

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detuils	
Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 12bit SAR; D/A 12bit
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TJ)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32tg11b120f128iq64-ar

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 Power

The EFM32TG11 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a single external supply voltage is required, from which all internal voltages are created. An optional integrated DC-DC buck regulator can be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor.

The EFM32TG11 device family includes support for internal supply voltage scaling, as well as two different power domain groups for peripherals. These enhancements allow for further supply current reductions and lower overall power consumption.

AVDD and VREGVDD need to be 1.8 V or higher for the MCU to operate across all conditions; however the rest of the system will operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components. Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB components, supplying up to a total of 200 mA.

3.2.1 Energy Management Unit (EMU)

The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold.

3.2.2 DC-DC Converter

The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2 and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients.

3.2.3 EM2 and EM3 Power Domains

The EFM32TG11 has three independent peripheral power domains for use in EM2 and EM3. Two of these domains are dynamic and can be shut down to save energy. Peripherals associated with the two dynamic power domains are listed in Table 3.1 EM2 and EM3 Peripheral Power Subdomains on page 11. If all of the peripherals in a peripheral power domain are unused, the power domain for that group will be powered off in EM2 and EM3, reducing the overall current consumption of the device. Other EM2, EM3, and EM4-capable peripherals and functions not listed in the table below reside on the primary power domain, which is always on in EM2 and EM3.

Peripheral Power Domain 1	Peripheral Power Domain 2
ACMP0	ACMP1
PCNT0	CSEN
ADC0	VDAC0
LETIMER0	LEUART0
LESENSE	12C0
APORT	12C1
-	IDAC
-	LCD

Table 3.1. EM2 and EM3 Peripheral Power Subdomains

3.5.4 Low Energy Timer (LETIMER)

The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC.

3.5.5 Ultra Low Power Wake-up Timer (CRYOTIMER)

The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation.

3.5.6 Pulse Counter (PCNT)

The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from among any of the internal oscillators, except the AUXHFRCO. The module may operate in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop.

3.5.7 Watchdog Timer (WDOG)

The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can also monitor autonomous systems driven by PRS.

3.6 Communications and Other Digital Peripherals

3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting:

- ISO7816 SmartCards
- IrDA
- I²S

3.6.2 Universal Asynchronous Receiver/Transmitter (UART)

The Universal Asynchronous Receiver/Transmitter is a subset of the USART module, supporting full duplex asynchronous UART communication with hardware flow control and RS-485.

3.6.3 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)

The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication possible with a minimum of software intervention and energy consumption.

3.6.4 Inter-Integrated Circuit Interface (I²C)

The I²C module provides an interface between the MCU and a serial I²C bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the I²C module allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes.

4.1.6 Current Consumption

4.1.6.1 Current Consumption 3.3 V without DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 3.3 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.

Table 4.6. Current Consumption 3.3 V without DC-DC Converter

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM0 mode with all peripherals dis-	I _{ACTIVE}	48 MHz crystal, CPU running while loop from flash	_	45	_	µA/MHz
abled		48 MHz HFRCO, CPU running while loop from flash		44	TBD	µA/MHz
		48 MHz HFRCO, CPU running Prime from flash		57		µA/MHz
		48 MHz HFRCO, CPU running CoreMark loop from flash		71	_	µA/MHz
		32 MHz HFRCO, CPU running while loop from flash		45	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash		46	TBD	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash		50		µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	—	161	TBD	µA/MHz
Current consumption in EM0 mode with all peripherals dis- abled and voltage scaling enabled	I _{ACTIVE_VS}	19 MHz HFRCO, CPU running while loop from flash	—	41	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	_	145	_	µA/MHz
Current consumption in EM1	IEM1	48 MHz crystal	—	34	_	µA/MHz
mode with all peripherals disabled		48 MHz HFRCO	—	33	TBD	µA/MHz
		32 MHz HFRCO	—	34		µA/MHz
		26 MHz HFRCO	—	35	TBD	µA/MHz
		16 MHz HFRCO	—	39	_	µA/MHz
		1 MHz HFRCO	—	150	TBD	µA/MHz
Current consumption in EM1	I _{EM1_VS}	19 MHz HFRCO	—	32	_	µA/MHz
mode with all peripherals dis- abled and voltage scaling enabled		1 MHz HFRCO	_	136		µA/MHz
Current consumption in EM2 mode, with voltage scaling	I _{EM2_VS}	Full 32 kB RAM retention and RTCC running from LFXO		1.48	_	μA
enabled		Full 32 kB RAM retention and RTCC running from LFRCO	_	1.86		μA
		8 kB (1 bank) RAM retention and RTCC running from LFRCO ²		1.59	TBD	μΑ
Current consumption in EM3 mode, with voltage scaling enabled	I _{EM3_VS}	Full 32 kB RAM retention and CRYOTIMER running from ULFR- CO		1.23	TBD	μA

4.1.8 Brown Out Detector (BOD)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
DVDD BOD threshold	V _{DVDDBOD}	DVDD rising	—	_	TBD	V
		DVDD falling (EM0/EM1)	TBD	_	_	V
		DVDD falling (EM2/EM3)	TBD	_	—	V
DVDD BOD hysteresis	V _{DVDDBOD_HYST}		_	18	_	mV
DVDD BOD response time	tDVDDBOD_DELAY	Supply drops at 0.1V/µs rate	_	2.4	_	μs
AVDD BOD threshold	V _{AVDDBOD}	AVDD rising	_		TBD	V
		AVDD falling (EM0/EM1)	TBD	_	_	V
		AVDD falling (EM2/EM3)	TBD	_	_	V
AVDD BOD hysteresis	VAVDDBOD_HYST		—	20	_	mV
AVDD BOD response time	t _{AVDDBOD_DELAY}	Supply drops at 0.1V/µs rate	—	2.4		μs
EM4 BOD threshold	V _{EM4DBOD}	AVDD rising	—	_	TBD	V
		AVDD falling	TBD		_	V
EM4 BOD hysteresis	V _{EM4BOD_HYST}		_	25	_	mV
EM4 BOD response time	t _{EM4BOD_DELAY}	Supply drops at 0.1V/µs rate	—	300		μs

Table 4.10. Brown Out Detector (BOD)

4.1.9.2 High-Frequency Crystal Oscillator (HFXO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal frequency	f _{HFXO}		4	—	48	MHz
Supported crystal equivalent	ESR _{HFXO}	48 MHz crystal	_	_	50	Ω
series resistance (ESR)		24 MHz crystal		_	150	Ω
		4 MHz crystal	_	_	180	Ω
Supported range of crystal load capacitance ¹	C _{HFXO_CL}		TBD	_	TBD	pF
Nominal on-chip tuning cap range ²	C _{HFXO_T}	On each of HFXTAL_N and HFXTAL_P pins	8.7	_	51.7	pF
On-chip tuning capacitance step	SS _{HFXO}		_	0.08	_	pF
Startup time	t _{HFXO}	48 MHz crystal, ESR = 50 Ohm, $C_L = 8 pF$	_	350	_	μs
		24 MHz crystal, ESR = 150 Ohm, C _L = 6 pF	_	700	_	μs
		4 MHz crystal, ESR = 180 Ohm, C_L = 18 pF	_	3	_	ms
Current consumption after	I _{HFXO}	48 MHz crystal	_	880	_	μA
startup		24 MHz crystal		420	_	μA
		4 MHz crystal		80	_	μA

Table 4.12. High-Frequency Crystal Oscillator (HFXO)

Note:

1. Total load capacitance as seen by the crystal.

2. The effective load capacitance seen by the crystal will be C_{HFXO_T} /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Frequency accuracy	f _{HFRCO_ACC}	At production calibrated frequen- cies, across supply voltage and temperature	TBD	_	TBD	%
Start-up time	t _{HFRCO}	f _{HFRCO} ≥ 19 MHz	_	300	—	ns
		4 < f _{HFRCO} < 19 MHz	_	1	—	μs
		f _{HFRCO} ≤ 4 MHz	_	2.5	_	μs
Current consumption on all	I _{HFRCO}	f _{HFRCO} = 48 MHz		258	TBD	μA
supplies		f _{HFRCO} = 38 MHz	_	218	TBD	μA
		f _{HFRCO} = 32 MHz		182	TBD	μA
		f _{HFRCO} = 26 MHz		156	TBD	μA
		f _{HFRCO} = 19 MHz		130	TBD	μA
		f _{HFRCO} = 16 MHz		112	TBD	μA
		f _{HFRCO} = 13 MHz		101	TBD	μA
		f _{HFRCO} = 7 MHz		80	TBD	μA
		f _{HFRCO} = 4 MHz		29	TBD	μA
		f _{HFRCO} = 2 MHz		26	TBD	μA
		f _{HFRCO} = 1 MHz		24	TBD	μA
		f _{HFRCO} = 40 MHz, DPLL enabled		393	TBD	μA
		f _{HFRCO} = 32 MHz, DPLL enabled		313	TBD	μA
		f _{HFRCO} = 16 MHz, DPLL enabled		180	TBD	μA
		f _{HFRCO} = 4 MHz, DPLL enabled		46	TBD	μA
		f _{HFRCO} = 1 MHz, DPLL enabled		33	TBD	μA
Coarse trim step size (% of period)	SS _{HFRCO_COARS}			0.8	_	%
Fine trim step size (% of pe- riod)	SS _{HFRCO_FINE}			0.1	-	%
Period jitter	PJ _{HFRCO}			0.2	_	% RMS

Table 4.14. High-Frequency RC Oscillator (HFRCO)

4.1.12 Voltage Monitor (VMON)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Supply current (including I_SENSE)	I _{VMON}	In EM0 or EM1, 1 supply monitored, T \leq 85 °C	_	6.3	TBD	μA
		In EM0 or EM1, 4 supplies monitored, T \leq 85 °C	—	12.5	TBD	μA
		In EM2, EM3 or EM4, 1 supply monitored and above threshold	—	62		nA
		In EM2, EM3 or EM4, 1 supply monitored and below threshold	_	62	_	nA
		In EM2, EM3 or EM4, 4 supplies monitored and all above threshold	_	99	_	nA
		In EM2, EM3 or EM4, 4 supplies monitored and all below threshold	—	99	_	nA
Loading of monitored supply	I _{SENSE}	In EM0 or EM1	—	2	_	μA
		In EM2, EM3 or EM4	_	2	_	nA
Threshold range	V _{VMON_RANGE}		1.62	_	3.4	V
Threshold step size	N _{VMON_STESP}	Coarse	_	200		mV
		Fine	_	20	_	mV
Response time	t _{VMON_RES}	Supply drops at 1V/µs rate	_	460	_	ns
Hysteresis	V _{VMON_HYST}			26	_	mV

Table 4.19. Voltage Monitor (VMON)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Open-loop gain	G _{OL}	DRIVESTRENGTH = 3	_	135	_	dB
		DRIVESTRENGTH = 2	—	137	_	dB
		DRIVESTRENGTH = 1	_	121	_	dB
		DRIVESTRENGTH = 0	—	109	_	dB
Loop unit-gain frequency ⁷	UGF	DRIVESTRENGTH = 3, Buffer connection	_	3.38	_	MHz
		DRIVESTRENGTH = 2, Buffer connection	_	0.9	_	MHz
		DRIVESTRENGTH = 1, Buffer connection	_	132	_	kHz
		DRIVESTRENGTH = 0, Buffer connection	_	34		kHz
		DRIVESTRENGTH = 3, 3x Gain connection	_	2.57	_	MHz
		DRIVESTRENGTH = 2, 3x Gain connection	_	0.71	_	MHz
		DRIVESTRENGTH = 1, 3x Gain connection	_	113	_	kHz
		DRIVESTRENGTH = 0, 3x Gain connection	_	28	_	kHz
Phase margin	PM	DRIVESTRENGTH = 3, Buffer connection		67	_	0
		DRIVESTRENGTH = 2, Buffer connection	_	69	_	0
		DRIVESTRENGTH = 1, Buffer connection	_	63	_	0
		DRIVESTRENGTH = 0, Buffer connection	_	68	_	0
Output voltage noise	N _{OUT}	DRIVESTRENGTH = 3, Buffer connection, 10 Hz - 10 MHz	_	146	_	µVrms
		DRIVESTRENGTH = 2, Buffer connection, 10 Hz - 10 MHz	_	163	_	µVrms
		DRIVESTRENGTH = 1, Buffer connection, 10 Hz - 1 MHz	_	170	_	μVrms
		DRIVESTRENGTH = 0, Buffer connection, 10 Hz - 1 MHz	_	176	_	µVrms
		DRIVESTRENGTH = 3, 3x Gain connection, 10 Hz - 10 MHz	_	313	_	µVrms
		DRIVESTRENGTH = 2, 3x Gain connection, 10 Hz - 10 MHz	_	271	_	µVrms
		DRIVESTRENGTH = 1, 3x Gain connection, 10 Hz - 1 MHz	_	247	_	μVrms
		DRIVESTRENGTH = 0, 3x Gain connection, 10 Hz - 1 MHz	-	245	-	μVrms

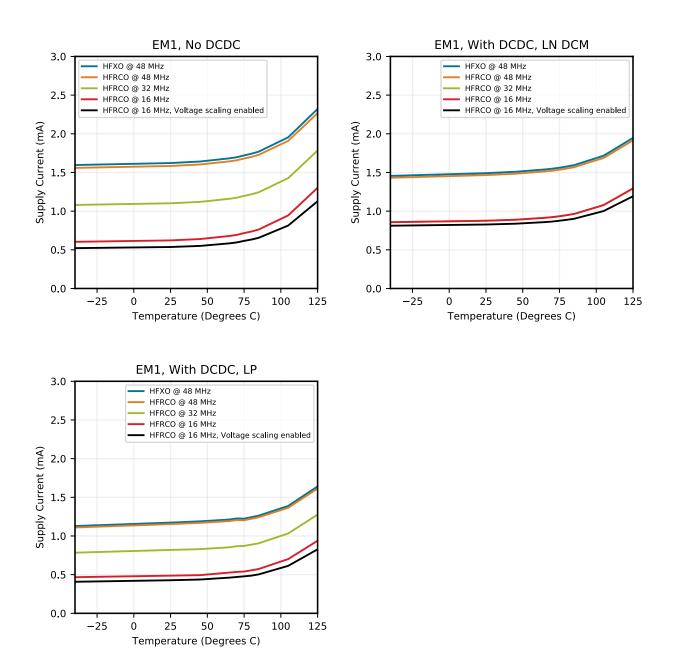
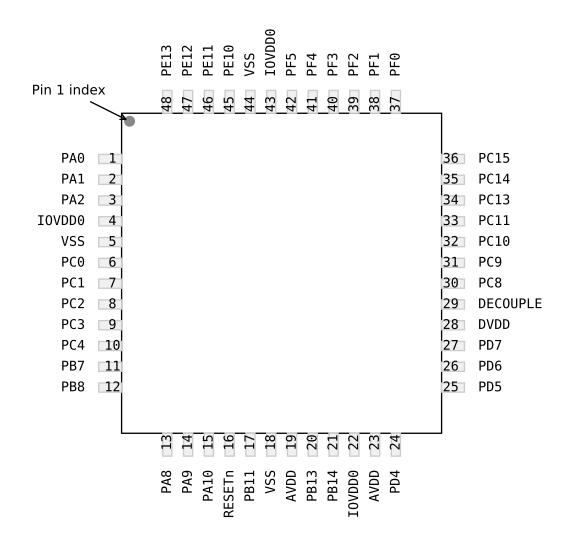



Figure 4.4. EM1 Sleep Mode Typical Supply Current vs. Temperature

Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB6	12	GPIO	PC4	13	GPIO
PC5	14	GPIO	PB7	15	GPIO
PB8	16	GPIO	PA12	17	GPIO
PA13	18	GPIO (5V)	PA14	19	GPIO
RESETn	20	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	PB11	21	GPIO
PB12	22	GPIO	AVDD	23 27	Analog power supply.
PB13	24	GPIO	PB14	25	GPIO
PD0	28	GPIO (5V)	PD1	29	GPIO
PD2	30	GPIO (5V)	PD3	31	GPIO
PD4	32	GPIO	PD5	33	GPIO
PD6	34	GPIO	PD7	35	GPIO
PD8	36	GPIO	PC6	37	GPIO
PC7	38	GPIO	DVDD	39	Digital power supply.
DECOUPLE	40	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PE4	41	GPIO
PE5	42	GPIO	PE6	43	GPIO
PE7	44	GPIO	PC12	45	GPIO (5V)
PC13	46	GPIO (5V)	PC14	47	GPIO (5V)
PC15	48	GPIO (5V)	PF0	49	GPIO (5V)
PF1	50	GPIO (5V)	PF2	51	GPIO
PF3	52	GPIO	PF4	53	GPIO
PF5	54	GPIO	PE8	56	GPIO
PE9	57	GPIO	PE10	58	GPIO
PE11	59	GPIO	PE12	60	GPIO
PE13	61	GPIO	PE14	62	GPIO
PE15	63	GPIO	PA15	64	GPIO

1. GPIO with 5V tolerance are indicated by (5V).

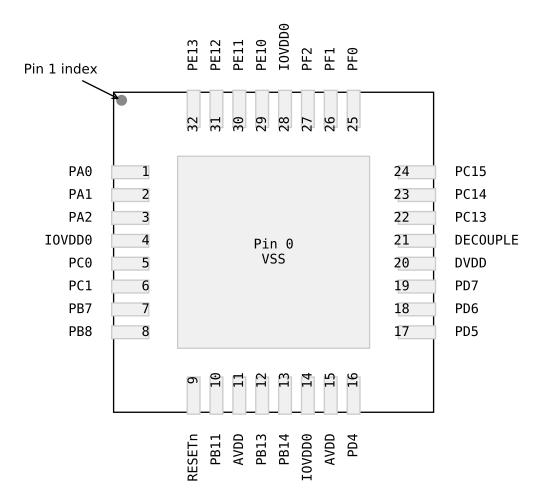


Figure 5.11. EFM32TG11B1xx in QFP48 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Table 5.11. E	EFM32TG11B1xx in	QFP48	Device Pinout
---------------	------------------	-------	---------------

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	IOVDD0	4 22 43	Digital IO power supply 0.
VSS	5 18 44	Ground	PC0	6	GPIO (5V)
PC1	7	GPIO (5V)	PC2	8	GPIO (5V)
PC3	9	GPIO (5V)	PC4	10	GPIO

Figure 5.13. EFM32TG11B1xx in QFN32 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Table 5.13. EFM32TG11B1xx in QFN32 Devic	e Pinout
--	----------

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VREGVSS	0	Voltage regulator VSS	PA0	1	GPIO
PA1	2	GPIO	PA2	3	GPIO
IOVDD0	4 14 28	Digital IO power supply 0.	PC0	5	GPIO (5V)
PC1	6	GPIO (5V)	PB7	7	GPIO

Alternate	LOC	ATION	
Functionality	0 - 3	4 - 7	Description
GPIO_EM4WU4	0: PF2		Pin can be used to wake the system up from EM4
GPIO_EM4WU5	0: PE13		Pin can be used to wake the system up from EM4
GPIO_EM4WU6	0: PC4		Pin can be used to wake the system up from EM4
GPIO_EM4WU7	0: PB11		Pin can be used to wake the system up from EM4
GPIO_EM4WU9	0: PE10		Pin can be used to wake the system up from EM4
HFXTAL_N	0: PB14		High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	0: PB13		High Frequency Crystal positive pin.
I2C0_SCL	0: PA1 1: PD7 2: PC7	4: PC1 5: PF1 6: PE13 7: PE5	I2C0 Serial Clock Line input / output.
I2C0_SDA	0: PA0 1: PD6 2: PC6	4: PC0 5: PF0 6: PE12 7: PE4	I2C0 Serial Data input / output.
I2C1_SCL	0: PC5 1: PB12 3: PD5	4: PF2	I2C1 Serial Clock Line input / output.
I2C1_SDA	0: PC4 1: PB11 3: PD4	4: PC11	I2C1 Serial Data input / output.
	0: PA14		LCD external supply bypass in step down or charge pump mode. If using the LCD in step-down or charge pump mode, a 1 uF (minimum) capacitor between this pin and VSS is required.
LCD_BEXT			To reduce supply ripple, a larger capcitor of approximately 1000 times the total LCD segment capacitance may be used. If using the LCD with the internal supply source, this pin may be left unconnected or used as a GPIO.

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	СН9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	СНО
APORT0X	BUSACMP0X																									PC7	PC6	PC5	PC4	PC3	PC2	PC1	PCO
APORT0Y	BUSACMP0Y																									PC7	PC6	PC5	PC4	PC3	PC2	PC1	PCO
APORT1X	BUSAX		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT1Y	BUSAY			PB13		PB11						PB5		PB3				PA15		PA13				PA9				PA5		PA3		PA1	
APORT2X	BUSBX			PB13		PB11						PB5		PB3				PA15		PA13				PA9				PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT3X	BUSCX												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				
APORT3Y	BUSCY											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4X	BUSDX											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4Y	BUSDY												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				

PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared bus used by this connection is indicated in the Bus column.

Table 5.16. ACMP0 Bus and Pin Mapping

EFM32TG11 Family Data Sheet Pin Definitions

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
OP	OPA3_OUT																																
APORT1Y	BUSAY			PB13		PB11						PB5		PB3				PA15		PA13				PA9				PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT3Y	BUSCY											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4Y	BUSDY												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				
OP	A3_	P																															
APORT1X	BUSAX		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PAO
APORT2X	BUSBX			PB13		PB11						PB5		PB3				PA15		PA13				6A9				PA5		PA3		PA1	
APORT3X	BUSCX												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				
APORT4X	BUSDX											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
VD	AC	0_0	UT0	/ 0	PA0	_οι	JT						1			1					1	1					1						
APORT1Y	BUSAY			PB13		PB11						PB5		PB3				PA15		PA13				6A9				PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT3Y	BUSCY											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4Y	BUSDY												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				

Table 6.2. TQFP80 PCB Land Pattern Dimensions

Dimension	Min	Мах					
C1	13.30	13.40					
C2	13.30	13.40					
E	0.50	BSC					
x	0.20	0.30					
Y	1.40	1.50					

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size can be 1:1 for all pads.
- 7. A No-Clean, Type-3 solder paste is recommended.
- 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

6.3 TQFP80 Package Marking

Figure 6.3. TQFP80 Package Marking

The package marking consists of:

- PPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

Figure 7.3. QFN80 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

9.2 QFN64 PCB Land Pattern

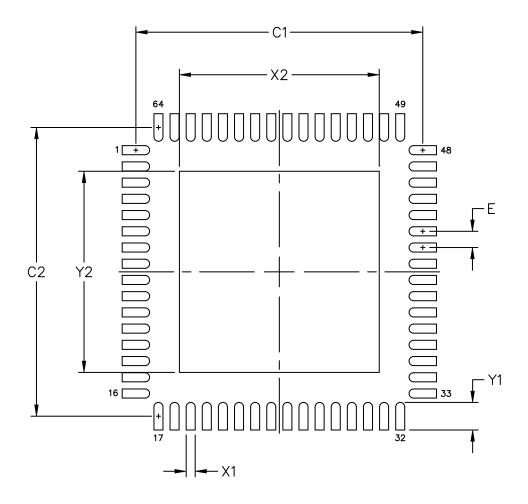


Figure 9.2. QFN64 PCB Land Pattern Drawing

Dimension	Min	Тур	Мах								
A		7.00 BSC									
A1		3.50 BSC									
В	7.00 BSC										
B1		3.50 BSC									
С	1.00	_	1.20								
D	0.17	—	0.27								
E	0.95	—	1.05								
F	0.17	_	0.23								
G		0.50 BSC									
Н	0.05	_	0.15								
J	0.09	0.20									
К	0.50	0.70									
L	0	_	7								
М		12 REF									
Ν	0.09	—	0.16								
Ρ		0.25 BSC									
R	0.150	—	0.250								
S		9.00 BSC									
S1		4.50 BSC									
V		9.00 BSC									
V1		4.50 BSC									
W		0.20 BSC									
AA	1.00 BSC										
Note:											

Table 10.1. TQFP48 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Table 11.2. QFN32 PCB Land Pattern Dimensions

Dimension	Тур
C1	5.00
C2	5.00
E	0.50
X1	0.30
Y1	0.80
X2	3.80
Y2	3.80

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.

7. A 2x2 array of 0.9 mm square openings on a 1.2 mm pitch should be used for the center ground pad.

8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.