t_{IN}, t_{GCLK_IN}, t_{GOE}$		0.60	_	0.60	ns
LVCMOS15_in	Using LVCMOS 1.5 Standard	t _{IN} , t _{GCLK_IN} , t _{GOE}		0.20	_	0.20	ns
LVCMOS18_in	Using LVCMOS 1.8 Standard	t _{IN} , t _{GCLK_IN} , t _{GOE}		0.00	_	0.00	ns
LVCMOS25_in	Using LVCMOS 2.5 Standard with Hysteresis		_	0.80	_	0.80	ns
LVCMOS33_in	Using LVCMOS 3.3 Standard with Hysteresis			0.80	—	0.80	ns
PCI_in	Using PCI Compatible Input with Hysteresis	$t_{\text{IN}},t_{\text{GCLK}_{\text{IN}}},t_{\text{GOE}}$	_	0.80	_	0.80	ns
t _{IOO} Output Buff	-	1	I	I	1	1	1
LVTTL_out	Output Configured as TTL Buffer	t _{EN} , t _{DIS} , t _{BUF}		0.20	_	0.20	ns

Boundary Scan Waveforms and Timing Specifications

Symbol	Parameter		Max.	Units
t _{BTCP}	TCK [BSCAN test] clock cycle	40	—	ns
t _{BTCH}	TCK [BSCAN test] pulse width high	20	—	ns
t _{BTCL}	TCK [BSCAN test] pulse width low	20	—	ns
t _{BTSU}	TCK [BSCAN test] setup time	8	—	ns
t _{BTH}	TCK [BSCAN test] hold time	10	—	ns
t _{BRF}	TCK [BSCAN test] rise and fall time	50	—	mV/ns
t _{BTCO}	TAP controller falling edge of clock to valid output	—	10	ns
t _{BTOZ}	TAP controller falling edge of clock to data output disable	—	10	ns
t _{BTVO}	TAP controller falling edge of clock to data output enable	—	10	ns
t _{BTCPSU}	BSCAN test Capture register setup time	8	—	ns
t _{BTCPH}	BSCAN test Capture register hold time	10	—	ns
t _{BTUCO}	BSCAN test Update reg, falling edge of clock to valid output	—	25	ns
t _{BTUOZ}	BSCAN test Update reg, falling edge of clock to output disable	—	25	ns
t _{BTUOV}	BSCAN test Update reg, falling edge of clock to output enable	—	25	ns

Power Consumption

Power Estimation Coefficients¹

Device	Α	В
ispMACH 4032ZE	0.010	0.009
ispMACH 4064ZE	0.011	0.009
ispMACH 4128ZE	0.012	0.009
ispMACH 4256ZE	0.013	0.009

1. For further information about the use of these coefficients, refer to TN1187, <u>Power Esti-</u> mation in ispMACH 4000ZE Devices.

ispMACH 4000ZE Power Supply and NC Connections¹

Signal	48 TQFP ²	64 csBGA ^{3, 4}	64 ucBGA ^{3, 4}	100 TQFP ²
VCC	12, 36	E4, D5	E4, D5	25, 40, 75, 90
VCCO0 VCCO (Bank 0)	6	4032ZE: E3 4064ZE: E3, F4	C3, F3	13, 33, 95
VCCO1 VCCO (Bank 1)	30	4032ZE: D6 4064ZE: D6, C6	F6, A6	45, 63, 83
GND	13, 37	D4, E5	D4, D5	1, 26, 51, 76
GND (Bank 0)	5	D4, E5	D4, D5	7, 18, 32, 96
GND (Bank 1)	29	D4, E5	D4, D5	46, 57, 68, 82
NC	—	—	—	—

1. All grounds must be electrically connected at the board level. However, for the purposes of I/O current loading, grounds are associated with the bank shown.

2. Pin orientation follows the conventional order from pin 1 marking of the top side view and counter-clockwise.

3. Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.

4. All bonded grounds are connected to the following two balls, D4 and E5.

ispMACH 4032ZE and 4064ZE Logic Signal Connections: 64 csBGA

		ispMACH 4032ZE	ispMACH 4064ZE
Ball Number	Bank Number	GLB/MC/Pad	GLB/MC/Pad
B2	-	TDI	TDI
B1	0	A5	A8
C2	0	A6	A10
C1	0	A7	A11
GND*	0	GND (Bank 0)	GND (Bank 0)
C3	0	NC	A12
E3	0	VCCO (Bank 0)	VCCO (Bank 0)
D1	0	A8	B15
D2	0	NC	B14
E1	0	A9	B13
D3	0	A10	B12
F1	0	A11	B11
E2	0	NC	B10
G1	0	NC	B9
F2	0	NC	B8
H1	-	ТСК	TCK
E4	-	VCC	VCC
GND*	-	GND	GND
G2	0	A12	B6
H2	0	NC	B5
H3	0	A13	B4
GND*	0	NC	GND (Bank 0)
F4	0	NC	VCCO (Bank 0)
G3	0	A14	B3
F3	0	NC	B2
H4	0	A15	B0
G4	0	CLK1/I	CLK1/I
H5	1	CLK2/I	CLK2/I
F5	1	B0	CO
G5	1	B1	C1
G6	1	B2	C2
H6	1	B3	C4
F6	1	B4	C5
H7	1	NC	C6
H8	-	TMS	TMS
G7	1	B5	C8
F7	1	B6	C10
G8	1	B7	C11
GND*	1	GND (Bank 0)	GND (Bank 1)
F8	1	NC	C12
D6	1	VCCO (Bank 1)	VCCO (Bank 1)
E8	1	B8	D15

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 100 TQFP

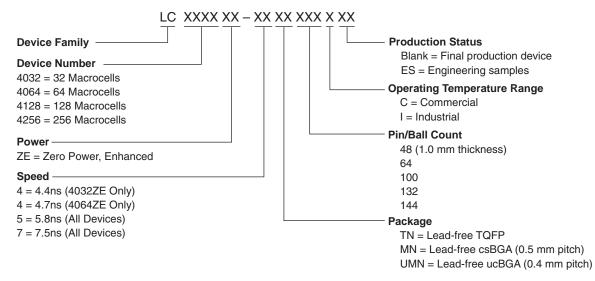
Pin Bank		LC4064ZE	LC4128ZE	LC4256ZE
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad
1	-	GND	GND	GND
2	-	TDI	TDI	TDI
3	0	A8	B0	C12
4	0	A9	B2	C10
5	0	A10	B4	C6
6	0	A11	B6	C2
7	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
8	0	A12	B8	D12
9	0	A13	B10	D10
10	0	A14	B12	D6
11	0	A15	B13	D4
12*	0		I	I
13	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)
14	0	B15	C14	E4
15	0	B14	C12	E6
16	0	B13	C10	E10
17	0	B12	C8	E12
18	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
19	0	B11	C6	F2
20	0	B10	C5	F6
21	0	B9	C4	F10
22	0	B8	C2	F12
23*	0		I	I
24	-	TCK	ТСК	ТСК
25	-	VCC	VCC	VCC
26	-	GND	GND	GND
27*	0		I	
28	0	B7	D13	G12
29	0	B6	D12	G10
30	0	B5	D10	G6
31	0	B4	D8	G2
32	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
33	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)
34	0	B3	D6	H12
35	0	B2	D4	H10
36	0	B1	D2	H6
37	0	B0	D0	H2
38	0	CLK1/I	CLK1/I	CLK1/I
39	1	CLK2/I	CLK2/I	CLK2/I
40	-	VCC	VCC	VCC
41	1	CO	E0	12

ispMACH 4128ZE Logic Signal Connections: 132 ucBGA

Ball Number	Bank Number	GLB/MC/Pad
GND*	-	GND
A1	-	TDI
B1	0	VCCO (Bank 0)
D3	0	B0
C1	0	B1
D2	0	B2
D1	0	B4
E4	0	B5
F3	0	B6
E2	0	GND (Bank 0)
E1	0	B8
E3	0	B9
F4	0	B10
G4	0	B12
F2	0	B13
G3	0	B14
H4	0	VCCO (Bank 0)
F1	0	C14
G2	0	C13
G1	0	C12
H3	0	C10
J4	0	C9
H1	0	C8
H2	0	GND (Bank 0)
J3	0	C6
J1	0	C5
J2	0	C4
K3	0	C2
K2	0	C1
K1	0	CO
L2	0	VCCO (Bank 0)
L1	-	ТСК
M1	-	VCC
GND*	-	GND
L3	0	D14
M2	0	D13
K4	0	D12
M3	0	D10
K5	0	D9
L4	0	D8
M4	0	GND (Bank 0)
J5	0	VCCO (Bank 0)
L5	0	D6

ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA

Ball Bank		LC4064ZE	LC4128ZE	LC4256ZE
Number	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad
F6	-	GND	GND	GND
A1	-	TDI	TDI	TDI
E4	0	NC Ball	VCCO (Bank 0)	VCCO (Bank 0)
B2	0	NC Ball	B0	C12
B1	0	NC Ball	B1	C10
C3	0	A8	B2	C8
C2	0	A9	B4	C6
C1	0	A10	B5	C4
D1	0	A11	B6	C2
G5	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
D2	0	NC Ball	NC Ball	D14
D3	0	NC Ball	NC Ball	D12
E1	0	NC Ball	B8	D10
E2	0	A12	B9	D8
F2	0	A13	B10	D6
D4	0	A14	B12	D4
F1	0	A15	B13	D2
F3*	0		B14	D0
F4	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)
G1	0	B15	C14	E0
E3	0	B14	C13	E2
G2	0	B13	C12	E4
G3	0	B12	C10	E6
H1	0	NC Ball	C9	E8
H3	0	NC Ball	C8	E10
H2	0	NC Ball	NC Ball	E12
H4	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)
J1	0	B11	C6	F2
J3	0	B10	C5	F4
J2	0	B9	C4	F6
K1	0	B8	C2	F8
K2*	0		C1	F10
L1	0	NC Ball	C0	F12
G4	0	NC Ball	VCCO (Bank 0)	VCCO (Bank 0)
L2	-	ТСК	ТСК	ТСК
H5	-	VCC	VCC	VCC
G6	-	GND	GND	GND
M1	0	NC Ball	NC Ball	G14
K3	0	NC Ball	NC Ball	G12
M2	0	NC Ball	D14	G10
L3*	0		D13	G8


ispMACH 4064ZE, 4128ZE and 4256ZE Logic Signal Connections: 144 csBGA (Cont.)

Ball Number	Bank	LC4064ZE	LC4128ZE	LC4256ZE	
	Number	GLB/MC/Pad	GLB/MC/Pad	GLB/MC/Pad	
C7	1	CLK3/I	CLK3/I	CLK3/I	
E6	0	NC Ball	GND (Bank 0)	GND (Bank 0)	
A7	0	CLK0/I	CLK0/I	CLK0/I	
E5	-	VCC	VCC	VCC	
D6	0	A0/GOE0	A0/GOE0	A2/GOE0	
B6	0	A1	A1	A4	
A6	0	A2	A2	A6	
C6	0	A3	A4	A8	
B5	0	NC Ball	A5	A10	
A5	0	NC Ball	A6	A12	
D5	0	VCCO (Bank 0)	VCCO (Bank 0)	VCCO (Bank 0)	
F5	0	GND (Bank 0)	GND (Bank 0)	GND (Bank 0)	
A4	0	A4	A8	B2	
B4	0	A5	A9	B4	
C5	0	A6	A10	B6	
A3	0	A7	A12	B8	
C4	0	NC Ball	A13	B10	
B3	0	NC Ball	A14	B12	
A2	0	NC Ball	NC Ball	B14	

* This pin is input only for the LC4064ZE.

Part Number Description

ispMACH 4000ZE Family Speed Grade Offering

	-4		5	-7		
	Commercial	Commercial	Industrial	Commercial	Industrial	
ispMACH 4032ZE	~	~	\checkmark	~	✓	
ispMACH 4064ZE	~	~	~	~	\checkmark	
ispMACH 4128ZE		~		~	✓	
ispMACH 4256ZE		\checkmark		✓	\checkmark	

Ordering Information

Note: ispMACH 4000ZE devices are dual marked except for the slowest commercial speed grade. For example, the commercial speed grade LC4128ZE-5TN100C is also marked with the industrial grade -7I. The commercial grade is always one speed grade faster than the associated dual mark industrial grade. The slowest commercial speed grade devices are marked as commercial grade only. The markings appear as follows:

Figure 18. Mark Format for 100 TQFP and 144 TQFP Packages

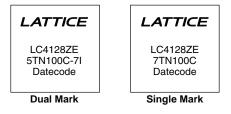
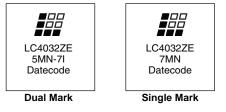



Figure 19. Mark Format for 48 TQFP, 64 csBGA and 144 csBGA Packages

Industrial								
Device	Part Number	Macrocells	Voltage	t _{PD}	Package	Pin/Ball Count	I/O	Grade
LC4032ZE	LC4032ZE-5TN48I	32	1.8	5.8	Lead-Free TQFP	48	32	Ι
	LC4032ZE-7TN48I	32	1.8	7.5	Lead-Free TQFP	48	32	Ι
L04032ZE	LC4032ZE-5MN64I	32	1.8	5.8	Lead-Free csBGA	64	32	Ι
	LC4032ZE-7MN64I	32	1.8	7.5	Lead-Free csBGA	64	32	Ι
	LC4064ZE-5TN48I	64	1.8	5.8	Lead-Free TQFP	48	32	Ι
LC4064ZE	LC4064ZE-7TN48I	64	1.8	7.5	Lead-Free TQFP	48	32	Ι
	LC4064ZE-5TN100I	64	1.8	5.8	Lead-Free TQFP	100	64	Ι
	LC4064ZE-7TN100I	64	1.8	7.5	Lead-Free TQFP	100	64	Ι
	LC4064ZE-5MN64I	64	1.8	5.8	Lead-Free csBGA	64	48	Ι
	LC4064ZE-7MN64I	64	1.8	7.5	Lead-Free csBGA	64	48	Ι
	LC4064ZE-5UMN64I	64	1.8	5.8	Lead-Free ucBGA	64	48	Ι
	LC4064ZE-7UMN64I	64	1.8	7.5	Lead-Free ucBGA	64	48	Ι
	LC4064ZE-5MN144I	64	1.8	5.8	Lead-Free csBGA	144	64	Ι
	LC4064ZE-7MN144I	64	1.8	7.5	Lead-Free csBGA	144	64	Ι
LC4128ZE	LC4128ZE-7TN100I	128	1.8	7.5	Lead-Free TQFP	100	64	I
	LC4128ZE-7UMN132I	128	1.8	7.5	Lead-Free ucBGA	132	96	Ι
	LC4128ZE-7TN144I	128	1.8	7.5	Lead-Free TQFP	144	96	Ι
	LC4128ZE-7MN144I	128	1.8	7.5	Lead-Free csBGA	144	96	Ι
	LC4256ZE-7TN100I	256	1.8	7.5	Lead-Free TQFP	100	64	Ι
LC4256ZE	LC4256ZE-7TN144I	256	1.8	7.5	Lead-Free TQFP	144	96	Ι
	LC4256ZE-7MN144I	256	1.8	7.5	Lead-Free csBGA	144	108	I

1. Contact factory for product availability.

For Further Information

In addition to this data sheet, the following technical notes may be helpful when designing with the ispMACH 4000ZE family:

- TN1168, ispMACH 4000ZE Timing Model Design and Usage Guidelines
- TN1174, Advanced Features of the ispMACH 4000ZE Family
- TN1187, Power Estimation in ispMACH 4000ZE Devices
- Package Diagrams

Technical Support Assistance

- Hotline: 1-800-LATTICE (North America)
 - +1-503-268-8001 (Outside North America)
- e-mail: techsupport@latticesemi.com
- Internet: <u>www.latticesemi.com</u>

Revision History

Date	Version	Change Summary	
April 2008	01.0	Initial release.	
July 2008	01.1	Updated Features bullets.	
		Updated typical Hysteresis voltage.	
		Updated Power Guard for Dedicated Inputs section.	
		Updated DC Electrical Characteristics table.	
		Updated Supply Current table.	
		Updated I/O DC Electrical Characteristics table and note 2.	
		Updated ispMACH 4000ZE Timing Model.	
		Added new parameters for the Internal Oscillator.	
		Updated ORP Reference table.	
		Updated Power Supply and NC Connections table.	
		Updated 100 TQFP Logic Signal Connections table with LC4128ZE and 4256ZE.	
		Updated 144 csBGA Logic Signal Connections table with LC4128ZE and 4256ZE.	
		Added 144 TQFP Logic Signal Connections table.	
August 2008	01.2	Data sheet status changed from advance to final.	
		Updated Supply Current table.	
		Updated External Switching Characteristics.	
		Updated Internal Timing Parameters.	
		Updated Power Consumption graph and Power Estimation Coefficients table.	
		Updated Ordering Information mark format example.	
December 2008	01.3	Updated ispMACH 4000ZE Family Selection Guide table to include 64-ball ucBGA and 132-ball ucBGA packages.	
		Updated ispMACH 4000ZE Power Supply and NC Connections table to include 64-ball ucBGA and 132-ball ucBGA packages.	
		Added Logic Signal Connections tables for 64-ball ucBGA and 132-ball ucBGA packages.	
		Updated Part Number Description diagram for 64-ball ucBGA and 132-ball ucBGA packages.	
		Updated Ordering Information tables for 64-ball ucBGA and 132-ball ucBGA packages.	
May 2009	01.4	Correction to t _{CW} , t _{GW} , t _{WIR} and f _{MAX} parameters in External Switching Characteristics table.	
June 2011	01.5	Added copper bond package part numbers.	
		Added footnote 4 to Absolute Maximum Ratings.	
February 2012	01.6	Updated document with new corporate logo.	
February 2012	01.7	Removed copper bond packaging information. Refer to PCN 04A-12 for further information.	
		Updated topside marks with new logos in the Ordering Information section.	