
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 12bit SAR; D/A 12bit
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32tg11b140f64gq48-ar

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Timers/Counters

- 2 × 16-bit Timer/Counter
 - 3 or 4 Compare/Capture/PWM channels (4 + 4 on one timer instance)
 - Dead-Time Insertion on one timer instance
- 2 × 32-bit Timer/Counter
- 32-bit Real Time Counter and Calendar (RTCC)
- 32-bit Ultra Low Energy CRYOTIMER for periodic wakeup from any Energy Mode
- 16-bit Low Energy Timer for waveform generation
- 16-bit Pulse Counter with asynchronous operation
- Watchdog Timer with dedicated RC oscillator
- Low Energy Sensor Interface (LESENSE)
 - Autonomous sensor monitoring in Deep Sleep Mode
 - Wide range of sensors supported, including LC sensors and capacitive buttons
 - Up to 16 inputs
- Ultra efficient Power-on Reset and Brown-Out Detector
- Debug Interface
 - 2-pin Serial Wire Debug interface
 - 4-pin JTAG interface
 - Micro Trace Buffer (MTB)

Pre-Programmed UART Bootloader

Wide Operating Range

- 1.8 V to 3.8 V single power supply
- Integrated DC-DC, down to 1.8 V output with up to 200 mA load current for system
- Standard (-40 $^\circ C$ to 85 $^\circ C$ $T_A)$ and Extended (-40 $^\circ C$ to 125 $^\circ C$ $T_J)$ temperature grades available
- Packages
 - QFN32 (5x5 mm)
 - TQFP48 (7x7 mm)
 - QFN64 (9x9 mm)
 - TQFP64 (10x10 mm)
 - QFN80 (9x9 mm)
 - TQFP80 (12x12 mm)

3. System Overview

3.1 Introduction

The Tiny Gecko Series 1 product family is well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the MCU system. The detailed functional description can be found in the Tiny Gecko Series 1 Reference Manual. Any behavior that does not conform to the specifications in this data sheet or the functional descriptions in the Tiny Gecko Series 1 Reference Manual are detailed in the EFM32TG11 Errata document.

A block diagram of the Tiny Gecko Series 1 family is shown in Figure 3.1 Detailed EFM32TG11 Block Diagram on page 10. The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information.

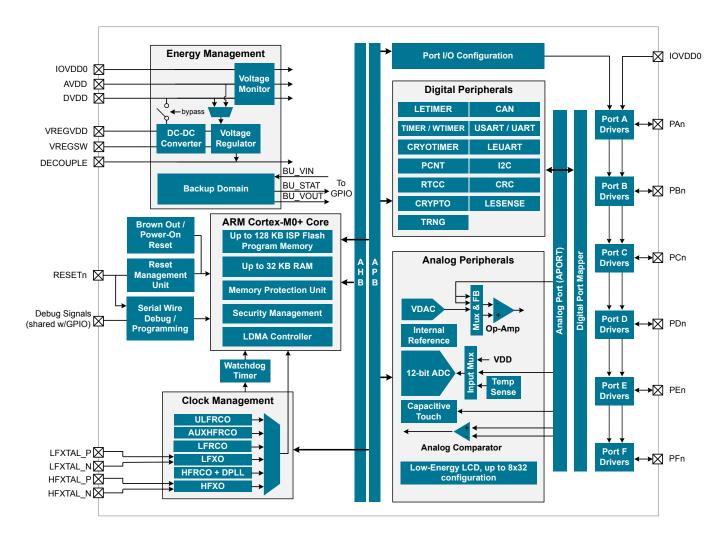


Figure 3.1. Detailed EFM32TG11 Block Diagram

4.1.2.1 General Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Operating ambient tempera-	T _A	-G temperature grade	-40	25	85	°C
ture range ⁶		-I temperature grade	-40	25	125	°C
AVDD supply voltage ²	V _{AVDD}		1.8	3.3	3.8	V
VREGVDD operating supply	V _{VREGVDD}	DCDC in regulation	2.4	3.3	3.8	V
voltage ^{2 1}		DCDC in bypass, 50mA load	1.8	3.3	3.8	V
		DCDC not in use. DVDD external- ly shorted to VREGVDD	1.8	3.3	3.8	V
VREGVDD current	I _{VREGVDD}	DCDC in bypass, T ≤ 85 °C	_	_	200	mA
		DCDC in bypass, T > 85 °C	_	_	100	mA
DVDD operating supply volt- age	V _{DVDD}		1.62	_	V _{VREGVDD}	V
IOVDD operating supply volt- age	VIOVDD	All IOVDD pins ⁵	1.62	_	V _{VREGVDD}	V
DECOUPLE output capaci- tor ^{3 4}	C _{DECOUPLE}		0.75	1.0	2.75	μF
HFCORECLK frequency	fcore	VSCALE2, MODE = WS1	_	_	48	MHz
		VSCALE2, MODE = WS0	_	_	25	MHz
		VSCALE0, MODE = WS1	_	_	20	MHz
		VSCALE0, MODE = WS0	_	_	10	MHz
HFCLK frequency	f _{HFCLK}	VSCALE2	_	_	48	MHz
		VSCALE0	_	_	20	MHz
HFSRCCLK frequency	f _{HFSRCCLK}	VSCALE2	_	_	48	MHz
		VSCALE0	_	_	20	MHz
HFBUSCLK frequency	f _{HFBUSCLK}	VSCALE2	_	_	48	MHz
		VSCALE0		_	20	MHz
HFPERCLK frequency	f _{HFPERCLK}	VSCALE2	_	_	48	MHz
		VSCALE0	_	_	20	MHz
HFPERBCLK frequency	f _{HFPERBCLK}	VSCALE2	_	_	48	MHz
		VSCALE0	_	_	20	MHz
HFPERCCLK frequency	fHFPERCCLK	VSCALE2	_	—	48	MHz
		VSCALE0	_	_	20	MHz

Table 4.2. General Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM4H mode, with voltage	I _{EM4H_VS}	128 byte RAM retention, RTCC running from LFXO	—	0.82		μA
scaling enabled		128 byte RAM retention, CRYO- TIMER running from ULFRCO	—	0.45	_	μA
		128 byte RAM retention, no RTCC	—	0.45	TBD	μA
Current consumption in EM4S mode	I _{EM4S}	No RAM retention, no RTCC	—	0.07	TBD	μA
Current consumption of pe- ripheral power domain 1, with voltage scaling enabled	IPD1_VS	Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled ¹	_	0.18	_	μA
Current consumption of pe- ripheral power domain 2, with voltage scaling enabled	IPD2_VS	Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled ¹	_	0.18	_	μA

Note:

1. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.3 EM2 and EM3 Power Domains for a list of the peripherals in each power domain.

2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1

4.1.12 Voltage Monitor (VMON)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Supply current (including I_SENSE)	I _{VMON}	In EM0 or EM1, 1 supply monitored, T \leq 85 °C	_	6.3	TBD	μA
		In EM0 or EM1, 4 supplies monitored, T \leq 85 °C	—	12.5	TBD	μA
		In EM2, EM3 or EM4, 1 supply monitored and above threshold	—	62		nA
		In EM2, EM3 or EM4, 1 supply monitored and below threshold	_	62	_	nA
		In EM2, EM3 or EM4, 4 supplies monitored and all above threshold	_	99	_	nA
		In EM2, EM3 or EM4, 4 supplies monitored and all below threshold	—	99	_	nA
Loading of monitored supply	I _{SENSE}	In EM0 or EM1	—	2	_	μA
		In EM2, EM3 or EM4	_	2	_	nA
Threshold range	V _{VMON_RANGE}		1.62	_	3.4	V
Threshold step size	N _{VMON_STESP}	Coarse	_	200		mV
		Fine	_	20	_	mV
Response time	t _{VMON_RES}	Supply drops at 1V/µs rate	_	460	_	ns
Hysteresis	V _{VMON_HYST}			26	_	mV

Table 4.19. Voltage Monitor (VMON)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
ratio (1 kHz sine wave),	SNDR _{DAC}	500 ksps, single-ended, internal 1.25V reference	_	60.4	_	dB
Noise band limited to 250 kHz		500 ksps, single-ended, internal 2.5V reference	—	61.6	_	dB
		500 ksps, single-ended, 3.3V VDD reference	_	64.0	_	dB
		500 ksps, differential, internal 1.25V reference	_	63.3	_	dB
		500 ksps, differential, internal 2.5V reference	_	64.4	_	dB
		500 ksps, differential, 3.3V VDD reference	_	65.8		dB
Signal to noise and distortion ratio (1 kHz sine wave),	SNDR _{DAC_BAND}	500 ksps, single-ended, internal 1.25V reference	_	65.3		dB
Noise band limited to 22 kHz		500 ksps, single-ended, internal 2.5V reference	_	66.7	_	dB
		500 ksps, differential, 3.3V VDD reference	_	68.5	_	dB
		500 ksps, differential, internal 1.25V reference	_	67.8	_	dB
		500 ksps, differential, internal 2.5V reference	_	69.0	_	dB
		500 ksps, single-ended, 3.3V VDD reference	_	70.0		dB
Total harmonic distortion	THD			70.2		dB
Differential non-linearity ³	DNL _{DAC}		TBD	_	TBD	LSB
Intergral non-linearity	INL _{DAC}		TBD	_	TBD	LSB
Offset error ⁵	V _{OFFSET}	T = 25 °C	TBD	_	TBD	mV
		Across operating temperature range	TBD	_	TBD	mV
Gain error ⁵	V _{GAIN}	T = 25 °C, Low-noise internal ref- erence (REFSEL = 1V25LN or 2V5LN)	TBD	_	TBD	%
		Across operating temperature range, Low-noise internal refer- ence (REFSEL = 1V25LN or 2V5LN)	TBD	_	TBD	%
External load capactiance, OUTSCALE=0	C _{LOAD}		—	_	75	pF

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supply current, continuous conversions, WARMUP- MODE=KEEPCSENWARM	ICSEN_ACTIVE	SAR or Delta Modulation conver- sions of 33 pF capacitor, CS0CG=0 (Gain = 10x), always on	_	90.5	_	μA
HFPERCLK supply current	ICSEN_HFPERCLK	Current contribution from HFPERCLK when clock to CSEN block is enabled.	_	2.25	_	µA/MHz

Note:

 Current is specified with a total external capacitance of 33 pF per channel. Average current is dependent on how long the module is actively sampling channels within the scan period, and scales with the number of samples acquired. Supply current for a specific application can be estimated by multiplying the current per sample by the total number of samples per period (total_current = single_sample_current * (number_of_channels * accumulation)).

4.1.21.3 I2C Fast-mode Plus (Fm+)¹

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
SCL clock frequency ²	f _{SCL}		0	—	1000	kHz
SCL clock low time	t _{LOW}		0.5	_	_	μs
SCL clock high time	t _{HIGH}		0.26	_	_	μs
SDA set-up time	t _{SU_DAT}		50	_	_	ns
SDA hold time	t _{HD_DAT}		100	—	—	ns
Repeated START condition set-up time	t _{SU_STA}		0.26			μs
(Repeated) START condition hold time	t _{HD_STA}		0.26		_	μs
STOP condition set-up time	t _{SU_STO}		0.26	—	—	μs
Bus free time between a STOP and START condition	t _{BUF}		0.5	_	_	μs

Table 4.30. I2C Fast-mode Plus (Fm+)¹

Note:

1. For CLHR set to 0 or 1 in the I2Cn_CTRL register.

2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual.

4.2.2 DC-DC Converter

Default test conditions: CCM mode, LDCDC = 4.7 µH, CDCDC = 4.7 µF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz

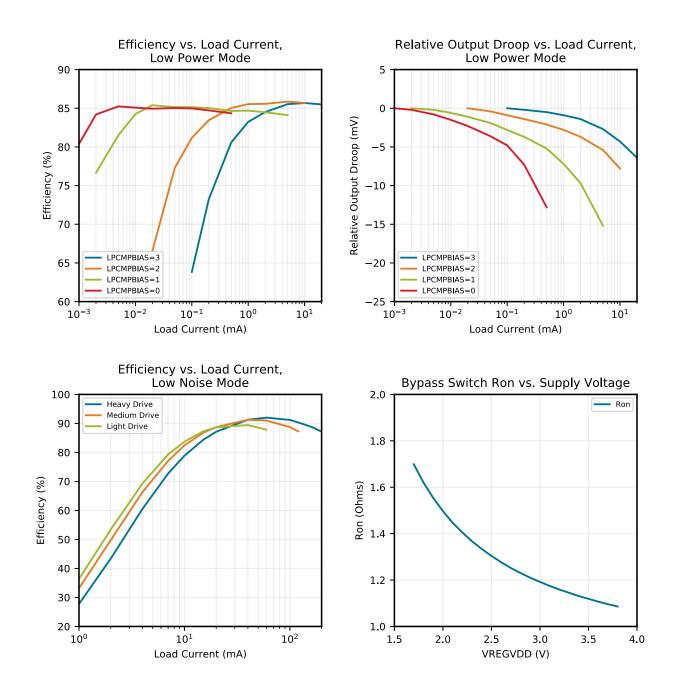
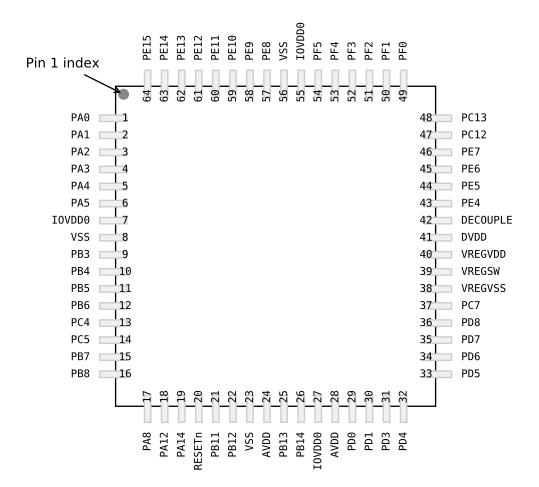



Figure 4.8. DC-DC Converter Typical Performance Characteristics

Figure 5.3. EFM32TG11B5xx in QFP64 Device Pinout

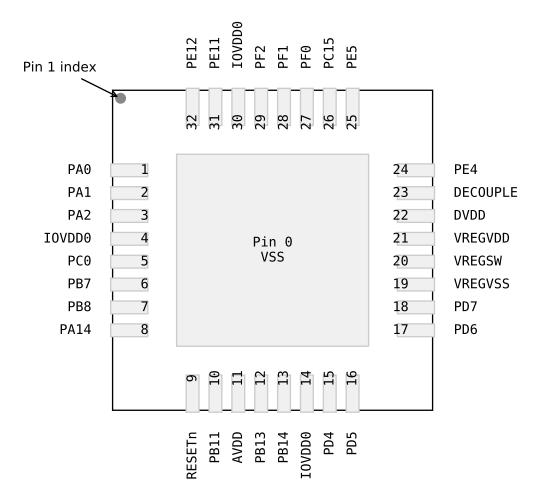

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Table 5.3. EFM32TG11B5xx in Q	FP64 Device Pinout
-------------------------------	--------------------

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	PA3	4	GPIO
PA4	5	GPIO	PA5	6	GPIO
IOVDD0	7 27 55	Digital IO power supply 0.	VSS	8 23 56	Ground
PB3	9	GPIO	PB4	10	GPIO
PB5	11	GPIO	PB6	12	GPIO

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB4	10	GPIO	PB5	11	GPIO
PB6	12	GPIO	PC4	13	GPIO
PC5	14	GPIO	PB7	15	GPIO
PB8	16	GPIO	PA8	17	GPIO
PA12	18	GPIO	PA13	19	GPIO (5V)
PA14	20	GPIO	RESETn	21	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	22	GPIO	PB12	23	GPIO
AVDD	24 28	Analog power supply.	PB13	25	GPIO
PB14	26	GPIO	PD0	29	GPIO (5V)
PD1	30	GPIO	PD3	31	GPIO
PD4	32	GPIO	PD5	33	GPIO
PD6	34	GPIO	PD7	35	GPIO
PD8	36	GPIO	PC7	37	GPIO
VREGSW	39	DCDC regulator switching node	VREGVDD	40	Voltage regulator VDD input
DVDD	41	Digital power supply.	DECOUPLE	42	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
PE4	43	GPIO	PE5	44	GPIO
PE6	45	GPIO	PE7	46	GPIO
PC12	47	GPIO (5V)	PC13	48	GPIO (5V)
PF0	49	GPIO (5V)	PF1	50	GPIO (5V)
PF2	51	GPIO	PF3	52	GPIO
PF4	53	GPIO	PF5	54	GPIO
PE8	56	GPIO	PE9	57	GPIO
PE10	58	GPIO	PE11	59	GPIO
PE12	60	GPIO	PE13	61	GPIO
PE14	62	GPIO	PE15	63	GPIO
PA15	64	GPIO			

1. GPIO with 5V tolerance are indicated by (5V).

Figure 5.12. EFM32TG11B5xx in QFN32 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Table 5.12. EFM32TG11B5xx in QFN32 Device Pinout
--

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VREGVSS	0 19	Voltage regulator VSS	PA0	1	GPIO
PA1	2	GPIO	PA2	3	GPIO
IOVDD0	4 14 30	Digital IO power supply 0.	PC0	5	GPIO (5V)
PB7	6	GPIO	PB8	7	GPIO

5.14 GPIO Functionality Table

A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of each GPIO pin, followed by the functionality available on that pin. Refer to 5.15 Alternate Functionality Overview for a list of GPIO locations available for each function.

GPIO Name	Pin Alternate Functionality / Description								
	Analog	Timers	Communication	Other					
PA0	BUSBY BUSAX LCD_SEG13	TIM0_CC0 #0 TIM0_CC1 #7 PCNT0_S0IN #4	US1_RX #5 US3_TX #0 LEU0_RX #4 I2C0_SDA #0	CMU_CLK2 #0 PRS_CH0 #0 PRS_CH3 #3 GPIO_EM4WU0					
PA1	BUSAY BUSBX LCD_SEG14	TIM0_CC0 #7 TIM0_CC1 #0 PCNT0_S1IN #4	US3_RX #0 I2C0_SCL #0	CMU_CLK1 #0 PRS_CH1 #0					
PA2	BUSBY BUSAX LCD_SEG15	TIM0_CC2 #0	US1_RX #6 US3_CLK #0	CMU_CLK0 #0					
PA3	BUSAY BUSBX LCD_SEG16	TIM0_CDTI0 #0	US3_CS #0 U0_TX #2	CMU_CLK2 #1 CMU_CLK2 #4 CMU_CLKI0 #1 LES_AL- TEX2					
PA4	BUSBY BUSAX LCD_SEG17	TIM0_CDTI1 #0	US3_CTS #0 U0_RX #2	LES_ALTEX3					
PA5	BUSAY BUSBX LCD_SEG18	TIM0_CDTI2 #0	US3_RTS #0 U0_CTS #2	LES_ALTEX4 ACMP1_O #7					
PA6	BUSBY BUSAX LCD_SEG19	WTIM0_CC0 #1	U0_RTS #2	PRS_CH6 #0 ACMP0_O #4 GPIO_EM4WU1					
PB3	BUSAY BUSBX LCD_SEG20 / LCD_COM4	TIM1_CC3 #2 WTIM0_CC0 #6	US2_TX #1 US3_TX #2	ACMP0_O #7					
PB4	BUSBY BUSAX LCD_SEG21 / LCD_COM5	WTIM0_CC1 #6	US2_RX #1						
PB5	BUSAY BUSBX LCD_SEG22 / LCD_COM6	WTIM0_CC2 #6 PCNT0_S0IN #6	US0_RTS #4 US2_CLK #1						
PB6	BUSBY BUSAX LCD_SEG23 / LCD_COM7	TIM0_CC0 #3 PCNT0_S1IN #6	US0_CTS #4 US2_CS #1						
PC0	VDAC0_OUT0ALT / OPA0_OUTALT #0 BU- SACMP0Y BUSACMP0X	TIM0_CC1 #3 PCNT0_S0IN #2	CAN0_RX #0 US0_TX #5 US1_TX #0 US1_CS #4 US2_RTS #0 US3_CS #3 I2C0_SDA #4	LES_CH0 PRS_CH2 #0					
PC1	VDAC0_OUT0ALT / OPA0_OUTALT #1 BU- SACMP0Y BUSACMP0X	TIM0_CC2 #3 WTIM0_CC0 #7 PCNT0_S1IN #2	CAN0_TX #0 US0_RX #5 US1_TX #4 US1_RX #0 US2_CTS #0 US3_RTS #1 I2C0_SCL #4	LES_CH1 PRS_CH3 #0					
PC2	VDAC0_OUT0ALT / OPA0_OUTALT #2 BU- SACMP0Y BUSACMP0X	TIM0_CDTI0 #3 WTIM0_CC1 #7	US1_RX #4 US2_TX #0	LES_CH2					
PC3	VDAC0_OUT0ALT / OPA0_OUTALT #3 BU- SACMP0Y BUSACMP0X	TIM0_CDTI1 #3 WTIM0_CC2 #7	US1_CLK #4 US2_RX #0	LES_CH3					

Table 5.14. GPIO Functionality Table

Alternate	LOCA	ATION								
Functionality	0 - 3	4 - 7	Description							
OPA3_N	0: PC7		Operational Amplifier 3 external negative input.							
OPA3_OUT	0: PD1		Operational Amplifier 3 output.							
OPA3_P	0: PC6		Operational Amplifier 3 external positive input.							
PCNT0_S0IN	0: PC13 2: PC0 3: PD6	4: PA0 6: PB5 7: PB12	Pulse Counter PCNT0 input number 0.							
PCNT0_S1IN	0: PC14 2: PC1 3: PD7	4: PA1 6: PB6 7: PB11	Pulse Counter PCNT0 input number 1.							
PRS_CH0	0: PA0 1: PF3 2: PC14 3: PF2		Peripheral Reflex System PRS, channel 0.							
PRS_CH1	0: PA1 1: PF4 2: PC15 3: PE12		Peripheral Reflex System PRS, channel 1.							
PRS_CH2	0: PC0 1: PF5 2: PE10 3: PE13		Peripheral Reflex System PRS, channel 2.							
PRS_CH3	0: PC1 1: PE8 2: PE11 3: PA0		Peripheral Reflex System PRS, channel 3.							
PRS_CH4	0: PC8 2: PF1		Peripheral Reflex System PRS, channel 4.							
PRS_CH5	0: PC9 2: PD6		Peripheral Reflex System PRS, channel 5.							
PRS_CH6	0: PA6 1: PB14 2: PE6		Peripheral Reflex System PRS, channel 6.							
PRS_CH7	0: PB13 2: PE7		Peripheral Reflex System PRS, channel 7.							

Alternate	LOCA	ATION	
Functionality	0 - 3	4 - 7	Description
VDAC0_OUT0 / OPA0_OUT	0: PB11		Digital to Analog Converter DAC0 output channel number 0.
VDAC0_OUT0ALT / OPA0_OUTALT	0: PC0 1: PC1 2: PC2 3: PC3	4: PD0	Digital to Analog Converter DAC0 alternative output for channel 0.
VDAC0_OUT1 / OPA1_OUT	0: PB12		Digital to Analog Converter DAC0 output channel number 1.
VDAC0_OUT1ALT / OPA1_OUTALT	0: PC12 1: PC13 2: PC14 3: PC15	4: PD1	Digital to Analog Converter DAC0 alternative output for channel 1.
WTIM0_CC0	0: PE4 1: PA6	4: PC15 6: PB3 7: PC1	Wide timer 0 Capture Compare input / output channel 0.
WTIM0_CC1	0: PE5	4: PF0 6: PB4 7: PC2	Wide timer 0 Capture Compare input / output channel 1.
WTIM0_CC2	0: PE6	4: PF1 6: PB5 7: PC3	Wide timer 0 Capture Compare input / output channel 2.
WTIM0_CDTI0	0: PE10 2: PA12	4: PD4	Wide timer 0 Complimentary Dead Time Insertion channel 0.
WTIM0_CDTI1	0: PE11 2: PA13	4: PD5	Wide timer 0 Complimentary Dead Time Insertion channel 1.
WTIM0_CDTI2	0: PE12 2: PA14	4: PD6	Wide timer 0 Complimentary Dead Time Insertion channel 2.
WTIM1_CC0	0: PB13 1: PD2 2: PD6 3: PC7	5: PE7	Wide timer 1 Capture Compare input / output channel 0.
WTIM1_CC1	0: PB14 1: PD3 2: PD7	4: PE4	Wide timer 1 Capture Compare input / output channel 1.
WTIM1_CC2	0: PD0 1: PD4 2: PD8	4: PE5	Wide timer 1 Capture Compare input / output channel 2.

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	СН9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
APORT0X	BUSADC0X																									PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
APORT0Y	BUSADC0Y																									PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
APORT1X	BUSAX		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT1Y	BUSAY			PB13		PB11						PB5		PB3				PA15		PA13				PA9				PA5		PA3		PA1	
APORT2X	BUSBX			PB13		PB11						PB5		PB3				PA15		PA13				PA9				PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT3X	BUSCX												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				
APORT3Y	BUSCY											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4X	BUSDX											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4Y	BUSDY												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				

Table 5.18. ADC0 Bus and Pin Mapping

6. TQFP80 Package Specifications

6.1 TQFP80 Package Dimensions

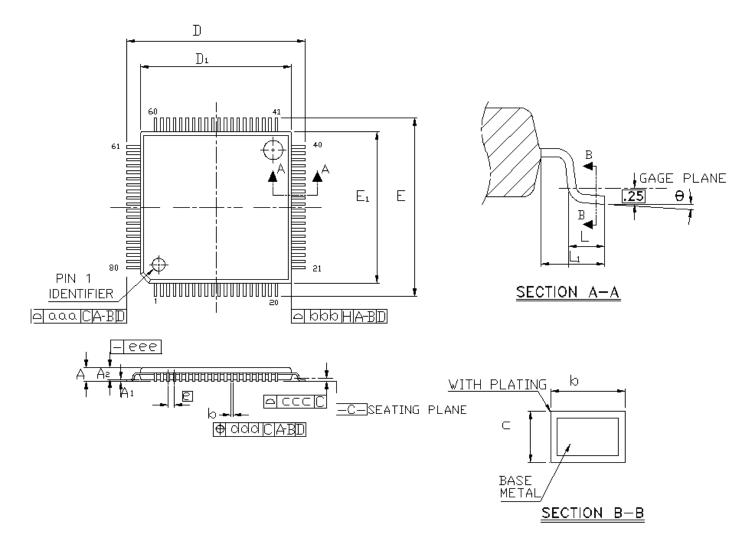


Figure 6.1. TQFP80 Package Drawing

Figure 7.3. QFN80 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

Table 9.2. QFN64 PCB Land Pattern Dimensions

Dimension	Тур
C1	8.90
C2	8.90
E	0.50
X1	0.30
Y1	0.85
X2	7.30
Y2	7.30

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm.

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

6. The stencil thickness should be 0.125 mm (5 mils).

7. The ratio of stencil aperture to land pad size can be 1:1 for all pads.

8. A 3x3 array of 1.45 mm square openings on a 2.00 mm pitch can be used for the center ground pad.

9. A No-Clean, Type-3 solder paste is recommended.

10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

12. Revision History

Revision 0.5

February, 2018

- 4.1 Electrical Characteristics updated with latest characterization data and production test limits.
- Added 4.1.3 Thermal Characteristics.
- Added 4.2 Typical Performance Curves section.
- Corrected OPA / VDAC output connections in Figure 5.14 APORT Connection Diagram on page 119.

Revision 0.1

May 1st, 2017

Initial release.