
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 12bit SAR; D/A 12bit
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TJ)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32tg11b120f128iq48-ar

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Timers/Counters

- 2 × 16-bit Timer/Counter
 - 3 or 4 Compare/Capture/PWM channels (4 + 4 on one timer instance)
 - Dead-Time Insertion on one timer instance
- 2 × 32-bit Timer/Counter
- 32-bit Real Time Counter and Calendar (RTCC)
- 32-bit Ultra Low Energy CRYOTIMER for periodic wakeup from any Energy Mode
- 16-bit Low Energy Timer for waveform generation
- 16-bit Pulse Counter with asynchronous operation
- Watchdog Timer with dedicated RC oscillator
- Low Energy Sensor Interface (LESENSE)
 - Autonomous sensor monitoring in Deep Sleep Mode
 - Wide range of sensors supported, including LC sensors and capacitive buttons
 - Up to 16 inputs
- Ultra efficient Power-on Reset and Brown-Out Detector
- Debug Interface
 - 2-pin Serial Wire Debug interface
 - 4-pin JTAG interface
 - Micro Trace Buffer (MTB)

Pre-Programmed UART Bootloader

Wide Operating Range

- 1.8 V to 3.8 V single power supply
- Integrated DC-DC, down to 1.8 V output with up to 200 mA load current for system
- Standard (-40 $^\circ C$ to 85 $^\circ C$ $T_A)$ and Extended (-40 $^\circ C$ to 125 $^\circ C$ $T_J)$ temperature grades available
- Packages
 - QFN32 (5x5 mm)
 - TQFP48 (7x7 mm)
 - QFN64 (9x9 mm)
 - TQFP64 (10x10 mm)
 - QFN80 (9x9 mm)
 - TQFP80 (12x12 mm)

4.1.2 Operating Conditions

When assigning supply sources, the following requirements must be observed:

- VREGVDD must be greater than or equal to AVDD, DVDD and all IOVDD supplies.
- VREGVDD = AVDD
- DVDD ≤ AVDD
- IOVDD ≤ AVDD

4.1.6.3 Current Consumption 1.8 V without DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 1.8 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.

Table 4.8. Current Consumption 1.8 V without DC-DC Converter

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM0 mode with all peripherals dis-	I _{ACTIVE}	48 MHz crystal, CPU running while loop from flash	_	45	_	µA/MHz
abled		48 MHz HFRCO, CPU running while loop from flash	_	44	_	µA/MHz
		48 MHz HFRCO, CPU running Prime from flash	_	57	_	µA/MHz
		48 MHz HFRCO, CPU running CoreMark loop from flash	_	71		µA/MHz
		32 MHz HFRCO, CPU running while loop from flash	_	45	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	_	46	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash	_	49	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	—	158	—	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_VS	19 MHz HFRCO, CPU running while loop from flash	_	41	—	µA/MHz
abled and voltage scaling enabled		1 MHz HFRCO, CPU running while loop from flash	—	142	_	µA/MHz
Current consumption in EM1	I _{EM1}	48 MHz crystal	—	34	_	µA/MHz
mode with all peripherals disabled		48 MHz HFRCO	_	33	_	µA/MHz
		32 MHz HFRCO	_	34	_	µA/MHz
		26 MHz HFRCO	_	35		µA/MHz
		16 MHz HFRCO	_	39		µA/MHz
		1 MHz HFRCO	_	147		µA/MHz
Current consumption in EM1	I _{EM1_VS}	19 MHz HFRCO	_	32		µA/MHz
mode with all peripherals dis- abled and voltage scaling enabled		1 MHz HFRCO	—	133	—	µA/MHz
Current consumption in EM2 mode, with voltage scaling	I _{EM2_VS}	Full 32 kB RAM retention and RTCC running from LFXO	_	1.39	_	μΑ
enabled		Full 32 kB RAM retention and RTCC running from LFRCO	_	1.63	_	μΑ
		8 kB (1 bank) RAM retention and RTCC running from LFRCO ²	_	1.37	_	μΑ
Current consumption in EM3 mode, with voltage scaling enabled	I _{EM3_VS}	Full 32 kB RAM retention and CRYOTIMER running from ULFR- CO	_	1.10	_	μA

4.1.9.2 High-Frequency Crystal Oscillator (HFXO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal frequency	f _{HFXO}		4	—	48	MHz
Supported crystal equivalent	ESR _{HFXO}	48 MHz crystal	_	_	50	Ω
series resistance (ESR)		24 MHz crystal		_	150	Ω
		4 MHz crystal	_	_	180	Ω
Supported range of crystal load capacitance ¹	C _{HFXO_CL}		TBD	_	TBD	pF
Nominal on-chip tuning cap range ²	C _{HFXO_T}	On each of HFXTAL_N and HFXTAL_P pins	8.7	_	51.7	pF
On-chip tuning capacitance step	SS _{HFXO}		_	0.08	_	pF
Startup time	t _{HFXO}	48 MHz crystal, ESR = 50 Ohm, $C_L = 8 pF$	_	350	_	μs
		24 MHz crystal, ESR = 150 Ohm, C _L = 6 pF	_	700	_	μs
		4 MHz crystal, ESR = 180 Ohm, C_L = 18 pF	_	3	_	ms
Current consumption after	I _{HFXO}	48 MHz crystal	_	880	_	μA
startup		24 MHz crystal		420	_	μA
		4 MHz crystal		80	_	μA

Table 4.12. High-Frequency Crystal Oscillator (HFXO)

Note:

1. Total load capacitance as seen by the crystal.

2. The effective load capacitance seen by the crystal will be C_{HFXO_T} /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal.

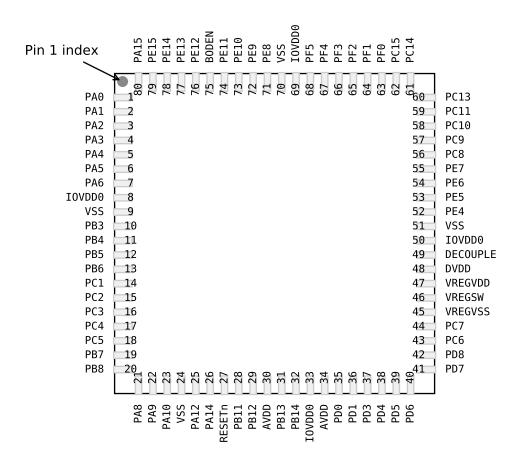

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Frequency accuracy	f _{HFRCO_ACC}	At production calibrated frequen- cies, across supply voltage and temperature	TBD	_	TBD	%
Start-up time	t _{HFRCO}	f _{HFRCO} ≥ 19 MHz	_	300	—	ns
		4 < f _{HFRCO} < 19 MHz	_	1	—	μs
		f _{HFRCO} ≤ 4 MHz	_	2.5	_	μs
Current consumption on all	I _{HFRCO}	f _{HFRCO} = 48 MHz		258	TBD	μA
supplies		f _{HFRCO} = 38 MHz	_	218	TBD	μA
		f _{HFRCO} = 32 MHz		182	TBD	μA
		f _{HFRCO} = 26 MHz		156	TBD	μA
		f _{HFRCO} = 19 MHz		130	TBD	μA
		f _{HFRCO} = 16 MHz		112	TBD	μA
		f _{HFRCO} = 13 MHz		101	TBD	μA
		f _{HFRCO} = 7 MHz		80	TBD	μA
		f _{HFRCO} = 4 MHz		29	TBD	μA
		f _{HFRCO} = 2 MHz		26	TBD	μA
		f _{HFRCO} = 1 MHz		24	TBD	μA
		f _{HFRCO} = 40 MHz, DPLL enabled		393	TBD	μA
		f _{HFRCO} = 32 MHz, DPLL enabled		313	TBD	μA
		f _{HFRCO} = 16 MHz, DPLL enabled		180	TBD	μA
		f _{HFRCO} = 4 MHz, DPLL enabled		46	TBD	μA
		f _{HFRCO} = 1 MHz, DPLL enabled		33	TBD	μA
Coarse trim step size (% of period)	SS _{HFRCO_COARS}			0.8	-	%
Fine trim step size (% of pe- riod)	SS _{HFRCO_FINE}			0.1	-	%
Period jitter	PJ _{HFRCO}			0.2	_	% RMS

Table 4.14. High-Frequency RC Oscillator (HFRCO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Open-loop gain	G _{OL}	DRIVESTRENGTH = 3	_	135	_	dB
		DRIVESTRENGTH = 2	—	137	_	dB
		DRIVESTRENGTH = 1	_	121	_	dB
		DRIVESTRENGTH = 0	—	109	_	dB
Loop unit-gain frequency ⁷	UGF	DRIVESTRENGTH = 3, Buffer connection	_	3.38	_	MHz
		DRIVESTRENGTH = 2, Buffer connection	_	0.9	_	MHz
		DRIVESTRENGTH = 1, Buffer connection	_	132	_	kHz
		DRIVESTRENGTH = 0, Buffer connection	_	34		kHz
		DRIVESTRENGTH = 3, 3x Gain connection	_	2.57	_	MHz
		DRIVESTRENGTH = 2, 3x Gain connection	_	0.71	_	MHz
		DRIVESTRENGTH = 1, 3x Gain connection	_	113	_	kHz
		DRIVESTRENGTH = 0, 3x Gain connection	_	28	_	kHz
Phase margin	PM	DRIVESTRENGTH = 3, Buffer connection		67	_	0
		DRIVESTRENGTH = 2, Buffer connection	_	69	_	0
		DRIVESTRENGTH = 1, Buffer connection	_	63	_	0
		DRIVESTRENGTH = 0, Buffer connection	_	68	_	0
Output voltage noise	N _{OUT}	DRIVESTRENGTH = 3, Buffer connection, 10 Hz - 10 MHz	_	146	_	µVrms
		DRIVESTRENGTH = 2, Buffer connection, 10 Hz - 10 MHz	_	163	_	µVrms
		DRIVESTRENGTH = 1, Buffer connection, 10 Hz - 1 MHz	_	170	_	μVrms
		DRIVESTRENGTH = 0, Buffer connection, 10 Hz - 1 MHz	_	176	_	µVrms
		DRIVESTRENGTH = 3, 3x Gain connection, 10 Hz - 10 MHz	_	313	_	µVrms
		DRIVESTRENGTH = 2, 3x Gain connection, 10 Hz - 10 MHz	_	271	_	µVrms
		DRIVESTRENGTH = 1, 3x Gain connection, 10 Hz - 1 MHz	_	247	_	μVrms
		DRIVESTRENGTH = 0, 3x Gain connection, 10 Hz - 1 MHz	-	245	-	μVrms

5. Pin Definitions

5.1 EFM32TG11B5xx in QFP80 Device Pinout

Figure 5.1. EFM32TG11B5xx in QFP80 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Table 5.1.	EFM32TG11B5xx in QFP80 Device Pinout

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	PA3	4	GPIO
PA4	5	GPIO	PA5	6	GPIO
PA6	7	GPIO	IOVDD0	8 33 50 69	Digital IO power supply 0.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PE12	76	GPIO	PE13	77	GPIO
PE14	78	GPIO	PE15	79	GPIO
PA15	80	GPIO			

Note:

1. GPIO with 5V tolerance are indicated by (5V).

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB4	10	GPIO	PB5	11	GPIO
PB6	12	GPIO	PC0	13	GPIO (5V)
PC1	14	GPIO (5V)	PC2	15	GPIO (5V)
PC3	16	GPIO (5V)	PC4	17	GPIO
PC5	18	GPIO	PB7	19	GPIO
PB8	20	GPIO	PA8	21	GPIO
PA9	22	GPIO	PA10	23	GPIO
PA12	24	GPIO	PA13	25	GPIO (5V)
PA14	26	GPIO	RESETn	27	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	28	GPIO	PB12	29	GPIO
AVDD	30 34	Analog power supply.	PB13	31	GPIO
PB14	32	GPIO	PD0	35	GPIO (5V)
PD1	36	GPIO	PD2	37	GPIO (5V)
PD3	38	GPIO	PD4	39	GPIO
PD5	40	GPIO	PD6	41	GPIO
PD7	42	GPIO	PD8	43	GPIO
PC6	44	GPIO	PC7	45	GPIO
VREGSW	47	DCDC regulator switching node	VREGVDD	48	Voltage regulator VDD input
DVDD	49	Digital power supply.	DECOUPLE	50	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
PE4	52	GPIO	PE5	53	GPIO
PE6	54	GPIO	PE7	55	GPIO
PC8	56	GPIO	PC9	57	GPIO
PC10	58	GPIO (5V)	PC11	59	GPIO (5V)
PC12	60	GPIO (5V)	PC13	61	GPIO (5V)
PC14	62	GPIO (5V)	PC15	63	GPIO (5V)
PF0	64	GPIO (5V)	PF1	65	GPIO (5V)
PF2	66	GPIO	PF3	67	GPIO
PF4	68	GPIO	PF5	69	GPIO
PE8	71	GPIO	PE9	72	GPIO
PE10	73	GPIO	PE11	74	GPIO
BODEN	75	Brown-Out Detector Enable. This pin may be left disconnected or tied to AVDD.	PE12	76	GPIO
PE13	77	GPIO	PE14	78	GPIO

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PC3	12	GPIO (5V)	PC4	13	GPIO
PC5	14	GPIO	PB7	15	GPIO
PB8	16	GPIO	PA8	17	GPIO
PA9	18	GPIO	PA10	19	GPIO
RESETn	20	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	PB11	21	GPIO
PB12	22	GPIO	AVDD	23 27	Analog power supply.
PB13	24	GPIO	PB14	25	GPIO
PD0	28	GPIO (5V)	PD1	29	GPIO
PD2	30	GPIO (5V)	PD3	31	GPIO
PD4	32	GPIO	PD5	33	GPIO
PD6	34	GPIO	PD7	35	GPIO
PD8	36	GPIO	PC6	37	GPIO
PC7	38	GPIO	DVDD	39	Digital power supply.
DECOUPLE	40	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PC8	41	GPIO
PC9	42	GPIO	PC10	43	GPIO (5V)
PC11	44	GPIO (5V)	PC12	45	GPIO (5V)
PC13	46	GPIO (5V)	PC14	47	GPIO (5V)
PC15	48	GPIO (5V)	PF0	49	GPIO (5V)
PF1	50	GPIO (5V)	PF2	51	GPIO
PF3	52	GPIO	PF4	53	GPIO
PF5	54	GPIO	PE8	56	GPIO
PE9	57	GPIO	PE10	58	GPIO
PE11	59	GPIO	PE12	60	GPIO
PE13	61	GPIO	PE14	62	GPIO
PE15	63	GPIO	PA15	64	GPIO

1. GPIO with 5V tolerance are indicated by (5V).

GPIO Name		Pin Alternate Functi	onality / Description	
	Analog	Timers	Communication	Other
PC15	VDAC0_OUT1ALT / OPA1_OUTALT #3 BU- SACMP1Y BUSACMP1X TIM0_CDTI2 #1 TIM1_CC2 #0 WTIM0_CC0 #4 LE- TIM0_OUT1 #5 US0_CLK #3 US1_CLK #3 US3_RTS #3 U0_RX #3 LEU0_RX #5		LES_CH15 PRS_CH1 #2	
PF0	BUSDY BUSCX	TIM0_CC0 #4 WTIM0_CC1 #4 LE- TIM0_OUT0 #2	CAN0_RX #1 US1_CLK #2 US2_TX #5 LEU0_TX #3 I2C0_SDA #5	DBG_SWCLKTCK BOOT_TX
PF1	BUSCY BUSDX	TIM0_CC1 #4 US1_CS #2 US2_RX #5 BUSCY BUSDX WTIM0_CC2 #4 LE- TIM0_OUT1 #2 U0_TX #5 LEU0_RX #3		PRS_CH4 #2 DBG_SWDIOTMS GPIO_EM4WU3 BOOT_RX
PF2	BUSDY BUSCX LCD_SEG0			CMU_CLK0 #4 PRS_CH0 #3 ACMP1_O #0 DBG_TDO GPIO_EM4WU4
PF3	BUSCY BUSDX LCD_SEG1	TIM0_CDTI0 #2 TIM1_CC1 #5	US1_CTS #2	CMU_CLK1 #4 PRS_CH0 #1
PF4	BUSDY BUSCX LCD_SEG2	TIM0_CDTI1 #2 TIM1_CC2 #5	US1_RTS #2	PRS_CH1 #1
PF5	BUSCY BUSDX LCD_SEG3	TIM0_CDTI2 #2 TIM1_CC3 #6	US2_CS #5	PRS_CH2 #1 DBG_TDI
PE8	BUSDY BUSCX LCD_SEG4			PRS_CH3 #1
PE9	BUSCY BUSDX LCD_SEG5			
PE10	BUSDY BUSCX LCD_SEG6	TIM1_CC0 #1 WTIM0_CDTI0 #0	US0_TX #0	PRS_CH2 #2 GPIO_EM4WU9
PE11	BUSCY BUSDX LCD_SEG7	TIM1_CC1 #1 WTIM0_CDTI1 #0	US0_RX #0	LES_ALTEX5 PRS_CH3 #2
PE12	BUSDY BUSCX LCD_SEG8	TIM1_CC2 #1 WTIM0_CDTI2 #0 LE- TIM0_OUT0 #4	US0_RX #3 US0_CLK #0 I2C0_SDA #6	CMU_CLK1 #2 CMU_CLKI0 #6 LES_AL- TEX6 PRS_CH1 #3
PE13	BUSCY BUSDX LCD_SEG9	TIM1_CC3 #1 LE- TIM0_OUT1 #4	US0_TX #3 US0_CS #0 I2C0_SCL #6	LES_ALTEX7 PRS_CH2 #3 ACMP0_O #0 GPIO_EM4WU5
PE14	BUSDY BUSCX LCD_SEG10		US0_CTS #0 LEU0_TX #2	
PE15	BUSCY BUSDX LCD_SEG11		US0_RTS #0 LEU0_RX #2	
PA15	BUSAY BUSBX LCD_SEG12		US2_CLK #3	

Alternate	LOC	ATION	
Functionality	0 - 3	4 - 7	Description
GPIO_EM4WU4	0: PF2		Pin can be used to wake the system up from EM4
GPIO_EM4WU5	0: PE13		Pin can be used to wake the system up from EM4
GPIO_EM4WU6	0: PC4		Pin can be used to wake the system up from EM4
GPIO_EM4WU7	0: PB11		Pin can be used to wake the system up from EM4
GPIO_EM4WU9	0: PE10		Pin can be used to wake the system up from EM4
HFXTAL_N	0: PB14		High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	0: PB13		High Frequency Crystal positive pin.
I2C0_SCL	0: PA1 1: PD7 2: PC7	4: PC1 5: PF1 6: PE13 7: PE5	I2C0 Serial Clock Line input / output.
I2C0_SDA	0: PA0 1: PD6 2: PC6	4: PC0 5: PF0 6: PE12 7: PE4	I2C0 Serial Data input / output.
I2C1_SCL	0: PC5 1: PB12 3: PD5	4: PF2	I2C1 Serial Clock Line input / output.
I2C1_SDA	0: PC4 1: PB11 3: PD4	4: PC11	I2C1 Serial Data input / output.
	0: PA14		LCD external supply bypass in step down or charge pump mode. If using the LCD in step-down or charge pump mode, a 1 uF (minimum) capacitor between this pin and VSS is required.
LCD_BEXT			To reduce supply ripple, a larger capcitor of approximately 1000 times the total LCD segment capacitance may be used. If using the LCD with the internal supply source, this pin may be left unconnected or used as a GPIO.

Alternate	LOC	ATION	
Functionality	0 - 3	4 - 7	Description
LETIM0_OUT1	0: PD7 1: PB12 2: PF1 3: PC5	4: PE13 5: PC15 6: PA9	Low Energy Timer LETIM0, output channel 1.
LEU0_RX	0: PD5 1: PB14 2: PE15 3: PF1	4: PA0 5: PC15	LEUART0 Receive input.
LEU0_TX	0: PD4 1: PB13 2: PE14 3: PF0	4: PF2 5: PC14	LEUART0 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	0: PB8		Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional ex- ternal clock input pin.
LFXTAL_P	0: PB7		Low Frequency Crystal (typically 32.768 kHz) positive pin.
OPA0_N	0: PC5		Operational Amplifier 0 external negative input.
OPA0_P	0: PC4		Operational Amplifier 0 external positive input.
OPA1_N	0: PD7		Operational Amplifier 1 external negative input.
OPA1_P	0: PD6		Operational Amplifier 1 external positive input.
OPA2_N	0: PD3		Operational Amplifier 2 external negative input.
OPA2_OUT	0: PD5		Operational Amplifier 2 output.
OPA2_OUTALT	0: PD0		Operational Amplifier 2 alternative output.
OPA2_P	0: PD4		Operational Amplifier 2 external positive input.

Alternate	LOCATION			
Functionality	0 - 3	4 - 7	Description	
TIM0_CC0	0: PA0 2: PD1	4: PF0 5: PC4 6: PA8	Timer 0 Capture Compare input / output channel 0.	
	3: PB6	7: PA1		
	0: PA1	4: PF1 5: PC5		
TIM0_CC1	2: PD2 3: PC0	6: PA9 7: PA0	Timer 0 Capture Compare input / output channel 1.	
	0: PA2	4: PF2		
TIM0_CC2	2: PD3 3: PC1	6: PA10 7: PA13	Timer 0 Capture Compare input / output channel 2.	
TIM0_CDTI0	0: PA3 1: PC13 2: PF3 3: PC2	4: PB7	Timer 0 Complimentary Dead Time Insertion channel 0.	
TIM0_CDTI1	0: PA4 1: PC14 2: PF4 3: PC3	4: PB8	Timer 0 Complimentary Dead Time Insertion channel 1.	
TIM0_CDTI2	0: PA5 1: PC15 2: PF5 3: PC4	4: PB11	Timer 0 Complimentary Dead Time Insertion channel 2.	
TIM1_CC0	0: PC13 1: PE10	4: PD6 5: PF2	Timer 1 Capture Compare input / output channel 0.	
	3: PB7			
TIM1_CC1	0: PC14 1: PE11	4: PD7 5: PF3	Timer 1 Capture Compare input / output channel 1.	
	3: PB8			
TIM1_CC2	0: PC15 1: PE12	4: PC13 5: PF4	Timer 1 Capture Compare input / output channel 2.	
	3: PB11			
TIM1_CC3	0: PC12 1: PE13 2: PB3 3: PB12	4: PC14 6: PF5	Timer 1 Capture Compare input / output channel 3.	
U0_CTS	2: PA5 3: PC13	4: PB7 5: PD5	UART0 Clear To Send hardware flow control input.	
U0_RTS	2: PA6 3: PC12	4: PB8 5: PD6	UART0 Request To Send hardware flow control output.	
U0_RX	2: PA4 3: PC15	4: PC5 5: PF2 6: PE4	UART0 Receive input.	

Alternate	LOCATION			
Functionality	0 - 3	4 - 7	Description	
VDAC0_OUT0 / OPA0_OUT	0: PB11		Digital to Analog Converter DAC0 output channel number 0.	
VDAC0_OUT0ALT / OPA0_OUTALT	0: PC0 1: PC1 2: PC2 3: PC3	4: PD0	Digital to Analog Converter DAC0 alternative output for channel 0.	
VDAC0_OUT1 / OPA1_OUT	0: PB12		Digital to Analog Converter DAC0 output channel number 1.	
VDAC0_OUT1ALT / OPA1_OUTALT	0: PC12 1: PC13 2: PC14 3: PC15	4: PD1	Digital to Analog Converter DAC0 alternative output for channel 1.	
WTIM0_CC0	0: PE4 1: PA6	4: PC15 6: PB3 7: PC1	Wide timer 0 Capture Compare input / output channel 0.	
WTIM0_CC1	0: PE5	4: PF0 6: PB4 7: PC2	Wide timer 0 Capture Compare input / output channel 1.	
WTIM0_CC2	0: PE6	4: PF1 6: PB5 7: PC3	Wide timer 0 Capture Compare input / output channel 2.	
WTIM0_CDTI0	0: PE10 2: PA12	4: PD4	Wide timer 0 Complimentary Dead Time Insertion channel 0.	
WTIM0_CDTI1	0: PE11 2: PA13	4: PD5	Wide timer 0 Complimentary Dead Time Insertion channel 1.	
WTIM0_CDTI2	0: PE12 2: PA14	4: PD6	Wide timer 0 Complimentary Dead Time Insertion channel 2.	
WTIM1_CC0	0: PB13 1: PD2 2: PD6 3: PC7	5: PE7	Wide timer 1 Capture Compare input / output channel 0.	
WTIM1_CC1	0: PB14 1: PD3 2: PD7	4: PE4	Wide timer 1 Capture Compare input / output channel 1.	
WTIM1_CC2	0: PD0 1: PD4 2: PD8	4: PE5	Wide timer 1 Capture Compare input / output channel 2.	

Table 7.2. QFN80 PCB Land Pattern Dimensions

Dimension	Тур
C1	8.90
C2	8.90
E	0.40
X1	0.20
Y1	0.85
X2	7.30
Y2	7.30

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm.

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

6. The stencil thickness should be 0.125 mm (5 mils).

7. The ratio of stencil aperture to land pad size can be 1:1 for all pads.

8. A 3x3 array of 1.45 mm square openings on a 2.00 mm pitch can be used for the center ground pad.

9. A No-Clean, Type-3 solder paste is recommended.

10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 9.3. QFN64 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

10.2 TQFP48 PCB Land Pattern

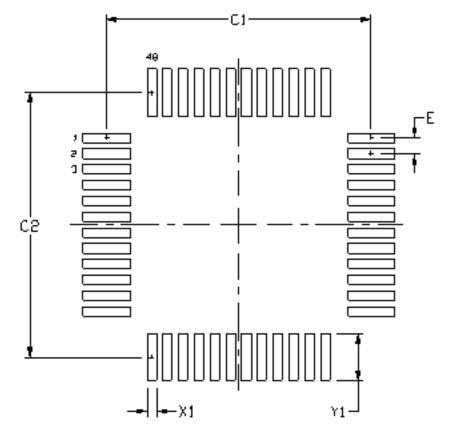


Figure 10.2. TQFP48 PCB Land Pattern Drawing

 Table 10.2.
 TQFP48 PCB Land Pattern Dimensions

Dimension	Тур
C1	8.50
C2	8.50
E	0.50
x	0.30
Y	1.60

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μ m minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size can be 1:1 for all pads.
- 7. A No-Clean, Type-3 solder paste is recommended.
- 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

Table 11.2. QFN32 PCB Land Pattern Dimensions

Dimension	Тур
C1	5.00
C2	5.00
E	0.50
X1	0.30
Y1	0.80
X2	3.80
Y2	3.80

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.

7. A 2x2 array of 0.9 mm square openings on a 1.2 mm pitch should be used for the center ground pad.

8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 11.3. QFN32 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.