

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 12bit SAR; D/A 12bit
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32tg11b120f128gq64-a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Code	Flash (kB)	RAM (kB)	DC-DC Con- verter	LCD	GPIO	Package	Temp Range
EFM32TG11B320F128GQ48-A	128	32	No	Yes	37	QFP48	-40 to +85°C
EFM32TG11B320F128IQ48-A	128	32	No	Yes	37	QFP48	-40 to +125°C
EFM32TG11B340F64GQ48-A	64	32	No	Yes	37	QFP48	-40 to +85°C
EFM32TG11B340F64IQ48-A	64	32	No	Yes	37	QFP48	-40 to +125°C
EFM32TG11B120F128GM64-A	128	32	No	No	56	QFN64	-40 to +85°C
EFM32TG11B120F128GQ64-A	128	32	No	No	53	QFP64	-40 to +85°C
EFM32TG11B120F128IM64-A	128	32	No	No	56	QFN64	-40 to +125°C
EFM32TG11B120F128IQ64-A	128	32	No	No	53	QFP64	-40 to +125°C
EFM32TG11B140F64GM64-A	64	32	No	No	56	QFN64	-40 to +85°C
EFM32TG11B140F64GQ64-A	64	32	No	No	53	QFP64	-40 to +85°C
EFM32TG11B140F64IM64-A	64	32	No	No	56	QFN64	-40 to +125°C
EFM32TG11B140F64IQ64-A	64	32	No	No	53	QFP64	-40 to +125°C
EFM32TG11B120F128GQ48-A	128	32	No	No	37	QFP48	-40 to +85°C
EFM32TG11B120F128IQ48-A	128	32	No	No	37	QFP48	-40 to +125°C
EFM32TG11B140F64GQ48-A	64	32	No	No	37	QFP48	-40 to +85°C
EFM32TG11B140F64IQ48-A	64	32	No	No	37	QFP48	-40 to +125°C
EFM32TG11B120F128GM32-A	128	32	No	No	24	QFN32	-40 to +85°C
EFM32TG11B120F128IM32-A	128	32	No	No	24	QFN32	-40 to +125°C
EFM32TG11B140F64GM32-A	64	32	No	No	24	QFN32	-40 to +85°C
EFM32TG11B140F64IM32-A	64	32	No	No	24	QFN32	-40 to +125°C

3. System Overview

3.1 Introduction

The Tiny Gecko Series 1 product family is well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the MCU system. The detailed functional description can be found in the Tiny Gecko Series 1 Reference Manual. Any behavior that does not conform to the specifications in this data sheet or the functional descriptions in the Tiny Gecko Series 1 Reference Manual are detailed in the EFM32TG11 Errata document.

A block diagram of the Tiny Gecko Series 1 family is shown in Figure 3.1 Detailed EFM32TG11 Block Diagram on page 10. The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information.

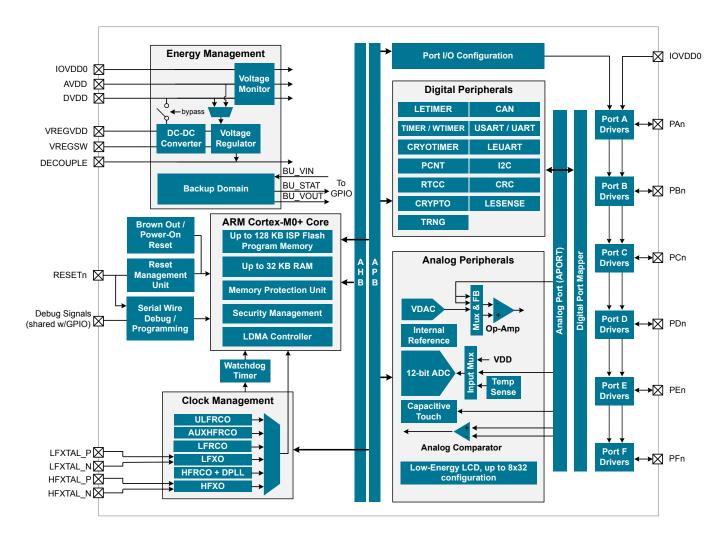


Figure 3.1. Detailed EFM32TG11 Block Diagram

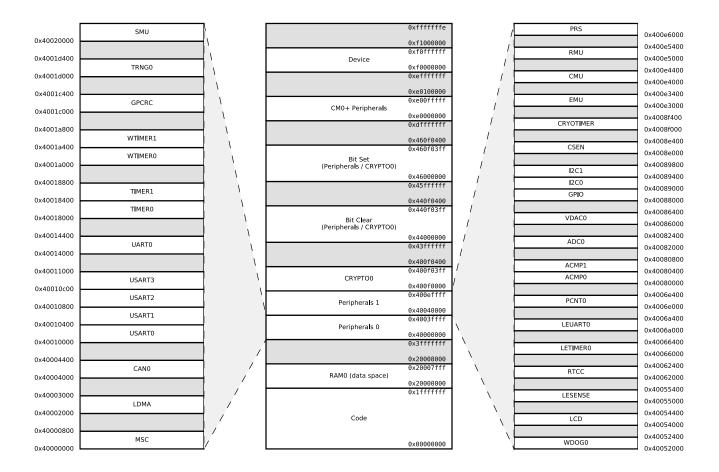


Figure 3.3. EFM32TG11 Memory Map — Peripherals

3.12 Configuration Summary

The features of the EFM32TG11 are a subset of the feature set described in the device reference manual. The table below describes device specific implementation of the features. Remaining modules support full configuration.

Table 3.2.	Configuration	Summary
------------	---------------	---------

Module	Configuration	Pin Connections
USART0	IrDA, SmartCard	US0_TX, US0_RX, US0_CLK, US0_CS
USART1	I ² S, SmartCard	US1_TX, US1_RX, US1_CLK, US1_CS
USART2	IrDA, SmartCard, High-Speed	US2_TX, US2_RX, US2_CLK, US2_CS
USART3	I ² S, SmartCard	US3_TX, US3_RX, US3_CLK, US3_CS
TIMER0	with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1	-	TIM1_CC[3:0]
WTIMER0	with DTI	WTIM0_CC[2:0], WTIM0_CDTI[2:0]
WTIMER1	-	WTIM1_CC[3:0]

4.1.2 Operating Conditions

When assigning supply sources, the following requirements must be observed:

- VREGVDD must be greater than or equal to AVDD, DVDD and all IOVDD supplies.
- VREGVDD = AVDD
- DVDD ≤ AVDD
- IOVDD ≤ AVDD

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Note:						
		mode is calculated using R_{BYP} _min+ILOAD * R_{BYP} _max.	from the DCDC spec	cification table	e. Requiremer	nts for
2. VREGVDD must be	e tied to AVDD. Both	VREGVDD and AVDD minimum	voltages must be sa	atisfied for the	part to opera	te.
3. The system designer should consult the characteristic specs of the capacitor used on DECOUPLE to ensure its capacitance val- ue stays within the specified bounds across temperature and DC bias.						
4. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV / usec for approximately 20 usec. During this transition, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 μF capacitor) to 70 mA (with a 2.7 μF capacitor).						
5. When the CSEN pe	ripheral is used with	chopping enabled (CSEN_CTRI	CHOPEN = ENAB	LE), IOVDD n	nust be equal	to AVDE
cation. T _A (max) =		due to device self-heating, which x PowerDissipation). Refer to th		•	-	

4.1.3 Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Thermal resistance, QFN32	THETA _{JA_QFN32}	4-Layer PCB, Air velocity = 0 m/s	_	25.7	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	23.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	21.3	_	°C/W
Thermal resistance, TQFP48	THE-	4-Layer PCB, Air velocity = 0 m/s	_	44.1	_	°C/W
Package	TA _{JA_TQFP48}	4-Layer PCB, Air velocity = 1 m/s		43.5	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	42.3	_	°C/W
Thermal resistance, QFN64	THETA _{JA_QFN64}	4-Layer PCB, Air velocity = 0 m/s	_	20.9	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	18.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	16.4	_	°C/W
Thermal resistance, TQFP64	THE- TA _{JA_TQFP64}	4-Layer PCB, Air velocity = 0 m/s	_	37.3	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	35.6	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	33.8	_	°C/W
Thermal resistance, QFN80	THETA _{JA_QFN80}	4-Layer PCB, Air velocity = 0 m/s		20.9	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	18.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	16.4	_	°C/W
Thermal resistance, TQFP80	THE-	4-Layer PCB, Air velocity = 0 m/s	_	49.3	_	°C/W
Package	TA _{JA_TQFP80}	4-Layer PCB, Air velocity = 1 m/s	_	44.5	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	42.6	_	°C/W

Table 4.3. Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption of pe- ripheral power domain 1, with voltage scaling enabled, DCDC in LP mode ³	IPD1_VS	Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled ⁴		0.18	_	μA
Current consumption of pe- ripheral power domain 2, with voltage scaling enabled, DCDC in LP mode ³	IPD2_VS	Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled ⁴		0.18		μA

Note:

1. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD.

2. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD.

3. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIM-SEL=1, ANASW=DVDD.

4. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.3 EM2 and EM3 Power Domains for a list of the peripherals in each power domain.

5. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1

4.1.9.2 High-Frequency Crystal Oscillator (HFXO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal frequency	f _{HFXO}		4	—	48	MHz
Supported crystal equivalent	ESR _{HFXO}	48 MHz crystal	_	_	50	Ω
series resistance (ESR)		24 MHz crystal		_	150	Ω
		4 MHz crystal	_	_	180	Ω
Supported range of crystal load capacitance ¹	C _{HFXO_CL}		TBD	_	TBD	pF
Nominal on-chip tuning cap range ²	C _{HFXO_T}	On each of HFXTAL_N and HFXTAL_P pins	8.7	_	51.7	pF
On-chip tuning capacitance step	SS _{HFXO}		_	0.08	_	pF
Startup time	t _{HFXO}	48 MHz crystal, ESR = 50 Ohm, $C_L = 8 pF$	_	350	_	μs
		24 MHz crystal, ESR = 150 Ohm, C _L = 6 pF	_	700	_	μs
		4 MHz crystal, ESR = 180 Ohm, C_L = 18 pF	_	3	_	ms
Current consumption after	I _{HFXO}	48 MHz crystal	_	880	_	μA
startup		24 MHz crystal		420	_	μA
		4 MHz crystal		80	_	μA

Table 4.12. High-Frequency Crystal Oscillator (HFXO)

Note:

1. Total load capacitance as seen by the crystal.

2. The effective load capacitance seen by the crystal will be C_{HFXO_T} /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Hysteresis (V _{CM} = 1.25 V,	V _{ACMPHYST}	HYSTSEL ⁵ = HYST0	TBD	0	TBD	mV
$BIASPROG^4 = 0x10, FULL-BIAS^4 = 1)$		HYSTSEL ⁵ = HYST1	TBD	18	TBD	mV
		HYSTSEL ⁵ = HYST2	TBD	33	TBD	mV
		HYSTSEL ⁵ = HYST3	TBD	46	TBD	mV
		HYSTSEL ⁵ = HYST4	TBD	57	TBD	mV
		HYSTSEL ⁵ = HYST5	TBD	68	TBD	mV
		HYSTSEL ⁵ = HYST6	TBD	79	TBD	mV
		HYSTSEL ⁵ = HYST7	TBD	90	TBD	mV
		HYSTSEL ⁵ = HYST8	TBD	0	TBD	mV
		HYSTSEL ⁵ = HYST9	TBD	-18	TBD	mV
		HYSTSEL ⁵ = HYST10	TBD	-33	TBD	mV
		HYSTSEL ⁵ = HYST11	TBD	-45	TBD	mV
		HYSTSEL ⁵ = HYST12	TBD	-57	TBD	mV
		HYSTSEL ⁵ = HYST13	TBD	-67	TBD	mV
		HYSTSEL ⁵ = HYST14	TBD	-78	TBD	mV
		HYSTSEL ⁵ = HYST15	TBD	-88	TBD	mV
Comparator delay ³	t _{acmpdelay}	$BIASPROG^4 = 1$, $FULLBIAS^4 = 0$	_	30	_	μs
		$BIASPROG^4 = 0x10, FULLBIAS^4 = 0$	_	3.7	_	μs
		BIASPROG ⁴ = 0x02, FULLBIAS ⁴ = 1		360	_	ns
		BIASPROG ⁴ = 0x20, FULLBIAS ⁴ = 1	_	35	_	ns
Offset voltage	VACMPOFFSET	BIASPROG ⁴ =0x10, FULLBIAS ⁴ = 1	TBD	_	TBD	mV
Reference voltage	V _{ACMPREF}	Internal 1.25 V reference	TBD	1.25	TBD	V
		Internal 2.5 V reference	TBD	2.5	TBD	V
Capacitive sense internal re- sistance	R _{CSRES}	CSRESSEL ⁶ = 0	—	infinite	_	kΩ
		CSRESSEL ⁶ = 1	—	15	_	kΩ
		CSRESSEL ⁶ = 2		27	_	kΩ
		CSRESSEL ⁶ = 3	—	39		kΩ
		CSRESSEL ⁶ = 4		51		kΩ
		CSRESSEL ⁶ = 5	_	100	_	kΩ
		CSRESSEL ⁶ = 6		162	_	kΩ
		CSRESSEL ⁶ = 7		235	_	kΩ

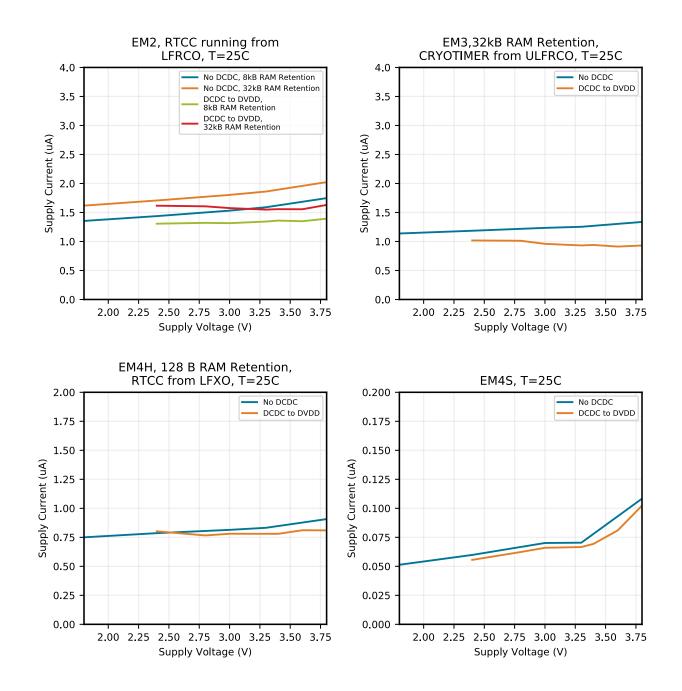
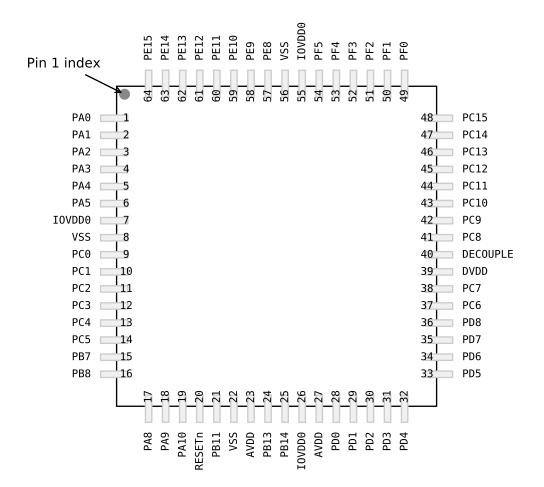



Figure 4.7. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Supply

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PC4	13	GPIO	PC5	14	GPIO
PB7	15	GPIO	PB8	16	GPIO
PA8	17	GPIO	PA12	18	GPIO
PA14	19	GPIO	RESETn	20	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	21	GPIO	PB12	22	GPIO
AVDD	24 28	Analog power supply.	PB13	25	GPIO
PB14	26	GPIO	PD0	29	GPIO (5V)
PD1	30	GPIO	PD3	31	GPIO
PD4	32	GPIO	PD5	33	GPIO
PD6	34	GPIO	PD7	35	GPIO
PD8	36	GPIO	PC7	37	GPIO
VREGVSS	38	Voltage regulator VSS	VREGSW	39	DCDC regulator switching node
VREGVDD	40	Voltage regulator VDD input	DVDD	41	Digital power supply.
DECOUPLE	42	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PE4	43	GPIO
PE5	44	GPIO	PE6	45	GPIO
PE7	46	GPIO	PC12	47	GPIO (5V)
PC13	48	GPIO (5V)	PF0	49	GPIO (5V)
PF1	50	GPIO (5V)	PF2	51	GPIO
PF3	52	GPIO	PF4	53	GPIO
PF5	54	GPIO	PE8	57	GPIO
PE9	58	GPIO	PE10	59	GPIO
PE11	60	GPIO	PE12	61	GPIO
PE13	62	GPIO	PE14	63	GPIO
PE15	64	GPIO			

1. GPIO with 5V tolerance are indicated by (5V).

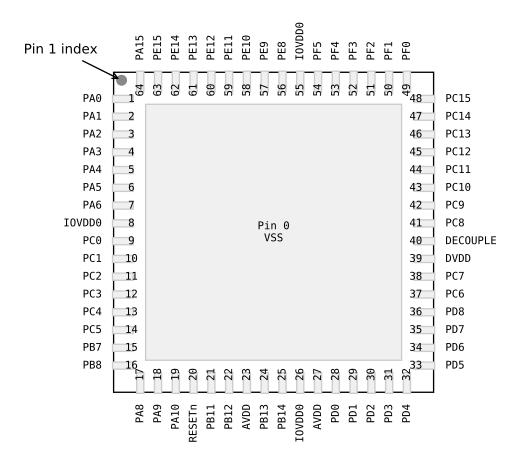
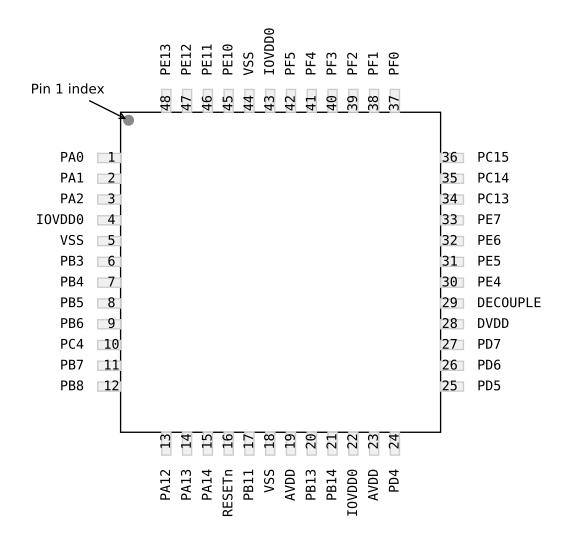


Figure 5.5. EFM32TG11B1xx in QFP64 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Table 5.5. EFM32TG11B1xx in QFP64 Device Pi	nout
---	------

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	PA3	4	GPIO
PA4	5	GPIO	PA5	6	GPIO
IOVDD0	7 26 55	Digital IO power supply 0.	VSS	8 22 56	Ground
PC0	9	GPIO (5V)	PC1	10	GPIO (5V)
PC2	11	GPIO (5V)	PC3	12	GPIO (5V)


Figure 5.8. EFM32TG11B1xx in QFN64 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VREGVSS	0	Voltage regulator VSS	PA0	1	GPIO
PA1	2	GPIO	PA2	3	GPIO
PA3	4	GPIO	PA4	5	GPIO
PA5	6	GPIO	PA6	7	GPIO
IOVDD0	8 26 55	Digital IO power supply 0.	PC0	9	GPIO (5V)
PC1	10	GPIO (5V)	PC2	11	GPIO (5V)

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description	
PB8	11	GPIO	PA8	12	GPIO	
PA12	13	GPIO	PA14	14	GPIO	
RESETn	15	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.		GPIO		
AVDD	18 22	Analog power supply.	PB13	19	GPIO	
PB14	20	GPIO	PD4	23	GPIO	
PD5	24	GPIO	PD6	25	GPIO	
PD7	26	GPIO	PD8	27	GPIO	
VREGVSS	28	Voltage regulator VSS	VREGSW	29	DCDC regulator switching node	
VREGVDD	30	Voltage regulator VDD input	DVDD	31	Digital power supply.	
DECOUPLE	32	Decouple output for on-chip voltage regulator. An external decoupling ca- pacitor is required at this pin.	PE4	33	B GPIO	
PE5	34	GPIO	PE6	35	GPIO	
PE7	36	GPIO	PF0	37	GPIO (5V)	
PF1	38	GPIO (5V)	PF2	39	GPIO	
PF3	40	GPIO	PF4	41	GPIO	
PF5	42	GPIO	PE10	45	GPIO	
PE11	46	GPIO	PE12 47 GPIO		GPIO	
PE13	48	GPIO				

1. GPIO with 5V tolerance are indicated by (5V).

Figure 5.10. EFM32TG11B3xx in QFP48 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Table 5.10.	EFM32TG11B3xx in	QFP48 Device Pinout
-------------	------------------	----------------------------

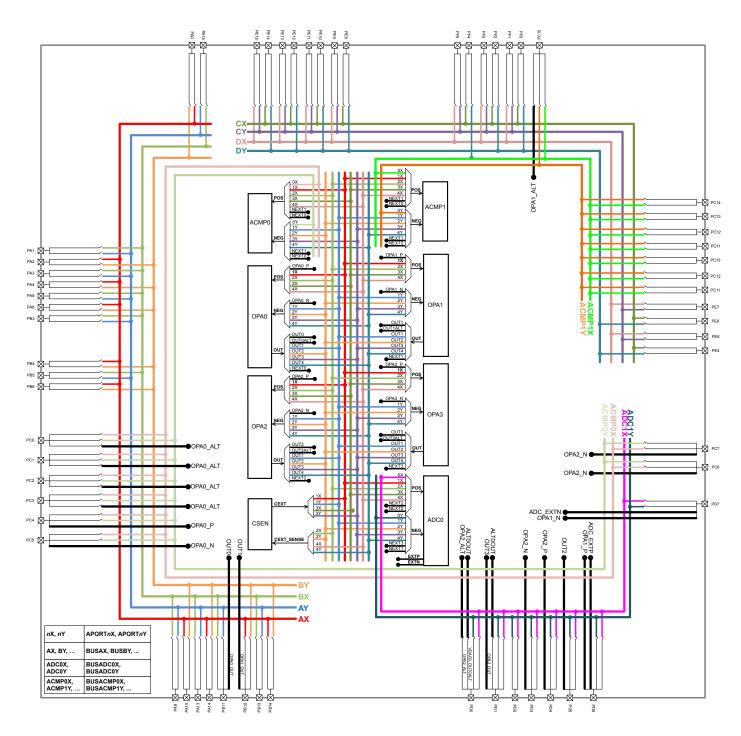
Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description	
PA0	1	GPIO	PA1	2	GPIO	
PA2	3	GPIO	IOVDD0	4 22 43	Digital IO power supply 0.	
VSS	5 18 44	Ground	PB3	6	GPIO	
PB4	7	GPIO	PB5	8	GPIO	
PB6	9	GPIO	PC4	10	GPIO	

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description	
PA14	8	GPIO	RESETn	9	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	
PB11	10	GPIO	AVDD	11	Analog power supply.	
PB13	12	GPIO	PB14	13	GPIO	
PD4	15	GPIO	PD5	16	GPIO	
PD6	17	GPIO	PD7	18	GPIO	
VREGSW	20	DCDC regulator switching node	VREGVDD	21	Voltage regulator VDD input	
DVDD	22	Digital power supply.	DECOUPLE	23	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	
PE4	24	GPIO	PE5	25	GPIO	
PC15	26	GPIO (5V)	PF0	27	GPIO (5V)	
PF1	28	GPIO (5V)	PF2	29	GPIO	
PE11	31	GPIO	PE12	32	GPIO	
Note: 1. GPIO with	n 5V tolera	nce are indicated by (5V).				

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description	
PB8	8	GPIO	RESETn	9	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	
PB11	10	GPIO	AVDD	11 15	Analog power supply.	
PB13	12	GPIO	PB14	13	GPIO	
PD4	16	GPIO	PD5	17	GPIO	
PD6	18	GPIO	PD7	19	GPIO	
DVDD	20	Digital power supply.	DECOUPLE	21	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	
PC13	22	GPIO (5V)	PC14	23	GPIO (5V)	
PC15	24	GPIO (5V)	PF0	25	GPIO (5V)	
PF1	26	GPIO (5V)	PF2	27	GPIO	
PE10	29	GPIO	PE11	30	GPIO	
PE12	31	GPIO	PE13	32	GPIO	
Note:		,				

1. GPIO with 5V tolerance are indicated by (5V).

5.14 GPIO Functionality Table


A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of each GPIO pin, followed by the functionality available on that pin. Refer to 5.15 Alternate Functionality Overview for a list of GPIO locations available for each function.

GPIO Name	Pin Alternate Functionality / Description						
	Analog	Timers	Communication	Other			
PA0	BUSBY BUSAX LCD_SEG13	TIM0_CC0 #0 TIM0_CC1 #7 PCNT0_S0IN #4	US1_RX #5 US3_TX #0 LEU0_RX #4 I2C0_SDA #0	CMU_CLK2 #0 PRS_CH0 #0 PRS_CH3 #3 GPIO_EM4WU0			
PA1	BUSAY BUSBX LCD_SEG14	TIM0_CC0 #7 TIM0_CC1 #0 PCNT0_S1IN #4	US3_RX #0 I2C0_SCL #0	CMU_CLK1 #0 PRS_CH1 #0			
PA2	BUSBY BUSAX LCD_SEG15	TIM0_CC2 #0	US1_RX #6 US3_CLK #0	CMU_CLK0 #0			
PA3	BUSAY BUSBX LCD_SEG16	TIM0_CDTI0 #0	US3_CS #0 U0_TX #2	CMU_CLK2 #1 CMU_CLK2 #4 CMU_CLKI0 #1 LES_AL- TEX2			
PA4	BUSBY BUSAX LCD_SEG17	TIM0_CDTI1 #0	US3_CTS #0 U0_RX #2	LES_ALTEX3			
PA5	BUSAY BUSBX LCD_SEG18	TIM0_CDTI2 #0	US3_RTS #0 U0_CTS #2	LES_ALTEX4 ACMP1_O #7			
PA6	BUSBY BUSAX LCD_SEG19	WTIM0_CC0 #1	U0_RTS #2	PRS_CH6 #0 ACMP0_O #4 GPIO_EM4WU1			
PB3	BUSAY BUSBX LCD_SEG20 / LCD_COM4	TIM1_CC3 #2 WTIM0_CC0 #6	US2_TX #1 US3_TX #2	ACMP0_O #7			
PB4	BUSBY BUSAX LCD_SEG21 / LCD_COM5	WTIM0_CC1 #6	US2_RX #1				
PB5	BUSAY BUSBX LCD_SEG22 / LCD_COM6	WTIM0_CC2 #6 PCNT0_S0IN #6	US0_RTS #4 US2_CLK #1				
PB6	BUSBY BUSAX LCD_SEG23 / LCD_COM7	TIM0_CC0 #3 PCNT0_S1IN #6	US0_CTS #4 US2_CS #1				
PC0	VDAC0_OUT0ALT / OPA0_OUTALT #0 BU- SACMP0Y BUSACMP0X	TIM0_CC1 #3 PCNT0_S0IN #2	CAN0_RX #0 US0_TX #5 US1_TX #0 US1_CS #4 US2_RTS #0 US3_CS #3 I2C0_SDA #4	LES_CH0 PRS_CH2 #0			
PC1	VDAC0_OUT0ALT / OPA0_OUTALT #1 BU- SACMP0Y BUSACMP0X	TIM0_CC2 #3 WTIM0_CC0 #7 PCNT0_S1IN #2	CAN0_TX #0 US0_RX #5 US1_TX #4 US1_RX #0 US2_CTS #0 US3_RTS #1 I2C0_SCL #4	LES_CH1 PRS_CH3 #0			
PC2	VDAC0_OUT0ALT / OPA0_OUTALT #2 BU- SACMP0Y BUSACMP0X	TIM0_CDTI0 #3 WTIM0_CC1 #7	US1_RX #4 US2_TX #0	LES_CH2			
PC3	VDAC0_OUT0ALT / OPA0_OUTALT #3 BU- SACMP0Y BUSACMP0X	TIM0_CDTI1 #3 WTIM0_CC2 #7	US1_CLK #4 US2_RX #0	LES_CH3			

Table 5.14. GPIO Functionality Table

5.16 Analog Port (APORT) Client Maps

The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 5.14 APORT Connection Diagram on page 119 shows the APORT routing for this device family (note that available features may vary by part number). A complete description of APORT functionality can be found in the Reference Manual.

Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.

In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin

Figure 7.3. QFN80 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

9.2 QFN64 PCB Land Pattern

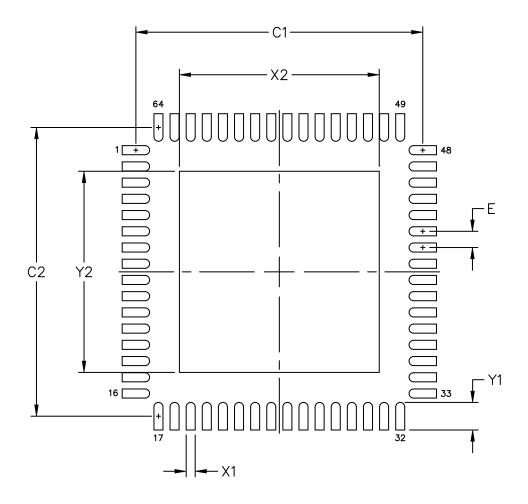


Figure 9.2. QFN64 PCB Land Pattern Drawing