

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 12bit SAR; D/A 12bit
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32tg11b140f64gq48-a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Ordering Information

Table 2.1. Ordering Information

	Flash	RAM	DC-DC Con-				
Ordering Code	(kB)	(kB)	verter	LCD	GPIO	Package	Temp Range
EFM32TG11B520F128GM80-A	128	32	Yes	Yes	67	QFN80	-40 to +85°C
EFM32TG11B520F128GQ80-A	128	32	Yes	Yes	63	QFP80	-40 to +85°C
EFM32TG11B520F128IM80-A	128	32	Yes	Yes	67	QFN80	-40 to +125°C
EFM32TG11B520F128IQ80-A	128	32	Yes	Yes	63	QFP80	-40 to +125°C
EFM32TG11B540F64GM80-A	64	32	Yes	Yes	67	QFN80	-40 to +85°C
EFM32TG11B540F64GQ80-A	64	32	Yes	Yes	63	QFP80	-40 to +85°C
EFM32TG11B540F64IM80-A	64	32	Yes	Yes	67	QFN80	-40 to +125°C
EFM32TG11B540F64IQ80-A	64	32	Yes	Yes	63	QFP80	-40 to +125°C
EFM32TG11B520F128GM64-A	128	32	Yes	Yes	53	QFN64	-40 to +85°C
EFM32TG11B520F128GQ64-A	128	32	Yes	Yes	50	QFP64	-40 to +85°C
EFM32TG11B520F128IM64-A	128	32	Yes	Yes	53	QFN64	-40 to +125°C
EFM32TG11B520F128IQ64-A	128	32	Yes	Yes	50	QFP64	-40 to +125°C
EFM32TG11B540F64GM64-A	64	32	Yes	Yes	53	QFN64	-40 to +85°C
EFM32TG11B540F64GQ64-A	64	32	Yes	Yes	50	QFP64	-40 to +85°C
EFM32TG11B540F64IM64-A	64	32	Yes	Yes	53	QFN64	-40 to +125°C
EFM32TG11B540F64IQ64-A	64	32	Yes	Yes	50	QFP64	-40 to +125°C
EFM32TG11B520F128GQ48-A	128	32	Yes	Yes	34	QFP48	-40 to +85°C
EFM32TG11B520F128IQ48-A	128	32	Yes	Yes	34	QFP48	-40 to +125°C
EFM32TG11B540F64GQ48-A	64	32	Yes	Yes	34	QFP48	-40 to +85°C
EFM32TG11B540F64IQ48-A	64	32	Yes	Yes	34	QFP48	-40 to +125°C
EFM32TG11B520F128GM32-A	128	32	Yes	Yes	22	QFN32	-40 to +85°C
EFM32TG11B520F128IM32-A	128	32	Yes	Yes	22	QFN32	-40 to +125°C
EFM32TG11B540F64GM32-A	64	32	Yes	Yes	22	QFN32	-40 to +85°C
EFM32TG11B540F64IM32-A	64	32	Yes	Yes	22	QFN32	-40 to +125°C
EFM32TG11B320F128GM64-A	128	32	No	Yes	56	QFN64	-40 to +85°C
EFM32TG11B320F128GQ64-A	128	32	No	Yes	53	QFP64	-40 to +85°C
EFM32TG11B320F128IM64-A	128	32	No	Yes	56	QFN64	-40 to +125°C
EFM32TG11B320F128IQ64-A	128	32	No	Yes	53	QFP64	-40 to +125°C
EFM32TG11B340F64GM64-A	64	32	No	Yes	56	QFN64	-40 to +85°C
EFM32TG11B340F64GQ64-A	64	32	No	Yes	53	QFP64	-40 to +85°C
EFM32TG11B340F64IM64-A	64	32	No	Yes	56	QFN64	-40 to +125°C
EFM32TG11B340F64IQ64-A	64	32	No	Yes	53	QFP64	-40 to +125°C

Ordering Code	Flash (kB)	RAM (kB)	DC-DC Con- verter	LCD	GPIO	Package	Temp Range
EFM32TG11B320F128GQ48-A	128	32	No	Yes	37	QFP48	-40 to +85°C
EFM32TG11B320F128IQ48-A	128	32	No	Yes	37	QFP48	-40 to +125°C
EFM32TG11B340F64GQ48-A	64	32	No	Yes	37	QFP48	-40 to +85°C
EFM32TG11B340F64IQ48-A	64	32	No	Yes	37	QFP48	-40 to +125°C
EFM32TG11B120F128GM64-A	128	32	No	No	56	QFN64	-40 to +85°C
EFM32TG11B120F128GQ64-A	128	32	No	No	53	QFP64	-40 to +85°C
EFM32TG11B120F128IM64-A	128	32	No	No	56	QFN64	-40 to +125°C
EFM32TG11B120F128IQ64-A	128	32	No	No	53	QFP64	-40 to +125°C
EFM32TG11B140F64GM64-A	64	32	No	No	56	QFN64	-40 to +85°C
EFM32TG11B140F64GQ64-A	64	32	No	No	53	QFP64	-40 to +85°C
EFM32TG11B140F64IM64-A	64	32	No	No	56	QFN64	-40 to +125°C
EFM32TG11B140F64IQ64-A	64	32	No	No	53	QFP64	-40 to +125°C
EFM32TG11B120F128GQ48-A	128	32	No	No	37	QFP48	-40 to +85°C
EFM32TG11B120F128IQ48-A	128	32	No	No	37	QFP48	-40 to +125°C
EFM32TG11B140F64GQ48-A	64	32	No	No	37	QFP48	-40 to +85°C
EFM32TG11B140F64IQ48-A	64	32	No	No	37	QFP48	-40 to +125°C
EFM32TG11B120F128GM32-A	128	32	No	No	24	QFN32	-40 to +85°C
EFM32TG11B120F128IM32-A	128	32	No	No	24	QFN32	-40 to +125°C
EFM32TG11B140F64GM32-A	64	32	No	No	24	QFN32	-40 to +85°C
EFM32TG11B140F64IM32-A	64	32	No	No	24	QFN32	-40 to +125°C

3. System Overview

3.1 Introduction

The Tiny Gecko Series 1 product family is well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the MCU system. The detailed functional description can be found in the Tiny Gecko Series 1 Reference Manual. Any behavior that does not conform to the specifications in this data sheet or the functional descriptions in the Tiny Gecko Series 1 Reference Manual are detailed in the EFM32TG11 Errata document.

A block diagram of the Tiny Gecko Series 1 family is shown in Figure 3.1 Detailed EFM32TG11 Block Diagram on page 10. The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information.

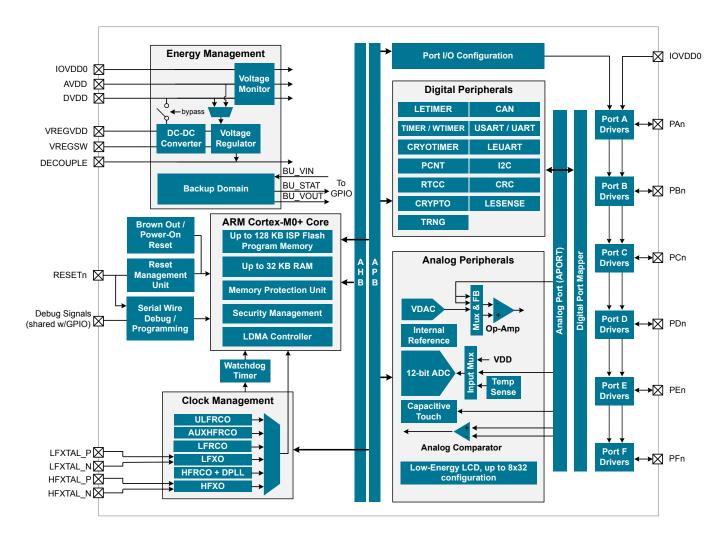


Figure 3.1. Detailed EFM32TG11 Block Diagram

3.10 Core and Memory

3.10.1 Processor Core

The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:

- ARM Cortex-M0+ RISC processor
- Memory Protection Unit (MPU) supporting up to 8 memory segments
- Micro-Trace Buffer (MTB)
- Up to 128 kB flash program memory
- · Up to 32 kB RAM data memory
- · Configuration and event handling of all modules
- · 2-pin Serial-Wire debug interface

3.10.2 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep.

3.10.3 Linked Direct Memory Access Controller (LDMA)

The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling so-phisticated operations to be implemented.

3.10.4 Bootloader

All devices come pre-programmed with a UART bootloader. This bootloader resides in flash and can be erased if it is not needed. More information about the bootloader protocol and usage can be found in *AN0003: UART Bootloader*. Application notes can be found on the Silicon Labs website (www.silabs.com/32bit-appnotes) or within Simplicity Studio in the [**Documentation**] area.

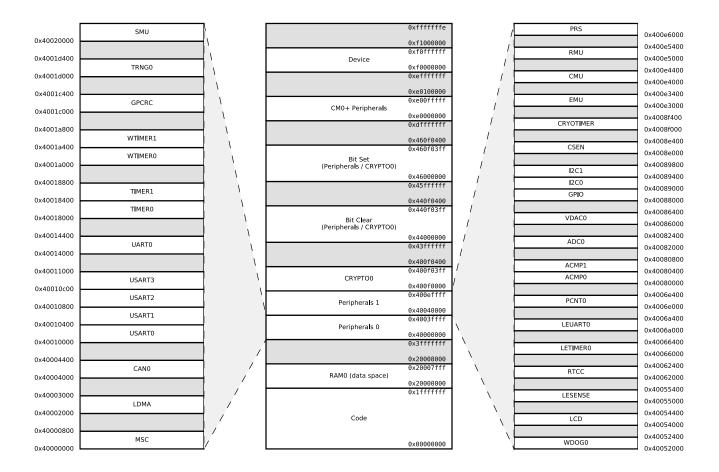


Figure 3.3. EFM32TG11 Memory Map — Peripherals

3.12 Configuration Summary

The features of the EFM32TG11 are a subset of the feature set described in the device reference manual. The table below describes device specific implementation of the features. Remaining modules support full configuration.

Table 3.2.	Configuration	Summary
------------	---------------	---------

Module	Configuration	Pin Connections
USART0	IrDA, SmartCard	US0_TX, US0_RX, US0_CLK, US0_CS
USART1	I ² S, SmartCard	US1_TX, US1_RX, US1_CLK, US1_CS
USART2	IrDA, SmartCard, High-Speed	US2_TX, US2_RX, US2_CLK, US2_CS
USART3	I ² S, SmartCard	US3_TX, US3_RX, US3_CLK, US3_CS
TIMER0	with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1	-	TIM1_CC[3:0]
WTIMER0	with DTI	WTIM0_CC[2:0], WTIM0_CDTI[2:0]
WTIMER1	-	WTIM1_CC[3:0]

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Note:						
		mode is calculated using R_{BYP} _min+ILOAD * R_{BYP} _max.	from the DCDC spec	cification table	e. Requiremer	nts for
2. VREGVDD must be	e tied to AVDD. Both	VREGVDD and AVDD minimum	voltages must be sa	atisfied for the	part to opera	te.
		characteristic specs of the capa oss temperature and DC bias.	citor used on DECOU	JPLE to ensu	re its capacita	ance val-
	will be dependent on	transitions occur at a rate of 10 r the value of the DECOUPLE ou				
5. When the CSEN pe	ripheral is used with	chopping enabled (CSEN_CTRI	CHOPEN = ENAB	LE), IOVDD n	nust be equal	to AVDE
cation. T _A (max) =		due to device self-heating, which x PowerDissipation). Refer to th		•	-	

4.1.3 Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Thermal resistance, QFN32	THETA _{JA_QFN32}	4-Layer PCB, Air velocity = 0 m/s	_	25.7	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	23.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	21.3	_	°C/W
Thermal resistance, TQFP48	THE-	4-Layer PCB, Air velocity = 0 m/s	_	44.1	_	°C/W
Package	TA _{JA_TQFP48}	4-Layer PCB, Air velocity = 1 m/s		43.5	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s		42.3	Max	°C/W
Thermal resistance, QFN64	THETA _{JA_QFN64}	4-Layer PCB, Air velocity = 0 m/s	_	20.9	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	18.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	16.4	4 <u> </u>	°C/W
Thermal resistance, TQFP64		4-Layer PCB, Air velocity = 0 m/s	_	37.3	_	°C/W
Package	TA _{JA_TQFP64}	4-Layer PCB, Air velocity = 1 m/s	_	35.6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	33.8		°C/W
Thermal resistance, QFN80	THETA _{JA_QFN80}	4-Layer PCB, Air velocity = 0 m/s		20.9	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	18.2		°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	16.4	_	°C/W
Thermal resistance, TQFP80	THE-	4-Layer PCB, Air velocity = 0 m/s	_	49.3	_	°C/W
Package	TA _{JA_TQFP80}	4-Layer PCB, Air velocity = 1 m/s	_	44.5	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	42.6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	°C/W

Table 4.3. Thermal Characteristics

4.1.6.2 Current Consumption 3.3 V using DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = 1.8 V DC-DC output. T = 25 °C. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_DCM	48 MHz crystal, CPU running while loop from flash	_	38	-	µA/MHz
abled, DCDC in Low Noise DCM mode ²		48 MHz HFRCO, CPU running while loop from flash	_	37	_	µA/MHz
		48 MHz HFRCO, CPU running Prime from flash	_	45	_	µA/MHz
		48 MHz HFRCO, CPU running CoreMark loop from flash	_	53	_	µA/MHz
		32 MHz HFRCO, CPU running while loop from flash	_	43	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash		47	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash		61	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash		587	_	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_CCM	48 MHz crystal, CPU running while loop from flash	_	49	_	µA/MHz
abled, DCDC in Low Noise CCM mode ¹		48 MHz HFRCO, CPU running while loop from flash		48	_	µA/MHz
		48 MHz HFRCO, CPU running Prime from flash	_	55	_	µA/MHz
		48 MHz HFRCO, CPU running CoreMark loop from flash		63	_	µA/MHz
		32 MHz HFRCO, CPU running while loop from flash		60	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash		68	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash		96	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash		1157	_	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_LPM	32 MHz HFRCO, CPU running while loop from flash	_	32	_	µA/MHz
abled, DCDC in LP mode ³		26 MHz HFRCO, CPU running while loop from flash		33	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash		36	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	_	156	_	µA/MHz

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption of pe- ripheral power domain 1, with voltage scaling enabled, DCDC in LP mode ³	IPD1_VS	Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled ⁴		0.18	_	μA
Current consumption of pe- ripheral power domain 2, with voltage scaling enabled, DCDC in LP mode ³	IPD2_VS	Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled ⁴		0.18		μA

Note:

1. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD.

2. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD.

3. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIM-SEL=1, ANASW=DVDD.

4. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.3 EM2 and EM3 Power Domains for a list of the peripherals in each power domain.

5. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Frequency limits	f _{HFRCO_BAND}	FREQRANGE = 0, FINETUNIN- GEN = 0	TBD	_	TBD	MHz
		FREQRANGE = 3, FINETUNIN- GEN = 0	TBD	_	TBD	MHz
		FREQRANGE = 6, FINETUNIN- GEN = 0	TBD	_	TBD	MHz
		FREQRANGE = 7, FINETUNIN- GEN = 0	TBD		TBD	MHz
		FREQRANGE = 8, FINETUNIN- GEN = 0	TBD		TBD	MHz
		FREQRANGE = 10, FINETUNIN- GEN = 0	TBD		TBD	MHz
		FREQRANGE = 11, FINETUNIN- GEN = 0	TBD		TBD	MHz
		FREQRANGE = 12, FINETUNIN- GEN = 0	TBD	_	TBD	MHz
		FREQRANGE = 13, FINETUNIN- GEN = 0	TBD	_	TBD	MHz

4.1.10 Flash Memory Characteristics⁵

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Flash erase cycles before failure	EC _{FLASH}		10000	_	_	cycles
Flash data retention	RET _{FLASH}	T ≤ 85 °C	10	_	_	years
		T ≤ 125 °C	10		_	years
Word (32-bit) programming time	tw_prog	Burst write, 128 words, average time per word	20	26	32	μs
		Single word	59	68	83	μs
Page erase time ⁴	t _{PERASE}		20	27	35	ms
Mass erase time ¹	t _{MERASE}		20	27	35	ms
Device erase time ^{2 3}	t _{DERASE}	T ≤ 85 °C	_	54	70	ms
		T ≤ 125 °C	_	54	75	ms
Erase current ⁶	I _{ERASE}	Page Erase	_	_	1.7	mA
		Mass or Device Erase	_		2.0	mA
Write current ⁶	I _{WRITE}		—		3.5	mA
Supply voltage during flash erase and write	V _{FLASH}		1.62	_	3.6	V

Table 4.17. Flash Memory Characteristics⁵

Note:

- 1. Mass erase is issued by the CPU and erases all flash.
- 2. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock Word (ULW).
- 3. From setting the DEVICEERASE bit in AAP_CMD to 1 until the ERASEBUSY bit in AAP_STATUS is cleared to 0. Internal setup and hold times for flash control signals are included.
- 4. From setting the ERASEPAGE bit in MSC_WRITECMD to 1 until the BUSY bit in MSC_STATUS is cleared to 0. Internal setup and hold times for flash control signals are included.
- 5. Flash data retention information is published in the Quarterly Quality and Reliability Report.

6. Measured at 25 °C.

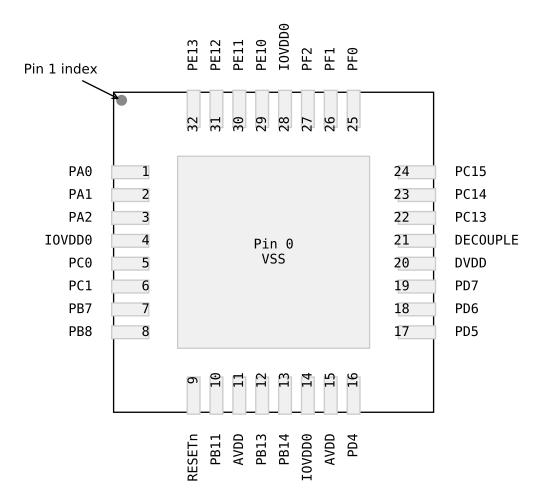
4.1.12 Voltage Monitor (VMON)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Supply current (including I_SENSE)	I _{VMON}	In EM0 or EM1, 1 supply monitored, T \leq 85 °C	_	6.3	TBD	μA
		In EM0 or EM1, 4 supplies monitored, T \leq 85 °C	—	12.5	TBD	μA
		In EM2, EM3 or EM4, 1 supply monitored and above threshold	—	62		nA
		In EM2, EM3 or EM4, 1 supply monitored and below threshold	—	62		nA
		In EM2, EM3 or EM4, 4 supplies monitored and all above threshold	_	99	_	nA
		In EM2, EM3 or EM4, 4 supplies monitored and all below threshold	_	99	_	nA
Loading of monitored supply	I _{SENSE}	In EM0 or EM1	—	2	_	μA
		In EM2, EM3 or EM4	_	2	_	nA
Threshold range	V _{VMON_RANGE}		1.62	_	3.4	V
Threshold step size	N _{VMON_STESP}	Coarse	_	200		mV
		Fine	—	20	_	mV
Response time	t _{VMON_RES}	Supply drops at 1V/µs rate	—	460	_	ns
Hysteresis	V _{VMON_HYST}			26	_	mV

Table 4.19. Voltage Monitor (VMON)

4.1.16 Capacitive Sense (CSEN)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Single conversion time (1x	t _{CNV}	12-bit SAR Conversions	_	20.2	_	μs
accumulation)		16-bit SAR Conversions	_	26.4	_	μs
		Delta Modulation Conversion (sin- gle comparison)	_	1.55	_	μs
Maximum external capacitive load	C _{EXTMAX}	CS0CG=7 (Gain = 1x), including routing parasitics	_	68		pF
		CS0CG=0 (Gain = 10x), including routing parasitics	—	680		pF
Maximum external series impedance	R _{EXTMAX}		_	1	_	kΩ
Supply current, EM2 bonded conversions, WARMUP- MODE=NORMAL, WAR- MUPCNT=0	ICSEN_BOND	12-bit SAR conversions, 20 ms conversion rate, CS0CG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF) ¹	_	326	_	nA
		Delta Modulation conversions, 20 ms conversion rate, CS0CG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF) ¹	_	226	_	nA
		12-bit SAR conversions, 200 ms conversion rate, CS0CG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF) ¹	_	33	_	nA
		Delta Modulation conversions, 200 ms conversion rate, CS0CG=7 (Gain = 1x), 10 chan- nels bonded (total capacitance of 330 pF) ¹	_	25	_	nA
Supply current, EM2 scan conversions, WARMUP- MODE=NORMAL, WAR-	ICSEN_EM2	12-bit SAR conversions, 20 ms scan rate, CS0CG=0 (Gain = 10x), 8 samples per scan ¹	—	690	_	nA
MUPCNT=0		Delta Modulation conversions, 20 ms scan rate, 8 comparisons per sample (DMCR = 1, DMR = 2), CS0CG=0 (Gain = 10x), 8 sam- ples per scan ¹	_	515	_	nA
		12-bit SAR conversions, 200 ms scan rate, CS0CG=0 (Gain = 10x), 8 samples per scan ¹	—	79	_	nA
		Delta Modulation conversions, 200 ms scan rate, 8 comparisons per sample (DMCR = 1, DMR = 2), CS0CG=0 (Gain = 10x), 8 samples per scan ¹	_	57		nA


Table 4.23. Capacitive Sense (CSEN)

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PC4	13	GPIO	PC5	14	GPIO
PB7	15	GPIO	PB8	16	GPIO
PA8	17	GPIO	PA12	18	GPIO
PA14	19	GPIO	RESETn	20	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	21	GPIO	PB12	22	GPIO
AVDD	24 28	Analog power supply.	PB13	25	GPIO
PB14	26	GPIO	PD0	29	GPIO (5V)
PD1	30	GPIO	PD3	31	GPIO
PD4	32	GPIO	PD5	33	GPIO
PD6	34	GPIO	PD7	35	GPIO
PD8	36	GPIO	PC7	37	GPIO
VREGVSS	38	Voltage regulator VSS	VREGSW	39	DCDC regulator switching node
VREGVDD	40	Voltage regulator VDD input	DVDD	41	Digital power supply.
DECOUPLE	42	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PE4	43	GPIO
PE5	44	GPIO	PE6	45	GPIO
PE7	46	GPIO	PC12	47	GPIO (5V)
PC13	48	GPIO (5V)	PF0	49	GPIO (5V)
PF1	50	GPIO (5V)	PF2	51	GPIO
PF3	52	GPIO	PF4	53	GPIO
PF5	54	GPIO	PE8	57	GPIO
PE9	58	GPIO	PE10	59	GPIO
PE11	60	GPIO	PE12	61	GPIO
PE13	62	GPIO	PE14	63	GPIO
PE15	64	GPIO			

1. GPIO with 5V tolerance are indicated by (5V).

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB8	11	GPIO	PA8	12	GPIO
PA12	13	GPIO	PA14	14	GPIO
RESETn	15	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	PB11	16	GPIO
AVDD	18 22	Analog power supply.	PB13	19	GPIO
PB14	20	GPIO	PD4	23	GPIO
PD5	24	GPIO	PD6	25	GPIO
PD7	26	GPIO	PD8	27	GPIO
VREGVSS	28	Voltage regulator VSS	VREGSW	29	DCDC regulator switching node
VREGVDD	30	Voltage regulator VDD input	DVDD	31	Digital power supply.
DECOUPLE	32	Decouple output for on-chip voltage regulator. An external decoupling ca- pacitor is required at this pin.	PE4	33	GPIO
PE5	34	GPIO	PE6	35	GPIO
PE7	36	GPIO	PF0	37	GPIO (5V)
PF1	38	GPIO (5V)	PF2	39	GPIO
PF3	40	GPIO	PF4	41	GPIO
PF5	42	GPIO	PE10	45	GPIO
PE11	46	GPIO	PE12	47	GPIO
PE13	48	GPIO			

1. GPIO with 5V tolerance are indicated by (5V).

Figure 5.13. EFM32TG11B1xx in QFN32 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Table 5.13. EFM32TG11B1xx in QFN32 Devic	e Pinout
--	----------

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VREGVSS	0	Voltage regulator VSS	PA0	1	GPIO
PA1	2	GPIO	PA2	3	GPIO
IOVDD0	4 14 28	Digital IO power supply 0.	PC0	5	GPIO (5V)
PC1	6	GPIO (5V)	PB7	7	GPIO

GPIO Name		Pin Alternate Functi	onality / Description	
	Analog	Timers	Communication	Other
PD5	BUSADC0Y BUSADC0X OPA2_OUT	WTIM0_CDTI1 #4 WTIM1_CC3 #1	US1_RTS #1 U0_CTS #5 LEU0_RX #0 I2C1_SCL #3	
PD6	BUSADC0Y BUSADC0X ADC0_EXTP VDAC0_EXT OPA1_P	TIM1_CC0 #4 WTIM0_CDTI2 #4 WTIM1_CC0 #2 LE- TIM0_OUT0 #0 PCNT0_S0IN #3	US0_RTS #5 US1_RX #2 US2_CTS #5 US3_CTS #2 U0_RTS #5 I2C0_SDA #1	CMU_CLK2 #2 LES_AL- TEX0 PRS_CH5 #2 ACMP0_O #2
PD7	BUSADC0Y BUSADC0X ADC0_EXTN OPA1_N	TIM1_CC1 #4 WTIM1_CC1 #2 LE- TIM0_OUT1 #0 PCNT0_S1IN #3	US1_TX #2 US3_CLK #1 U0_TX #6 I2C0_SCL #1	CMU_CLK0 #2 LES_AL- TEX1 ACMP1_O #2
PD8	BU_VIN	WTIM1_CC2 #2	US2_RTS #5	CMU_CLK1 #1
PC6	BUSACMP0Y BU- SACMP0X OPA3_P LCD_SEG32	WTIM1_CC3 #2	US0_RTS #2 US1_CTS #3 I2C0_SDA #2	LES_CH6
PC7	BUSACMP0Y BU- SACMP0X OPA3_N LCD_SEG33	WTIM1_CC0 #3	US0_CTS #2 US1_RTS #3 I2C0_SCL #2	LES_CH7
PE4	BUSDY BUSCX LCD_COM0	WTIM0_CC0 #0 WTIM1_CC1 #4	US0_CS #1 US1_CS #5 US3_CS #1 U0_RX #6 I2C0_SDA #7	
PE5	BUSCY BUSDX LCD_COM1	WTIM0_CC1 #0 WTIM1_CC2 #4	US0_CLK #1 US1_CLK #6 US3_CTS #1 I2C0_SCL #7	
PE6	BUSDY BUSCX LCD_COM2	WTIM0_CC2 #0 WTIM1_CC3 #4	US0_RX #1 US3_TX #1	PRS_CH6 #2
PE7	BUSCY BUSDX LCD_COM3	WTIM1_CC0 #5	US0_TX #1 US3_RX #1	PRS_CH7 #2
PC8	BUSACMP1Y BU- SACMP1X LCD_SEG34		US0_CS #2	LES_CH8 PRS_CH4 #0
PC9	BUSACMP1Y BU- SACMP1X LCD_SEG35		US0_CLK #2	LES_CH9 PRS_CH5 #0 GPIO_EM4WU2
PC10	BUSACMP1Y BU- SACMP1X		US0_RX #2	LES_CH10
PC11	BUSACMP1Y BU- SACMP1X		US0_TX #2 I2C1_SDA #4	LES_CH11
PC12	VDAC0_OUT1ALT / OPA1_OUTALT #0 BU- SACMP1Y BUSACMP1X	TIM1_CC3 #0	US0_RTS #3 US1_CTS #4 US2_CTS #4 U0_RTS #3	CMU_CLK0 #1 LES_CH12
PC13	VDAC0_OUT1ALT / OPA1_OUTALT #1 BU- SACMP1Y BUSACMP1X	TIM0_CDTI0 #1 TIM1_CC0 #0 TIM1_CC2 #4 PCNT0_S0IN #0	US0_CTS #3 US1_RTS #4 US2_RTS #4 U0_CTS #3	LES_CH13
PC14	VDAC0_OUT1ALT / OPA1_OUTALT #2 BU- SACMP1Y BUSACMP1X	TIM0_CDTI1 #1 TIM1_CC1 #0 TIM1_CC3 #4 LETIM0_OUT0 #5 PCNT0_S1IN #0	US0_CS #3 US1_CS #3 US2_RTS #3 US3_CS #2 U0_TX #3 LEU0_TX #5	LES_CH14 PRS_CH0 #2

Table 6.2. TQFP80 PCB Land Pattern Dimensions

Dimension	Min	Мах	
C1	13.30	13.40	
C2	13.30	13.40	
E	0.50 BSC		
x	0.20	0.30	
Y	1.40	1.50	

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size can be 1:1 for all pads.
- 7. A No-Clean, Type-3 solder paste is recommended.
- 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

6.3 TQFP80 Package Marking

Figure 6.3. TQFP80 Package Marking

The package marking consists of:

- PPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

Table 7.2. QFN80 PCB Land Pattern Dimensions

Dimension	Тур
C1	8.90
C2	8.90
E	0.40
X1	0.20
Y1	0.85
X2	7.30
Y2	7.30

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm.

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

6. The stencil thickness should be 0.125 mm (5 mils).

7. The ratio of stencil aperture to land pad size can be 1:1 for all pads.

8. A 3x3 array of 1.45 mm square openings on a 2.00 mm pitch can be used for the center ground pad.

9. A No-Clean, Type-3 solder paste is recommended.

10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Table 8.2. TQFP64 PCB Land Pattern Dimensions

Dimension	Min	Мах	
C1	11.30	11.40	
C2	11.30	11.40	
E	0.50 BSC		
x	0.20	0.30	
Y	1.40	1.50	

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size can be 1:1 for all pads.
- 7. A No-Clean, Type-3 solder paste is recommended.
- 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8.3 TQFP64 Package Marking

Figure 8.3. TQFP64 Package Marking

The package marking consists of:

- PPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com