Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/at89c51rc-24ac | |----------------------------|--| | Supplier Device Package | 44-TQFP (10x10) | | Package / Case | 44-TQFP | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Oscillator Type | Internal | | Data Converters | - | | Voltage - Supply (Vcc/Vdd) | 4V ~ 5.5V | | RAM Size | 512 x 8 | | EEPROM Size | - | | Program Memory Type | FLASH | | Program Memory Size | 32KB (32K x 8) | | Number of I/O | 32 | | Peripherals | WDT | | Connectivity | SPI, UART/USART | | Speed | 24MHz | | Core Size | 8-Bit | | Core Processor | 8051 | | Product Status | Obsolete | | Details | | ## **Pin Configurations** #### **Pin Description** VCC Supply voltage. **GND** Ground. Port 0 Port 0 is an 8-bit open drain bidirectional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high- impedance inputs. Port 0 can also be configured to be the multiplexed low-order address/data bus during accesses to external program and data memory. In this mode, P0 has internal pull-ups. Port 0 also receives the code bytes during Flash programming and outputs the code bytes during program verification. **External pull-ups are required during program** verification. Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (I_{II}) because of the internal pull-ups. In addition, P1.0 and P1.1 can be configured to be the timer/counter 2 external count input (P1.0/T2) and the timer/counter 2 trigger input (P1.1/T2EX), respectively, as shown in the following table. Port 1 also receives the low-order address bytes during Flash programming and verification. | Port Pin | Alternate Functions | | | | | | |----------|---|--|--|--|--|--| | P1.0 | T2 (external count input to Timer/Counter 2), clock-out | | | | | | | P1.1 | T2EX (Timer/Counter 2 capture/reload trigger and direction control) | | | | | | Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (I_{II}) because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register. Port 2 also receives the high-order address bits and some control signals during Flash programming and verification. Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I_{II}) because of the pull-ups. Port 3 receives some control signals for Flash programming and verification. Port 3 also serves the functions of various special features of the AT89C51RC, as shown in the following table. Port 1 Port 2 Port 3 Table 1. AT89C51RC SFR Map and Reset Values | | | | | | | | | | - | |------|-------------------|-------------------|--------------------|--------------------|------------------|------------------|--------------------|------------------|------| | 0F8H | | | | | | | | | 0FFH | | 0F0H | B
00000000 | | | | | | | | 0F7H | | 0E8H | | | | | | | | | 0EFH | | 0E0H | ACC
00000000 | | | | | | | | 0E7H | | 0D8H | | | | | | | | | 0DFH | | 0D0H | PSW
00000000 | | | | | | | | 0D7H | | 0C8H | T2CON
00000000 | T2MOD
XXXXXX00 | RCAP2L
00000000 | RCAP2H
00000000 | TL2
00000000 | TH2
00000000 | | | 0CFH | | 0C0H | | | | | | | | | 0C7H | | 0B8H | IP
XX000000 | | | | | | | | 0BFH | | 0B0H | P3
11111111 | | | | | | | | 0B7H | | 0A8H | IE
0X000000 | | | | | | | | 0AFH | | 0A0H | P2
11111111 | | AUXR1
XXXXXXX0 | | | | WDTRST
XXXXXXXX | | 0A7H | | 98H | SCON
00000000 | SBUF
XXXXXXXX | | | | | | | 9FH | | 90H | P1
11111111 | | | | | | | | 97H | | 88H | TCON
00000000 | TMOD
00000000 | TL0
00000000 | TL1
00000000 | TH0
00000000 | TH1
00000000 | AUXR
XXX00X00 | | 8FH | | 80H | P0
11111111 | SP
00000111 | DP0L
00000000 | DP0H
00000000 | DP1L
00000000 | DP1H
00000000 | | PCON
0XXX0000 | 87H | # Special Function Registers A map of the on-chip memory area called the Special Function Register (SFR) space is shown in Table 1. Note that not all of the addresses are occupied, and unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect. User software should not write 1s to these unlisted locations, since they may be used in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0. **Timer 2 Registers:** Control and status bits are contained in registers T2CON (shown in Table 2) and T2MOD (shown in Table 3) for Timer 2. The register pair (RCAP2H, RCAP2L) are the Capture/Reload registers for Timer 2 in 16-bit capture mode or 16-bit auto-reload mode. **Interrupt Registers:** The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the six interrupt sources in the IP register. Table 2. T2CON – Timer/Counter 2 Control Register | T2CON | Address = 00 | C8H | | Reset Value = 0000 0000B | | | | | | |-----------------|--------------|------|------|--------------------------|-------|-----|------|--------|--| | Bit Addressable | | | | | | | | | | | Bit | TF2 | EXF2 | RCLK | TCLK | EXEN2 | TR2 | C/T2 | CP/RL2 | | | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | Symbol | Function | |--------|--| | TF2 | Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either RCLK = 1 or TCLK = 1. | | EXF2 | Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down counter mode (DCEN = 1). | | RCLK | Receive clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock in serial port Modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock. | | TCLK | Transmit clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in serial port Modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock. | | EXEN2 | Timer 2 external enable. When set, allows a capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX. | | TR2 | Start/Stop control for Timer 2. TR2 = 1 starts the timer. | | C/T2 | Timer or counter select for Timer 2. $C/\overline{T2} = 0$ for timer function. $C/\overline{T2} = 1$ for external event counter (falling edge triggered). | | CP/RL2 | Capture/Reload select. $CP/\overline{RL2} = 1$ causes captures to occur on negative transitions at T2EX if EXEN2 = 1. $CP/\overline{RL2} = 0$ causes automatic reloads to occur when Timer 2 overflows or negative transitions occur at T2EX when EXEN2 = 1. When either RCLK or TCLK = 1, this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow. | accesses the SFR at location 0S0H (which is P2). Instructions that use indirect addressing access the Upper 128 bytes of data RAM. For example: MOV@R0, # data where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than P2 (whose address is 0A0H). Note that stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are available as stack space. The 256 bytes of ERAM can be accessed by indirect addressing, with EXTRAM bit cleared and MOVX instructions. This part of memory is physically located on-chip, logically occupying the first 256 bytes of external data memory. Figure 1. Internal and External Data Memory Address (with EXTRAM = 0) With EXTRAM = 0, the ERAM is indirectly addressed, using the MOVX instruction in combination with any of the registers R0, R1 of the selected bank or DPTR. An access to ERAM will not affect ports P0, P2, P3.6 (\overline{WR}), and P3.7 (\overline{RD}). For example, with EXTRAM = 0, MOVX@R0, # data where R0 contains 0A0H, accesses the ERAM at address 0A0H rather than external memory. An access to external data memory locations higher than FFH (i.e. 0100H to FFFFH) will be performed with the MOVX DPTR instructions in the same way as in the standard 80C51, i.e., with P0 and P2 as data/address bus, and P3.6 and P3.7 as write and read timing signals. Refer to Figure 1. With EXTRAM = 1, MOVX @ Ri and MOVX@DPTR will be similar to the standard 80C51. MOVX@Ri will provide an 8-bit address multiplexed with data on Port 0 and any output port pins can be used to output higher-order address bits. This is to provide the external paging capability. MOVX@DPTR will generate a 16-bit address. Port 2 outputs the high-order 8 address bits (the contents of DP0H), while Port 0 multiplexes the low-order 8 address bits (the contents of DP0L) with data. MOVX@Ri and MOVX@DPTR will generate either read or write signals on P3.6 (\overline{WR}) and P3.7 (\overline{RD}) . The stack pointer (SP) may be located anywhere in the 256 bytes RAM (lower and upper RAM) internal data memory. The stack may not be located in the ERAM. #### Timer 0 and 1 Timer 0 and Timer 1 in the AT89C51RC operate the same way as Timer 0 and Timer 1 in the AT89C51 and AT89C52. #### Timer 2 Timer 2 is a 16-bit Timer/Counter that can operate as either a timer or an event counter. The type of operation is selected by bit $C/\overline{T2}$ in the SFR T2CON (shown in Table 2). Timer 2 has three operating modes: capture, auto-reload (up or down counting), and baud rate generator. The modes are selected by bits in T2CON, as shown in Table 3. Timer 2 consists of two 8-bit registers, TH2 and TL2. In the Timer function, the TL2 register is incremented every machine cycle. Since a machine cycle consists of 12 oscillator periods, the count rate is 1/12 of the oscillator frequency. Table 3. Timer 2 Operating Modes | RCLK +TCLK | CP/RL2 | TR2 | MODE | |------------|--------|-----------------------|--------------------| | 0 | 0 | 1 | 16-bit Auto-reload | | 0 | 1 | 1 | 16-bit Capture | | 1 | Х | 1 Baud Rate Generator | | | Х | Х | 0 | (Off) | In the Counter function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin, T2. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected. Since two machine cycles (24 oscillator periods) are required to recognize a 1-to-0 transition, the maximum count rate is 1/24 of the oscillator frequency. To ensure that a given level is sampled at least once before it changes, the level should be held for at least one full machine cycle. #### **Capture Mode** In the capture mode, two options are selected by bit EXEN2 in T2CON. If EXEN2 = 0, Timer 2 is a 16-bit timer or counter which upon overflow sets bit TF2 in T2CON. This bit can then be used to generate an interrupt. If EXEN2 = 1, Timer 2 performs the same operation, but a 1-to-0 transition at external input T2EX also causes the current value in TH2 and TL2 to be captured into RCAP2H and RCAP2L, respectively. In addition, the transition at T2EX causes bit EXF2 in T2CON to be set. The EXF2 bit, like TF2, can generate an interrupt. The capture mode is illustrated in Figure 2. # Auto-Reload (Up or Down Counter) Timer 2 can be programmed to count up or down when configured in its 16-bit autoreload mode. This feature is invoked by the DCEN (Down Counter Enable) bit located in the SFR T2MOD (see Table 4). Upon reset, the DCEN bit is set to 0 so that timer 2 will default to count up. When DCEN is set, Timer 2 can count up or down, depending on the value of the T2EX pin. Figure 2. Timer in Capture Mode Figure 3 shows Timer 2 automatically counting up when DCEN=0. In this mode, two options are selected by bit EXEN2 in T2CON. If EXEN2 = 0, Timer 2 counts up to 0FFFFH and then sets the TF2 bit upon overflow. The overflow also causes the timer registers to be reloaded with the 16-bit value in RCAP2H and RCAP2L. The values in Timer in Capture ModeRCAP2H and RCAP2L are preset by software. If EXEN2 = 1, a 16-bit reload can be triggered either by an overflow or by a 1-to-0 transition at external input T2EX. This transition also sets the EXF2 bit. Both the TF2 and EXF2 bits can generate an interrupt if enabled. Setting the DCEN bit enables Timer 2 to count up or down, as shown in Figure 3. In this mode, the T2EX pin controls the direction of the count. A logic 1 at T2EX makes Timer 2 count up. The timer will overflow at 0FFFFH and set the TF2 bit. This overflow also causes the 16-bit value in RCAP2H and RCAP2L to be reloaded into the timer registers, TH2 and TL2, respectively. A logic 0 at T2EX makes Timer 2 count down. The timer underflows when TH2 and TL2 equal the values stored in RCAP2H and RCAP2L. The underflow sets the TF2 bit and causes 0FFFFH to be reloaded into the timer registers. The EXF2 bit toggles whenever Timer 2 overflows or underflows and can be used as a 17th bit of resolution. In this operating mode, EXF2 does not flag an interrupt. #### **Baud Rate Generator** Timer 2 is selected as the baud rate generator by setting TCLK and/or RCLK in T2CON (Table 2). Note that the baud rates for transmit and receive can be different if Timer 2 is used for the receiver or transmitter and Timer 1 is used for the other function. Setting RCLK and/or TCLK puts Timer 2 into its baud rate generator mode, as shown in Figure 5. The baud rate generator mode is similar to the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L, which are preset by software. The baud rates in Modes 1 and 3 are determined by Timer 2's overflow rate according to the following equation. Mdes 1 and 3 Baud Rates = $$\frac{\text{Timer 2 Overflow Rate}}{16}$$ The Timer can be configured for either timer or counter operation. In most applications, it is configured for timer operation ($CP/\overline{T2}=0$). The timer operation is different for Timer 2 when it is used as a baud rate generator. Normally, as a timer, it increments every machine cycle (at 1/12 the oscillator frequency). As a baud rate generator, however, it increments every state time (at 1/2 the oscillator frequency). The baud rate formula is given below. $$\frac{\text{Modes 1 and 3}}{\text{Baud Rate}} = \frac{\text{Oscillator Frequency}}{32 \text{ x } [65536-\text{RCAP2H,RCAP2L})]}$$ where (RCAP2H, RCAP2L) is the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer. Timer 2 as a baud rate generator is shown in Figure 5. This figure is valid only if RCLK or TCLK = 1 in T2CON. Note that a rollover in TH2 does not set TF2 and will not generate an interrupt. Note too, that if EXEN2 is set, a 1-to-0 transition in T2EX will set EXF2 but will not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). Thus when Timer 2 is in use as a baud rate generator, T2EX can be used as an extra external interrupt. Note that when Timer 2 is running (TR2 = 1) as a timer in the baud rate generator mode, TH2 or TL2 should not be read from or written to. Under these conditions, the Timer is incremented every state time, and the results of a read or write may not be accurate. The RCAP2 registers may be read but should not be written to, because a write might overlap a reload and cause write and/or reload errors. The timer should be turned off (clear TR2) before accessing the Timer 2 or RCAP2 registers. # Oscillator Characteristics XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier that can be configured for use as an on-chip oscillator, as shown in Figure 8. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven, as shown in Figure 9. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed. #### **Idle Mode** In idle mode, the CPU puts itself to sleep while all the on-chip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset. Note that when idle mode is terminated by a hardware reset, the device normally resumes program execution from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when idle mode is terminated by a reset, the instruction following the one that invokes idle mode should not write to a port pin or to external memory. #### **Power-down Mode** In the Power-down mode, the oscillator is stopped, and the instruction that invokes Power-down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the Power-down mode is terminated. Exit from Power-down can be initiated either by a hardware reset or by an enabled external interrupt. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before V_{CC} is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize. Figure 8. Oscillator Connections Note: C1, C2 = 30 pF \pm 10 pF for Crystals = 40 pF \pm 10 pF for Ceramic Resonators # Programming the Flash The AT89C51RC is shipped with the on-chip Flash memory array ready to be programmed. The programming interface needs a high-voltage (12-volt) program enable signal and is compatible with conventional third-party Flash or EPROM programmers. The AT89C51RC code memory array is programmed byte-by-byte. **Programming Algorithm:** Before programming the AT89C51RC, the address, data, and control signals should be set up according to the Flash programming mode table and Figures 10 and 11. To program the AT89C51RC, take the following steps: - 1. Input the desired memory location on the address lines. - 2. Input the appropriate data byte on the data lines. - 3. Activate the correct combination of control signals. - 4. Raise \overline{EA}/V_{PP} to 12V. - 5. Pulse ALE/PROG once to program a byte in the Flash array or the lock bits. The byte-write cycle is self-timed and typically takes no more than 50 μs. Repeat steps 1 through 5, changing the address and data for the entire array or until the end of the object file is reached. **Chip Erase Sequence:** Before the AT89C51RC can be reprogrammed, a Chip Erase operation needs to be performed. To erase the contents of the AT89C51RC, follow this sequence: - 1. Raise V_{CC} to 6.5V. - 2. Pulse ALE/PROG once (duration of 200 ns 500 ns) and wait for 150 ms. - 3. Power V_{CC} down and up to 6.5V. - 4. Pulse ALE/PROG once (duration of 200 ns 500 ns) and wait for 150 ms. - 5. Power V_{CC} down and up. Data Polling: The AT89C51RC features Data Polling to indicate the end of a write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written data on P0.7. Once the write cycle has been completed, true data is valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated. **Ready/Busy:** The progress of byte programming can also be monitored by the RDY/BSY output signal. P3.0 is pulled low after ALE goes high during programming to indicate BUSY. P3.0 is pulled high again when programming is done to indicate READY. **Program Verify:** If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. The status of the individual lock bits can be verified directly by reading them back. **Reading the Signature Bytes:** The signature bytes are read by the same procedure as a normal verification of locations 000H, 100H, and 200H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned are as follows: (000H) = 1EH indicates manufactured by Atmel (100H) = 51H (200H) = 07H indicates 89C51RC ## **Programming** Interface Every code byte in the Flash array can be programmed by using the appropriate combination of control signals. The write operation cycle is self-timed and once initiated, will automatically time itself to completion. Most major worldwide programming vendors offer support for the Atmel microcontroller series. Please contact your local programming vendor for the appropriate software revision. Table 8. Flash Programming Modes | | | | | ALE/ | EA/ | | | | | | P0.7-0 | P3.4 | P2.5-0 | P1.7-0 | |---------------------------|-----------------|-----|------|------|-----------------|------|------|------|------|------|------------------------|------|---------|--------| | Mode | V _{cc} | RST | PSEN | PROG | V _{PP} | P2.6 | P2.7 | P3.3 | P3.6 | P3.7 | Data | | Address | | | Write Code Data | 5V | Н | L | (1) | 12 V | L | Н | Н | Н | Н | D _{IN} | A14 | A13-8 | A7-0 | | Read Code Data | 5V | Н | L | Н | H/12
V | L | L | L | Н | Н | D _{OUT} | A14 | A13-8 | A7-0 | | Write Lock Bit 1 | 6.5V | Н | L | (2) | 12 V | Н | Н | Н | Н | Н | Х | Х | Х | Х | | Write Lock Bit 2 | 6.5V | Н | L | (2) | 12 V | Н | Н | Н | L | L | Х | Х | Х | Х | | Write Lock Bit 3 | 6.5V | Н | L | (2) | 12 V | Н | L | Н | Н | L | Х | Х | Х | Х | | Read Lock Bits
1, 2, 3 | 5V | Н | L | Н | Н | Н | Н | L | Н | L | P0.2,
P0.3,
P0.4 | х | Х | Х | | Chip Erase | 6.5V | Н | L | (3) | 12V | Н | L | Н | L | L | Х | Х | Х | Х | | Read Atmel ID | 5V | Н | L | Н | Н | L | L | L | L | L | 1EH | Х | XX 0000 | 00H | | Read Device ID | 5V | Н | L | Н | Н | L | L | L | L | L | 51H | Х | XX 0001 | 00H | | Read Device ID | 5V | Н | L | Н | Н | L | L | L | L | L | 07H | Х | XX 0010 | 00H | - Notes: 1. Write Code Data requires a 200 ns PROG pulse. - 2. Write Lock Bits requires a 100 µs PROG pulse. - 3. Chip Erase requires a 200 ns 500 ns PROG pulse. - 4. RDY/BSY signal is output on P3.0 during programming. Figure 10. Programming the Flash Memory Figure 11. Verifying the Flash Memory Note: *Programming address line A14 (P3.4) is not the same as the external memory address line A14 (P2.6). # Flash Programming and Verification Characteristics $T_A = 20$ °C to 30°C, $V_{CC} = 4.5$ V to 5.5V | Symbol | Parameter | Min | Max | Units | |---------------------|---------------------------------------|---------------------|---------------------|-------| | V _{PP} | Programming Supply Voltage | 11.5 | 12.5 | V | | I _{PP} | Programming Supply Current | | 10 | mA | | I _{cc} | V _{CC} Supply Current | | 30 | mA | | 1/t _{CLCL} | Oscillator Frequency | 3 | 33 | MHz | | t _{AVGL} | Address Setup to PROG Low | 48t _{CLCL} | | | | t _{GHAX} | Address Hold after PROG | 48t _{CLCL} | | | | t _{DVGL} | Data Setup to PROG Low | 48t _{CLCL} | | | | t _{GHDX} | Data Hold after PROG | 48t _{CLCL} | | | | t _{EHSH} | P2.7 (ENABLE) High to V _{PP} | 48t _{CLCL} | | | | t _{SHGL} | V _{PP} Setup to PROG Low | 10 | | μs | | t _{GHSL} | V _{PP} Hold after PROG | 10 | | μs | | t _{GLGH} | PROG Width | 0.2 | 1 | μs | | t _{AVQV} | Address to Data Valid | | 48t _{CLCL} | | | t _{ELQV} | ENABLE Low to Data Valid | | 48t _{CLCL} | | | t _{EHQZ} | Data Float after ENABLE | 0 | 48t _{CLCL} | | | t _{GHBL} | PROG High to BUSY Low | | 1.0 | μs | | t _{WC} | Byte Write Cycle Time | | 80 | μs | # **Parallel Chip Erase Mode** ### **Absolute Maximum Ratings*** | Operating Temperature55°C to +125°C | |--| | Storage Temperature65°C to +150°C | | Voltage on Any Pin with Respect to Ground1.0V to +7.0V | | Maximum Operating Voltage 6.6V | | DC Output Current | Notice*: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### **DC Characteristics** The values shown in this table are valid for $T_A = -40$ °C to 85 °C and $V_{CC} = 4.0$ V to 5.5V, unless otherwise noted. | Symbol | Parameter | Condition | Min | Max | Units | |------------------|--|---|--------------------------|--------------------------|-------| | V _{IL} | Input Low-voltage | (Except EA) | -0.5 | 0.2 V _{CC} -0.1 | V | | V _{IL1} | Input Low-voltage (EA) | | -0.5 | 0.2 V _{CC} -0.3 | V | | V _{IH} | Input High-voltage | (Except XTAL1, RST) | 0.2 V _{CC} +0.9 | V _{CC} +0.5 | V | | V _{IH1} | Input High-voltage | (XTAL1, RST) | 0.7 V _{CC} | V _{CC} +0.5 | V | | V _{OL} | Output Low-voltage ⁽¹⁾ (Ports 1,2,3) | I _{OL} = 1.6 mA | | 0.45 | V | | V _{OL1} | Output Low-voltage ⁽¹⁾
(Port 0, ALE, PSEN) | I _{OL} = 3.2 mA | | 0.45 | ٧ | | | | I_{OH} = -60 μ A, V_{CC} = 5V \pm 10% | 2.4 | | V | | V_{OH} | Output High-voltage (Ports 1,2,3, ALE, PSEN) | I _{OH} = -25 μA | 0.75 V _{CC} | | V | | | | I _{OH} = -10 μA | 0.9 V _{CC} | | V | | | | $I_{OH} = -800 \ \mu A, \ V_{CC} = 5V \pm 10\%$ | 2.4 | | V | | V_{OH1} | Output High-voltage
(Port 0 in External Bus Mode) | Ι _{ΟΗ} = -300 μΑ | 0.75 V _{CC} | | V | | | | Ι _{ΟΗ} = -80 μΑ | 0.9 V _{CC} | | V | | I _{IL} | Logical 0 Input Current (Ports 1,2,3) | V _{IN} = 0.45V | | -50 | μΑ | | I _{TL} | Logical 1 to 0 Transition Current (Ports 1,2,3) | $V_{IN} = 2V, V_{CC} = 5V \pm 10\%$ | | -650 | μΑ | | I _{LI} | Input Leakage Current (Port 0, EA) | 0.45 < V _{IN} < V _{CC} | | ±10 | μΑ | | RRST | Reset Pull-down Resistor | | 10 | 30 | kΩ | | C _{IO} | Pin Capacitance | Test Freq. = 1 MHz, T _A = 25°C | | 10 | pF | | | Dower Cumply Current | Active Mode, 12 MHz | | 25 | mA | | I _{CC} | Power Supply Current | Idle Mode, 12 MHz | | 6.5 | mA | | | Power-down Mode ⁽¹⁾ | V _{CC} = 5.5V | | 100 | μA | Notes: 1. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows: Maximum I_{OL} per port pin: 10 mA Maximum I_{OL} per 8-bit port: Port 0: 26 mA Ports 1, 2, 3: 15 mA Maximum total I_{OL} for all output pins: 71 mA If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions. 2. Minimum V_{CC} for Power-down is 2V. ### **AC Characteristics** Under operating conditions, load capacitance for Port 0, ALE/ \overline{PROG} , and \overline{PSEN} = 100 pF; load capacitance for all other outputs = 80 pF. # **External Program and Data Memory Characteristics** | | | 12 MHz | Oscillator | Variable | Oscillator | | |---------------------|------------------------------------|--------|------------|-------------------------|-------------------------|-------| | Symbol | Parameter | Min | Max | Min | Max | Units | | 1/t _{CLCL} | Oscillator Frequency | | | 0 | 33 | MHz | | t _{LHLL} | ALE Pulse Width | 127 | | 2t _{CLCL} -40 | | ns | | t _{AVLL} | Address Valid to ALE Low | 43 | | t _{CLCL} -25 | | ns | | t _{LLAX} | Address Hold after ALE Low | 48 | | t _{CLCL} -25 | | ns | | t _{LLIV} | ALE Low to Valid Instruction In | | 233 | | 4t _{CLCL} -65 | ns | | t _{LLPL} | ALE Low to PSEN Low | 43 | | t _{CLCL} -25 | | ns | | t _{PLPH} | PSEN Pulse Width | 205 | | 3t _{CLCL} -45 | | ns | | t _{PLIV} | PSEN Low to Valid Instruction In | | 145 | | 3t _{CLCL} -60 | ns | | t _{PXIX} | Input Instruction Hold after PSEN | 0 | | 0 | | ns | | t _{PXIZ} | Input Instruction Float after PSEN | | 59 | | t _{CLCL} -25 | ns | | t _{PXAV} | PSEN to Address Valid | 75 | | t _{CLCL} -8 | | ns | | t _{AVIV} | Address to Valid Instruction In | | 312 | | 5t _{CLCL} -80 | ns | | t _{PLAZ} | PSEN Low to Address Float | | 10 | | 10 | ns | | t _{RLRH} | RD Pulse Width | 400 | | 6t _{CLCL} -100 | | ns | | t _{WLWH} | WR Pulse Width | 400 | | 6t _{CLCL} -100 | | ns | | t _{RLDV} | RD Low to Valid Data In | | 252 | | 5t _{CLCL} -90 | ns | | t _{RHDX} | Data Hold after RD | 0 | | 0 | | ns | | t _{RHDZ} | Data Float after RD | | 97 | | 2t _{CLCL} -28 | ns | | t _{LLDV} | ALE Low to Valid Data In | | 517 | | 8t _{CLCL} -150 | ns | | t _{AVDV} | Address to Valid Data In | | 585 | | 9t _{CLCL} -165 | ns | | t _{LLWL} | ALE Low to RD or WR Low | 200 | 300 | 3t _{CLCL} -50 | 3t _{CLCL} +50 | ns | | t _{AVWL} | Address to RD or WR Low | 203 | | 4t _{CLCL} -75 | | ns | | t _{QVWX} | Data Valid to WR Transition | 23 | | t _{CLCL} -30 | | ns | | t _{QVWH} | Data Valid to WR High | 433 | | 7t _{CLCL} -130 | | ns | | t _{WHQX} | Data Hold after WR | 33 | | t _{CLCL} -25 | | ns | | t _{RLAZ} | RD Low to Address Float | | 0 | | 0 | ns | | t _{WHLH} | RD or WR High to ALE High | 43 | 123 | t _{CLCL} -25 | t _{CLCL} +25 | ns | # **External Program Memory Read Cycle** # **External Data Memory Read Cycle** ## **External Data Memory Write Cycle** ### **External Clock Drive Waveforms** ### **External Clock Drive** | Symbol | Parameter | Min | Max | Units | |---------------------|----------------------|-----|-----|-------| | 1/t _{CLCL} | Oscillator Frequency | 0 | 33 | MHz | | t _{CLCL} | Clock Period | 30 | | ns | | t _{CHCX} | High Time | 12 | | ns | | t _{CLCX} | Low Time | 12 | | ns | | t _{CLCH} | Rise Time | | 5 | ns | | t _{CHCL} | Fall Time | | 5 | ns | ## **Serial Port Timing: Shift Register Mode Test Conditions** The values in this table are valid for $V_{CC} = 4.0V$ to 5.5V and Load Capacitance = 80 pF. | | | 12 MHz Osc | | Variable Oscillator | | | |-------------------|--|------------|-----|---------------------------|---------------------------|-------| | Symbol | Parameter | Min | Max | Min | Max | Units | | t _{XLXL} | Serial Port Clock Cycle Time | 1.0 | | 12t _{CLCL} | | μs | | t _{QVXH} | Output Data Setup to Clock Rising Edge | 700 | | 10t _{CLCL} - 133 | | ns | | t _{XHQX} | Output Data Hold after Clock Rising Edge | 50 | | 2t _{CLCL} - 80 | | ns | | t _{XHDX} | Input Data Hold after Clock Rising Edge | 0 | | 0 | | ns | | t _{XHDV} | Clock Rising Edge to Input Data Valid | | 700 | | 10t _{CLCL} - 133 | ns | ## **Shift Register Mode Timing Waveforms** ## **AC Testing Input/Output Waveforms**⁽¹⁾ Note: 1. AC Inputs during testing are driven at V_{CC} - 0.5V for a logic 1 and 0.45V for a logic 0. Timing measurements are made at V_{IH} min. for a logic 1 and V_{IL} max. for a logic 0. ## Float Waveforms⁽¹⁾ Note: 1. For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs. A port pin begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. #### **Atmel Headquarters** #### Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 USA TEL 1(408) 441-0311 FAX 1(408) 487-2600 #### Europe Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500 #### Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369 #### Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581 #### **Atmel Operations** #### Memory 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314 #### Microcontrollers 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314 La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60 #### ASIC/ASSP/Smart Cards Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759 Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743 #### RF/Automotive Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759 Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80 e-mail literature@atmel.com Web Site http://www.atmel.com #### © Atmel Corporation 2002. Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems. ATMEL® is the registered trademark of Atmel. MCS®51 is a registered trademark of Intel Corporation. Other terms and product names may be the trademarks of others.