

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	56
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 12bit SAR; D/A 12bit
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TJ)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32tg11b120f128im64-a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Timers/Counters

- 2 × 16-bit Timer/Counter
 - 3 or 4 Compare/Capture/PWM channels (4 + 4 on one timer instance)
 - Dead-Time Insertion on one timer instance
- 2 × 32-bit Timer/Counter
- 32-bit Real Time Counter and Calendar (RTCC)
- 32-bit Ultra Low Energy CRYOTIMER for periodic wakeup from any Energy Mode
- 16-bit Low Energy Timer for waveform generation
- 16-bit Pulse Counter with asynchronous operation
- Watchdog Timer with dedicated RC oscillator
- Low Energy Sensor Interface (LESENSE)
 - Autonomous sensor monitoring in Deep Sleep Mode
 - Wide range of sensors supported, including LC sensors and capacitive buttons
 - Up to 16 inputs
- Ultra efficient Power-on Reset and Brown-Out Detector
- Debug Interface
 - 2-pin Serial Wire Debug interface
 - 4-pin JTAG interface
 - Micro Trace Buffer (MTB)

Pre-Programmed UART Bootloader

Wide Operating Range

- 1.8 V to 3.8 V single power supply
- Integrated DC-DC, down to 1.8 V output with up to 200 mA load current for system
- Standard (-40 $^\circ C$ to 85 $^\circ C$ $T_A)$ and Extended (-40 $^\circ C$ to 125 $^\circ C$ $T_J)$ temperature grades available
- Packages
 - QFN32 (5x5 mm)
 - TQFP48 (7x7 mm)
 - QFN64 (9x9 mm)
 - TQFP64 (10x10 mm)
 - QFN80 (9x9 mm)
 - TQFP80 (12x12 mm)

4.1.2.1 General Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating ambient tempera-	T _A	-G temperature grade	-40	25	85	°C
ture range ⁶		-I temperature grade	-40	25	125	°C
AVDD supply voltage ²	V _{AVDD}		1.8	3.3	3.8	V
VREGVDD operating supply	V _{VREGVDD}	DCDC in regulation	2.4	3.3	3.8	V
voltage ^{2 1}		DCDC in bypass, 50mA load	1.8	3.3	3.8	V
		DCDC not in use. DVDD external- ly shorted to VREGVDD	1.8	3.3	3.8	V
VREGVDD current	I _{VREGVDD}	DCDC in bypass, T ≤ 85 °C	_	_	200	mA
		DCDC in bypass, T > 85 °C	_	_	100	mA
DVDD operating supply volt- age	V _{DVDD}		1.62	_	V _{VREGVDD}	V
IOVDD operating supply volt- age	VIOVDD	All IOVDD pins ⁵	1.62	_	V _{VREGVDD}	V
DECOUPLE output capaci- tor ^{3 4}	C _{DECOUPLE}		0.75	1.0	2.75	μF
HFCORECLK frequency	fcore	VSCALE2, MODE = WS1	_	_	48	MHz
		VSCALE2, MODE = WS0	_	_	25	MHz
		VSCALE0, MODE = WS1	_	_	20	MHz
		VSCALE0, MODE = WS0		_	10	MHz
HFCLK frequency	f _{HFCLK}	VSCALE2	_	_	48	MHz
		VSCALE0	_	_	20	MHz
HFSRCCLK frequency	f _{HFSRCCLK}	VSCALE2	_	_	48	MHz
		VSCALE0	_	—	20	MHz
HFBUSCLK frequency	f _{HFBUSCLK}	VSCALE2	_	_	48	MHz
		VSCALE0	_	_	20	MHz
HFPERCLK frequency	f _{HFPERCLK}	VSCALE2	_	_	48	MHz
		VSCALE0	_	_	20	MHz
HFPERBCLK frequency	f _{HFPERBCLK}	VSCALE2	_	—	48	MHz
		VSCALE0	_	_	20	MHz
HFPERCCLK frequency	f _{HFPERCCLK}	VSCALE2	_	-	48	MHz
		VSCALE0	_	_	20	MHz

Table 4.2. General Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit		
Note:								
 The minimum voltage required in bypass mode is calculated using R_{BYP} from the DCDC specification table. Requirements for other loads can be calculated as V_{DVDD min}+I_{LOAD} * R_{BYP max}. 								
2. VREGVDD must be tied t	o AVDD. Both VRI	EGVDD and AVDD minimum voltage	es must be sa	tisfied for the	part to operat	e.		
 The system designer sho ue stays within the specifi 	uld consult the cha ied bounds across	racteristic specs of the capacitor use temperature and DC bias.	ed on DECOL	JPLE to ensur	e its capacita	nce val-		
4. VSCALE0 to VSCALE2 v tion, peak currents will be mA (with a 2.7 μF capacit	4. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV / usec for approximately 20 usec. During this transi- tion, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 μF capacitor) to 70 mA (with a 2.7 μF capacitor).							
5. When the CSEN peripher	al is used with cho	pping enabled (CSEN_CTRL_CHOF	PEN = ENABI	LE), IOVDD m	ust be equal	to AVDD.		
 6. The maximum limit on T_A may be lower due to device self-heating, which depends on the power dissipation of the specific application. T_A (max) = T_J (max) - (THETA_{JA} x PowerDissipation). Refer to the Absolute Maximum Ratings table and the Thermal Characteristics table for T_J and THETA_{JA}. 								

4.1.3 Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Thermal resistance, QFN32	THETA _{JA_QFN32}	4-Layer PCB, Air velocity = 0 m/s	—	25.7	—	°C/W
Раскаде		4-Layer PCB, Air velocity = 1 m/s	—	23.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	21.3	_	°C/W
Thermal resistance, TQFP48	THE-	4-Layer PCB, Air velocity = 0 m/s	—	44.1	_	°C/W
Раскаде	IAJA_TQFP48	4-Layer PCB, Air velocity = 1 m/s	—	43.5	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	42.3	_	°C/W
Thermal resistance, QFN64	THETA _{JA_QFN64}	4-Layer PCB, Air velocity = 0 m/s	—	20.9	_	°C/W
Раскаде		4-Layer PCB, Air velocity = 1 m/s	—	18.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	16.4	_	°C/W
Thermal resistance, TQFP64	THE-	4-Layer PCB, Air velocity = 0 m/s	—	37.3	_	°C/W
Раскаде	IAJA_TQFP64	4-Layer PCB, Air velocity = 1 m/s	—	35.6	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	33.8	_	°C/W
Thermal resistance, QFN80	THETA _{JA_QFN80}	4-Layer PCB, Air velocity = 0 m/s	—	20.9	_	°C/W
Раскаде		4-Layer PCB, Air velocity = 1 m/s	—	18.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	16.4	_	°C/W
Thermal resistance, TQFP80	THE-	4-Layer PCB, Air velocity = 0 m/s	—	49.3	_	°C/W
Раскаде	IA _{JA_TQFP80}	4-Layer PCB, Air velocity = 1 m/s	—	44.5	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s		42.6		°C/W

Table 4.3. Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Max load current	ILOAD_MAX	Low noise (LN) mode, Heavy Drive ² , T ≤ 85 °C	_	—	200	mA
		Low noise (LN) mode, Heavy Drive ² , T > 85 °C	—	_	100	mA
		Low noise (LN) mode, Medium Drive ²	_	_	100	mA
		Low noise (LN) mode, Light Drive ²	_	_	50	mA
		Low power (LP) mode, LPCMPBIASEMxx ³ = 0	_	_	75	μA
		Low power (LP) mode, LPCMPBIASEMxx ³ = 3	_	_	10	mA
DCDC nominal output ca- pacitor ⁵	C _{DCDC}	25% tolerance	1	4.7	4.7	μF
DCDC nominal output induc- tor	L _{DCDC}	20% tolerance	4.7	4.7	4.7	μH
Resistance in Bypass mode	R _{BYP}		—	1.2	TBD	Ω

Note:

1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, V_{VREGVDD}.

- 2. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=15.
- 3. LPCMPBIASEMxx refers to either LPCMPBIASEM234H in the EMU_DCDCMISCCTRL register or LPCMPBIASEM01 in the EMU_DCDCLOEM01CFG register, depending on the energy mode.

4. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits.

5. Output voltage under/over-shoot and regulation are specified with C_{DCDC} 4.7 μF. Different settings for DCDCLNCOMPCTRL must be used if C_{DCDC} is lower than 4.7 μF. See Application Note AN0948 for details.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_CCM_VS	19 MHz HFRCO, CPU running while loop from flash	—	81	_	µA/MHz
abled and voltage scaling enabled, DCDC in Low Noise CCM mode ¹		1 MHz HFRCO, CPU running while loop from flash	_	1147		µA/MHz
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_LPM_VS	19 MHz HFRCO, CPU running while loop from flash	—	30	—	µA/MHz
abled and voltage scaling enabled, DCDC in LP mode ³		1 MHz HFRCO, CPU running while loop from flash	_	144	_	µA/MHz
Current consumption in EM1	I _{EM1_DCM}	48 MHz crystal	_	31	_	µA/MHz
abled, DCDC in Low Noise		48 MHz HFRCO	—	30	—	µA/MHz
DCM mode ²		32 MHz HFRCO	_	36	_	µA/MHz
		26 MHz HFRCO	—	41	—	µA/MHz
		16 MHz HFRCO	—	54	—	µA/MHz
		1 MHz HFRCO	—	581	—	µA/MHz
Current consumption in EM1	I _{EM1_LPM}	32 MHz HFRCO	—	25	—	µA/MHz
abled, DCDC in Low Power		26 MHz HFRCO	_	26	—	µA/MHz
mode ³		16 MHz HFRCO	—	29	—	µA/MHz
		1 MHz HFRCO	_	153	_	µA/MHz
Current consumption in EM1	IEM1_DCM_VS	19 MHz HFRCO		46	—	µA/MHz
abled and voltage scaling enabled, DCDC in Low Noise DCM mode ²		1 MHz HFRCO		573	—	µA/MHz
Current consumption in EM1	I _{EM1_LPM_VS}	19 MHz HFRCO	—	25	—	µA/MHz
abled and voltage scaling enabled. DCDC in LP mode ³		1 MHz HFRCO	_	140		µA/MHz
Current consumption in EM2 mode, with voltage scaling	I _{EM2_VS}	Full 32 kB RAM retention and RTCC running from LFXO	_	1.26		μA
enabled, DCDC in LP mode ³		Full 32 kB RAM retention and RTCC running from LFRCO	—	1.54	—	μA
		8 kB (1 bank) RAM retention and RTCC running from LFRCO ⁵	_	1.30	—	μA
Current consumption in EM3 mode, with voltage scaling enabled	I _{EM3_VS}	Full 32 kB RAM retention and CRYOTIMER running from ULFR- CO	_	0.93	_	μA
Current consumption in EM4H mode, with voltage	I _{EM4H_VS}	128 byte RAM retention, RTCC running from LFXO	_	0.78	_	μA
scaling enabled		128 byte RAM retention, CRYO- TIMER running from ULFRCO	—	0.50	—	μA
		128 byte RAM retention, no RTCC	_	0.50		μA
Current consumption in EM4S mode	I _{EM4S}	No RAM retention, no RTCC	—	0.06	_	μΑ

4.1.14 Analog Comparator (ACMP)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input voltage range	V _{ACMPIN}	ACMPVDD = ACMPn_CTRL_PWRSEL ¹	—	—	V _{ACMPVDD}	V
Supply voltage	VACMPVDD	$BIASPROG^4 \le 0x10 \text{ or } FULL-BIAS^4 = 0$	1.8	—	V _{VREGVDD} MAX	V
		$0x10 < BIASPROG^4 \le 0x20$ and FULLBIAS ⁴ = 1	2.1	_	V _{VREGVDD} MAX	V
Active current not including	I _{ACMP}	$BIASPROG^4 = 1$, $FULLBIAS^4 = 0$	—	50	_	nA
voltage reference ²		$BIASPROG^4 = 0x10, FULLBIAS^4 = 0$		306	_	nA
		$BIASPROG^4 = 0x02, FULLBIAS^4$ $= 1$	_	6.5	_	μA
		BIASPROG ⁴ = 0x20, FULLBIAS ⁴ = 1	_	74	TBD	μA
Current consumption of inter- nal voltage reference ²	IACMPREF	VLP selected as input using 2.5 V Reference / 4 (0.625 V)	_	50	_	nA
		VLP selected as input using VDD	—	20	_	nA
		VBDIV selected as input using 1.25 V reference / 1	—	4.1	_	μA
		VADIV selected as input using VDD/1		2.4	_	μA

Table 4.21. Analog Comparator (ACMP)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Hysteresis (V _{CM} = 1.25 V,	V _{ACMPHYST}	HYSTSEL ⁵ = HYST0	TBD	0	TBD	mV
$BIASPROG^{4} = 0x10, FULL-$ $BIAS^{4} = 1)$		HYSTSEL ⁵ = HYST1	TBD	18	TBD	mV
		HYSTSEL ⁵ = HYST2	TBD	33	TBD	mV
		HYSTSEL ⁵ = HYST3	TBD	46	TBD	mV
		HYSTSEL ⁵ = HYST4	TBD	57	TBD	mV
		HYSTSEL ⁵ = HYST5	TBD	68	TBD	mV
		HYSTSEL ⁵ = HYST6	TBD	79	TBD	mV
		HYSTSEL ⁵ = HYST7	TBD	90	TBD	mV
		HYSTSEL ⁵ = HYST8	TBD	0	TBD	mV
		HYSTSEL ⁵ = HYST9	TBD	-18	TBD	mV
		HYSTSEL ⁵ = HYST10	TBD	-33	TBD	mV
		HYSTSEL ⁵ = HYST11	TBD	-45	TBD	mV
		HYSTSEL ⁵ = HYST12	TBD	-57	TBD	mV
		HYSTSEL ⁵ = HYST13	TBD	-67	TBD	mV
		HYSTSEL ⁵ = HYST14	TBD	-78	TBD	mV
		HYSTSEL ⁵ = HYST15	TBD	-88	TBD	mV
Comparator delay ³	^t acmpdelay	$BIASPROG^4 = 1$, $FULLBIAS^4 = 0$	_	30	_	μs
		$BIASPROG^4 = 0x10, FULLBIAS^4 = 0$	_	3.7	_	μs
		$BIASPROG^4 = 0x02, FULLBIAS^4 = 1$	_	360	_	ns
		BIASPROG ⁴ = 0x20, FULLBIAS ⁴ = 1	_	35	_	ns
Offset voltage	VACMPOFFSET	BIASPROG ⁴ =0x10, FULLBIAS ⁴ = 1	TBD	_	TBD	mV
Reference voltage	V _{ACMPREF}	Internal 1.25 V reference	TBD	1.25	TBD	V
		Internal 2.5 V reference	TBD	2.5	TBD	V
Capacitive sense internal re-	R _{CSRES}	CSRESSEL ⁶ = 0	—	infinite	_	kΩ
		CSRESSEL ⁶ = 1	—	15	—	kΩ
		CSRESSEL ⁶ = 2	—	27	—	kΩ
		CSRESSEL ⁶ = 3	—	39	_	kΩ
		CSRESSEL ⁶ = 4	—	51		kΩ
		CSRESSEL ⁶ = 5	—	100	—	kΩ
		CSRESSEL ⁶ = 6	—	162	—	kΩ
		CSRESSEL ⁶ = 7		235		kΩ

4.1.17 Operational Amplifier (OPAMP)

Unless otherwise indicated, specified conditions are: Non-inverting input configuration, VDD = 3.3 V, DRIVESTRENGTH = 2, MAIN-OUTEN = 1, C_{LOAD} = 75 pF with OUTSCALE = 0, or C_{LOAD} = 37.5 pF with OUTSCALE = 1. Unit gain buffer and 3X-gain connection as specified in table footnotes^{8 1}.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supply voltage (from AVDD)	V _{OPA}	HCMDIS = 0, Rail-to-rail input range	2		3.8	V
		HCMDIS = 1	1.62		3.8	V
Input voltage	V _{IN}	HCMDIS = 0, Rail-to-rail input range	V _{VSS}	_	V _{OPA}	V
		HCMDIS = 1	V _{VSS}	_	V _{OPA} -1.2	V
Input impedance	R _{IN}		100	_	_	MΩ
Output voltage	V _{OUT}		V _{VSS}		V _{OPA}	V
Load capacitance ²	C _{LOAD}	OUTSCALE = 0	_		75	pF
		OUTSCALE = 1	_	_	37.5	pF
Output impedance	R _{OUT}	DRIVESTRENGTH = 2 or 3, 0.4 V \leq V _{OUT} \leq V _{OPA} - 0.4 V, -8 mA $<$ I _{OUT} $<$ 8 mA, Buffer connection, Full supply range	_	0.25	_	Ω
		$\begin{array}{l} DRIVESTRENGTH = 0 \mbox{ or } 1, \ 0.4 \ V \\ \leq V_{OUT} \leq V_{OPA} \mbox{ - } 0.4 \ V, \ -400 \ \muA < \\ I_{OUT} < 400 \ \muA, \ Buffer \ connection, \\ Full \ supply \ range \end{array}$	_	0.6		Ω
		$\begin{array}{l} DRIVESTRENGTH = 2 \text{ or } 3, \ 0.1 \text{ V} \\ \leq V_{OUT} \leq V_{OPA} - 0.1 \text{ V}, \ -2 \text{ mA} < \\ I_{OUT} < 2 \text{ mA}, \ Buffer \ connection, \\ Full \ supply \ range \end{array}$		0.4	_	Ω
		DRIVESTRENGTH = 0 or 1, 0.1 V \leq V _{OUT} \leq V _{OPA} - 0.1 V, -100 µA $<$ I _{OUT} $<$ 100 µA, Buffer connection, Full supply range	_	1		Ω
Internal closed-loop gain	G _{CL}	Buffer connection	TBD	1	TBD	-
		3x Gain connection	TBD	2.99	TBD	-
		16x Gain connection	TBD	15.7	TBD	-
Active current ⁴	I _{OPA}	DRIVESTRENGTH = 3, OUT- SCALE = 0	—	580	_	μA
		DRIVESTRENGTH = 2, OUT- SCALE = 0	—	176	-	μA
		DRIVESTRENGTH = 1, OUT- SCALE = 0	—	13	-	μA
		DRIVESTRENGTH = 0, OUT- SCALE = 0	_	4.7	-	μA

Table 4.24. Operational Amplifier (OPAMP)

4.1.21.2 I2C Fast-mode (Fm)¹

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCL clock frequency ²	f _{SCL}		0	_	400	kHz
SCL clock low time	t _{LOW}		1.3	—	_	μs
SCL clock high time	t _{HIGH}		0.6	—	_	μs
SDA set-up time	t _{SU_DAT}		100	—	—	ns
SDA hold time ³	t _{HD_DAT}		100	_	900	ns
Repeated START condition set-up time	t _{SU_STA}		0.6	_	_	μs
(Repeated) START condition hold time	t _{HD_STA}		0.6		_	μs
STOP condition set-up time	t _{SU_STO}		0.6		_	μs
Bus free time between a STOP and START condition	t _{BUF}		1.3			μs

Table 4.29. I2C Fast-mode (Fm)¹

Note:

1. For CLHR set to 1 in the I2Cn_CTRL register.

2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual.

3. The maximum SDA hold time (t_{HD,DAT}) needs to be met only when the device does not stretch the low time of SCL (t_{LOW}).

Figure 4.6. EM0 and EM1 Mode Typical Supply Current vs. Supply

Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB8	11	GPIO	PA8	12	GPIO
PA12	13	GPIO	PA14	14	GPIO
RESETn	15	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	PB11	16	GPIO
AVDD	18 22	Analog power supply.	PB13	19	GPIO
PB14	20	GPIO	PD4	23	GPIO
PD5	24	GPIO	PD6	25	GPIO
PD7	26	GPIO	PD8	27	GPIO
VREGVSS	28	Voltage regulator VSS	VREGSW	29	DCDC regulator switching node
VREGVDD	30	Voltage regulator VDD input	DVDD	31	Digital power supply.
DECOUPLE	32	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PE4	33	GPIO
PE5	34	GPIO	PE6	35	GPIO
PE7	36	GPIO	PF0	37	GPIO (5V)
PF1	38	GPIO (5V)	PF2	39	GPIO
PF3	40	GPIO	PF4	41	GPIO
PF5	42	GPIO	PE10	45	GPIO
PE11	46	GPIO	PE12	47	GPIO
PE13	48	GPIO			
Note:	1		-	1	

1. GPIO with 5V tolerance are indicated by (5V).

Figure 5.12. EFM32TG11B5xx in QFN32 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VREGVSS	0 19	Voltage regulator VSS	PA0	1	GPIO
PA1	2	GPIO	PA2	3	GPIO
IOVDD0	4 14 30	Digital IO power supply 0.	PC0	5	GPIO (5V)
PB7	6	GPIO	PB8	7	GPIO

5.14 GPIO Functionality Table

A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of each GPIO pin, followed by the functionality available on that pin. Refer to 5.15 Alternate Functionality Overview for a list of GPIO locations available for each function.

GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Other	
PA0	BUSBY BUSAX LCD_SEG13	TIM0_CC0 #0 TIM0_CC1 #7 PCNT0_S0IN #4	US1_RX #5 US3_TX #0 LEU0_RX #4 I2C0_SDA #0	CMU_CLK2 #0 PRS_CH0 #0 PRS_CH3 #3 GPIO_EM4WU0	
PA1	BUSAY BUSBX LCD_SEG14	TIM0_CC0 #7 TIM0_CC1 #0 PCNT0_S1IN #4	US3_RX #0 I2C0_SCL #0	CMU_CLK1 #0 PRS_CH1 #0	
PA2	BUSBY BUSAX LCD_SEG15	TIM0_CC2 #0	US1_RX #6 US3_CLK #0	CMU_CLK0 #0	
PA3	BUSAY BUSBX LCD_SEG16	TIM0_CDTI0 #0	US3_CS #0 U0_TX #2	CMU_CLK2 #1 CMU_CLK2 #4 CMU_CLKI0 #1 LES_AL- TEX2	
PA4	BUSBY BUSAX LCD_SEG17	TIM0_CDTI1 #0	US3_CTS #0 U0_RX #2	LES_ALTEX3	
PA5	BUSAY BUSBX LCD_SEG18	TIM0_CDTI2 #0	US3_RTS #0 U0_CTS #2	LES_ALTEX4 ACMP1_O #7	
PA6	BUSBY BUSAX LCD_SEG19	WTIM0_CC0 #1	U0_RTS #2	PRS_CH6 #0 ACMP0_O #4 GPIO_EM4WU1	
PB3	BUSAY BUSBX LCD_SEG20 / LCD_COM4	TIM1_CC3 #2 WTIM0_CC0 #6	US2_TX #1 US3_TX #2	ACMP0_O #7	
PB4	BUSBY BUSAX LCD_SEG21 / LCD_COM5	WTIM0_CC1 #6	US2_RX #1		
PB5	BUSAY BUSBX LCD_SEG22 / LCD_COM6	WTIM0_CC2 #6 PCNT0_S0IN #6	US0_RTS #4 US2_CLK #1		
PB6	BUSBY BUSAX LCD_SEG23 / LCD_COM7	TIM0_CC0 #3 PCNT0_S1IN #6	US0_CTS #4 US2_CS #1		
PC0	VDAC0_OUT0ALT / OPA0_OUTALT #0 BU- SACMP0Y BUSACMP0X	TIM0_CC1 #3 PCNT0_S0IN #2	CAN0_RX #0 US0_TX #5 US1_TX #0 US1_CS #4 US2_RTS #0 US3_CS #3 I2C0_SDA #4	LES_CH0 PRS_CH2 #0	
PC1	VDAC0_OUT0ALT / OPA0_OUTALT #1 BU- SACMP0Y BUSACMP0X	TIM0_CC2 #3 WTIM0_CC0 #7 PCNT0_S1IN #2	CAN0_TX #0 US0_RX #5 US1_TX #4 US1_RX #0 US2_CTS #0 US3_RTS #1 I2C0_SCL #4	LES_CH1 PRS_CH3 #0	
PC2	VDAC0_OUT0ALT / OPA0_OUTALT #2 BU- SACMP0Y BUSACMP0X	TIM0_CDTI0 #3 WTIM0_CC1 #7	US1_RX #4 US2_TX #0	LES_CH2	
PC3	VDAC0_OUT0ALT / OPA0_OUTALT #3 BU- SACMP0Y BUSACMP0X	TIM0_CDTI1 #3 WTIM0_CC2 #7	US1_CLK #4 US2_RX #0	LES_CH3	

Table 5.14. GPIO Functionality Table

Alternate	LOCA	ATION	
Functionality	0 - 3	4 - 7	Description
LES_CH4	0: PC4		LESENSE channel 4.
LES_CH5	0: PC5		LESENSE channel 5.
LES_CH6	0: PC6		LESENSE channel 6.
LES_CH7	0: PC7		LESENSE channel 7.
LES_CH8	0: PC8		LESENSE channel 8.
LES_CH9	0: PC9		LESENSE channel 9.
LES_CH10	0: PC10		LESENSE channel 10.
LES_CH11	0: PC11		LESENSE channel 11.
LES_CH12	0: PC12		LESENSE channel 12.
LES_CH13	0: PC13		LESENSE channel 13.
LES_CH14	0: PC14		LESENSE channel 14.
LES_CH15	0: PC15		LESENSE channel 15.
LETIM0_OUT0	0: PD6 1: PB11 2: PF0 3: PC4	4: PE12 5: PC14 6: PA8	Low Energy Timer LETIM0, output channel 0.

Alternate	LOCATION		
Functionality	0 - 3	4 - 7	Description
WTIM1_CC3	0: PD1 1: PD5 2: PC6	4: PE6	Wide timer 1 Capture Compare input / output channel 3.

5.16 Analog Port (APORT) Client Maps

The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 5.14 APORT Connection Diagram on page 119 shows the APORT routing for this device family (note that available features may vary by part number). A complete description of APORT functionality can be found in the Reference Manual.

Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.

In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin

Figure 10.3. TQFP48 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

Figure 11.2. QFN32 PCB Land Pattern Drawing

Table 11.2. QFN32 PCB Land Pattern Dimensions

Dimension	Тур
C1	5.00
C2	5.00
E	0.50
X1	0.30
Y1	0.80
X2	3.80
Y2	3.80

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.

7. A 2x2 array of 0.9 mm square openings on a 1.2 mm pitch should be used for the center ground pad.

8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

12. Revision History

Revision 0.5

February, 2018

- 4.1 Electrical Characteristics updated with latest characterization data and production test limits.
- Added 4.1.3 Thermal Characteristics.
- Added 4.2 Typical Performance Curves section.
- Corrected OPA / VDAC output connections in Figure 5.14 APORT Connection Diagram on page 119.

Revision 0.1

May 1st, 2017

Initial release.