

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

EXF

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 12bit SAR; D/A 12bit
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TJ)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32tg11b140f64iq48-a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	5.9 EFM32TG11B5xx in QFP48 Device Pinout	90
	5.10 EFM32TG11B3xx in QFP48 Device Pinout	92
	5.11 EFM32TG11B1xx in QFP48 Device Pinout	94
	5.12 EFM32TG11B5xx in QFN32 Device Pinout	96
	5.13 EFM32TG11B1xx in QFN32 Device Pinout	98
	5.14 GPIO Functionality Table	00
	5.15 Alternate Functionality Overview	04
	5.16 Analog Port (APORT) Client Maps	19
6.	TQFP80 Package Specifications	29
	6.1 TQFP80 Package Dimensions	29
	6.2 TQFP80 PCB Land Pattern	31
	6.3 TQFP80 Package Marking	32
7.	QFN80 Package Specifications.	33
	7.1 QFN80 Package Dimensions	33
	7.2 QFN80 PCB Land Pattern	35
	7.3 QFN80 Package Marking	37
8.	TQFP64 Package Specifications	38
	8.1 TQFP64 Package Dimensions	38
	8.2 TQFP64 PCB Land Pattern	40
	8.3 TQFP64 Package Marking	41
9.	QFN64 Package Specifications.	42
	9.1 QFN64 Package Dimensions	42
	9.2 QFN64 PCB Land Pattern	44
	9.3 QFN64 Package Marking	46
10.	TQFP48 Package Specifications	47
	10.1 TQFP48 Package Dimensions	47
	10.2 TQFP48 PCB Land Pattern	49
	10.3 TQFP48 Package Marking	50
11.	QFN32 Package Specifications	51
	11.1 QFN32 Package Dimensions	51
	11.2 QFN32 PCB Land Pattern	53
	11.3 QFN32 Package Marking	55
12.	Revision History.	56

3.11 Memory Map

The EFM32TG11 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.

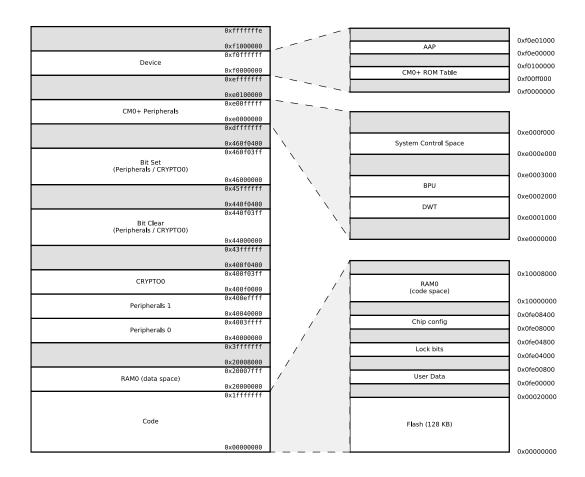


Figure 3.2. EFM32TG11 Memory Map — Core Peripherals and Code Space

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Note:						
		mode is calculated using R_{BYP} _min+ILOAD * R_{BYP} _max.	from the DCDC spec	cification table	e. Requiremer	nts for
2. VREGVDD must be	e tied to AVDD. Both	VREGVDD and AVDD minimum	voltages must be sa	atisfied for the	part to opera	te.
		characteristic specs of the capa oss temperature and DC bias.	citor used on DECOU	JPLE to ensu	re its capacita	ance val-
	will be dependent on	transitions occur at a rate of 10 r the value of the DECOUPLE ou				
5. When the CSEN pe	ripheral is used with	chopping enabled (CSEN_CTRI	CHOPEN = ENAB	LE), IOVDD n	nust be equal	to AVDE
cation. T _A (max) =		due to device self-heating, which x PowerDissipation). Refer to th		•	-	

4.1.3 Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Thermal resistance, QFN32	THETA _{JA_QFN32}	4-Layer PCB, Air velocity = 0 m/s	_	25.7	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	23.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	21.3	_	°C/W
Thermal resistance, TQFP48	THE-	4-Layer PCB, Air velocity = 0 m/s	_	44.1	_	°C/W
Package	TA _{JA_TQFP48}	4-Layer PCB, Air velocity = 1 m/s		43.5	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s		42.3	_	°C/W
Thermal resistance, QFN64	THETA _{JA_QFN64}	4-Layer PCB, Air velocity = 0 m/s	_	20.9	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	18.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	16.4	_	°C/W
Thermal resistance, TQFP64	THE- TA _{JA_TQFP64}	4-Layer PCB, Air velocity = 0 m/s	_	37.3	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	35.6	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	33.8	_	°C/W
Thermal resistance, QFN80	THETA _{JA_QFN80}	4-Layer PCB, Air velocity = 0 m/s		20.9	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	18.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	16.4	_	°C/W
Thermal resistance, TQFP80	THE-	4-Layer PCB, Air velocity = 0 m/s	_	49.3	_	°C/W
Package	TA _{JA_TQFP80}	4-Layer PCB, Air velocity = 1 m/s	_	44.5	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	42.6	_	°C/W

Table 4.3. Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Hysteresis (V _{CM} = 1.25 V,	V _{ACMPHYST}	HYSTSEL ⁵ = HYST0	TBD	0	TBD	mV
$BIASPROG^4 = 0x10, FULL-$ $BIAS^4 = 1)$		HYSTSEL ⁵ = HYST1	TBD	18	TBD	mV
		HYSTSEL ⁵ = HYST2	TBD	33	TBD	mV
		HYSTSEL ⁵ = HYST3	TBD	46	TBD	mV
		HYSTSEL ⁵ = HYST4	TBD	57	TBD	mV
		HYSTSEL ⁵ = HYST5	TBD	68	TBD	mV
		HYSTSEL ⁵ = HYST6	TBD	79	TBD	mV
		HYSTSEL ⁵ = HYST7	TBD	90	TBD	mV
		HYSTSEL ⁵ = HYST8	TBD	0	TBD	mV
		HYSTSEL ⁵ = HYST9	TBD	-18	TBD	mV
		HYSTSEL ⁵ = HYST10	TBD	-33	TBD	mV
		HYSTSEL ⁵ = HYST11	TBD	-45	TBD	mV
		HYSTSEL ⁵ = HYST12	TBD	-57	TBD	mV
		HYSTSEL ⁵ = HYST13	TBD	-67	TBD	mV
		HYSTSEL ⁵ = HYST14	TBD	-78	TBD	mV
		HYSTSEL ⁵ = HYST15	TBD	-88	TBD	mV
Comparator delay ³	t _{ACMPDELAY}	$BIASPROG^4 = 1$, $FULLBIAS^4 = 0$	_	30	_	μs
		$BIASPROG^4 = 0x10, FULLBIAS^4 = 0$	_	3.7	_	μs
		BIASPROG ⁴ = 0x02, FULLBIAS ⁴ = 1		360	_	ns
		BIASPROG ⁴ = 0x20, FULLBIAS ⁴ = 1	_	35	_	ns
Offset voltage	VACMPOFFSET	BIASPROG ⁴ =0x10, FULLBIAS ⁴ = 1	TBD	_	TBD	mV
Reference voltage	V _{ACMPREF}	Internal 1.25 V reference	TBD	1.25	TBD	V
		Internal 2.5 V reference	TBD	2.5	TBD	V
Capacitive sense internal re- sistance	R _{CSRES}	CSRESSEL ⁶ = 0	—	infinite	_	kΩ
		CSRESSEL ⁶ = 1	—	15	_	kΩ
		CSRESSEL ⁶ = 2		27	_	kΩ
		CSRESSEL ⁶ = 3	—	39		kΩ
		CSRESSEL ⁶ = 4		51		kΩ
		CSRESSEL ⁶ = 5	_	100	_	kΩ
		CSRESSEL ⁶ = 6		162	_	kΩ
		CSRESSEL ⁶ = 7		235	_	kΩ

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Note:	l					
1. Supply current the load.	specifications are for VD	AC circuitry operating with static outpo	ut only and do n	not include cur	rent required	to drive
	ode, the output is define ngle-ended range.	d as the difference between two single	e-ended outputs	s. Absolute vol	ltage on each	output is
3. Entire range is	monotonic and has no m	nissing codes.				
	PERCLK is dependent DAC module is enabled	on HFPERCLK frequency. This currer in the CMU.	nt contributes to	the total supp	bly current use	ed when
		pe from 10% to 90% of full scale. Offs at 10% of full scale with the measured		by comparing	actual VDAC	output at
		ΔV_{OUT}), VDAC output at 90% of full set	aala			

4.1.17 Operational Amplifier (OPAMP)

Unless otherwise indicated, specified conditions are: Non-inverting input configuration, VDD = 3.3 V, DRIVESTRENGTH = 2, MAIN-OUTEN = 1, C_{LOAD} = 75 pF with OUTSCALE = 0, or C_{LOAD} = 37.5 pF with OUTSCALE = 1. Unit gain buffer and 3X-gain connection as specified in table footnotes^{8 1}.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Supply voltage (from AVDD)	V _{OPA}	HCMDIS = 0, Rail-to-rail input range	2	_	3.8	V
		HCMDIS = 1	1.62		3.8	V
Input voltage	V _{IN}	HCMDIS = 0, Rail-to-rail input range	V_{VSS}	_	V _{OPA}	V
		HCMDIS = 1	V _{VSS}	_	V _{OPA} -1.2	V
Input impedance	R _{IN}		100	_	_	MΩ
Output voltage	V _{OUT}		V _{VSS}		V _{OPA}	V
Load capacitance ²	C _{LOAD}	OUTSCALE = 0	_		75	pF
		OUTSCALE = 1	_	_	37.5	pF
Output impedance	R _{OUT}	DRIVESTRENGTH = 2 or 3, 0.4 V \leq V _{OUT} \leq V _{OPA} - 0.4 V, -8 mA < I _{OUT} < 8 mA, Buffer connection, Full supply range	_	0.25	_	Ω
		DRIVESTRENGTH = 0 or 1, 0.4 V \leq V _{OUT} \leq V _{OPA} - 0.4 V, -400 µA $<$ I _{OUT} $<$ 400 µA, Buffer connection, Full supply range	_	0.6	_	Ω
		DRIVESTRENGTH = 2 or 3, 0.1 V \leq V _{OUT} \leq V _{OPA} - 0.1 V, -2 mA $<$ I _{OUT} $<$ 2 mA, Buffer connection, Full supply range	_	0.4	_	Ω
		DRIVESTRENGTH = 0 or 1, 0.1 V \leq V _{OUT} \leq V _{OPA} - 0.1 V, -100 µA $<$ I _{OUT} $<$ 100 µA, Buffer connection, Full supply range	_	1	_	Ω
Internal closed-loop gain	G _{CL}	Buffer connection	TBD	1	TBD	-
		3x Gain connection	TBD	2.99	TBD	-
		16x Gain connection	TBD	15.7	TBD	-
Active current ⁴	I _{OPA}	DRIVESTRENGTH = 3, OUT- SCALE = 0	_	580	_	μA
		DRIVESTRENGTH = 2, OUT- SCALE = 0	_	176	_	μA
		DRIVESTRENGTH = 1, OUT- SCALE = 0	_	13	_	μA
		DRIVESTRENGTH = 0, OUT- SCALE = 0	_	4.7	-	μA

Table 4.24. Operational Amplifier (OPAMP)

4.1.19 Pulse Counter (PCNT)

Table 4.26. Pulse Counter (PCNT)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input frequency	F _{IN}	Asynchronous Single and Quad- rature Modes	—	—	20	MHz
		Sampled Modes with Debounce filter set to 0.			8	kHz

4.1.20 Analog Port (APORT)

Table 4.27. Analog Port (APORT)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supply current ^{2 1}	IAPORT	Operation in EM0/EM1	—	7	—	μA
		Operation in EM2/EM3		915		nA

Note:

1. Specified current is for continuous APORT operation. In applications where the APORT is not requested continuously (e.g. periodic ACMP requests from LESENSE in EM2), the average current requirements can be estimated by mutiplying the duty cycle of the requests by the specified continuous current number.

2. Supply current increase that occurs when an analog peripheral requests access to APORT. This current is not included in reported module currents. Additional peripherals requesting access to APORT do not incur further current.

4.1.21 I2C

4.1.21.1 I2C Standard-mode (Sm)¹

Table 4.28.	I2C Standard-mode	(Sm) ¹
-------------	-------------------	-------------------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCL clock frequency ²	f _{SCL}		0	—	100	kHz
SCL clock low time	t _{LOW}		4.7	—	_	μs
SCL clock high time	t _{HIGH}		4	_		μs
SDA set-up time	t _{SU_DAT}		250			ns
SDA hold time ³	t _{HD_DAT}		100		3450	ns
Repeated START condition set-up time	t _{SU_STA}		4.7	_	_	μs
(Repeated) START condition hold time	t _{HD_STA}		4		_	μs
STOP condition set-up time	t _{SU_STO}		4			μs
Bus free time between a STOP and START condition	t _{BUF}		4.7	—	—	μs

Note:

1. For CLHR set to 0 in the I2Cn_CTRL register.

2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual.

3. The maximum SDA hold time (t_{HD DAT}) needs to be met only when the device does not stretch the low time of SCL (t_{LOW}).

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PE15	79	GPIO	PA15	80	GPIO
Note: 1. GPIO with	5V tolera	nce are indicated by (5V).			·

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PC4	13	GPIO	PC5	14	GPIO
PB7	15	GPIO	PB8	16	GPIO
PA8	17	GPIO	PA12	18	GPIO
PA14	19	GPIO	RESETn	20	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	21	GPIO	PB12	22	GPIO
AVDD	24 28	Analog power supply.	PB13	25	GPIO
PB14	26	GPIO	PD0	29	GPIO (5V)
PD1	30	GPIO	PD3	31	GPIO
PD4	32	GPIO	PD5	33	GPIO
PD6	34	GPIO	PD7	35	GPIO
PD8	36	GPIO	PC7	37	GPIO
VREGVSS	38	Voltage regulator VSS	VREGSW	39	DCDC regulator switching node
VREGVDD	40	Voltage regulator VDD input	DVDD	41	Digital power supply.
DECOUPLE	42	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PE4	43	GPIO
PE5	44	GPIO	PE6	45	GPIO
PE7	46	GPIO	PC12	47	GPIO (5V)
PC13	48	GPIO (5V)	PF0	49	GPIO (5V)
PF1	50	GPIO (5V)	PF2	51	GPIO
PF3	52	GPIO	PF4	53	GPIO
PF5	54	GPIO	PE8	57	GPIO
PE9	58	GPIO	PE10	59	GPIO
PE11	60	GPIO	PE12	61	GPIO
PE13	62	GPIO	PE14	63	GPIO
PE15	64	GPIO			

1. GPIO with 5V tolerance are indicated by (5V).

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB8	11	GPIO	PA8	12	GPIO
PA12	13	GPIO	PA14	14	GPIO
RESETn	15	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	PB11	16	GPIO
AVDD	18 22	Analog power supply.	PB13	19	GPIO
PB14	20	GPIO	PD4	23	GPIO
PD5	24	GPIO	PD6	25	GPIO
PD7	26	GPIO	PD8	27	GPIO
VREGVSS	28	Voltage regulator VSS	VREGSW	29	DCDC regulator switching node
VREGVDD	30	Voltage regulator VDD input	DVDD	31	Digital power supply.
DECOUPLE	32	Decouple output for on-chip voltage regulator. An external decoupling ca- pacitor is required at this pin.	PE4	33	GPIO
PE5	34	GPIO	PE6	35	GPIO
PE7	36	GPIO	PF0	37	GPIO (5V)
PF1	38	GPIO (5V)	PF2	39	GPIO
PF3	40	GPIO	PF4	41	GPIO
PF5	42	GPIO	PE10	45	GPIO
PE11	46	GPIO	PE12	47	GPIO
PE13	48	GPIO			

1. GPIO with 5V tolerance are indicated by (5V).

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB8	8	GPIO	RESETn	9	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	10	GPIO	AVDD	11 15	Analog power supply.
PB13	12	GPIO	PB14	13	GPIO
PD4	16	GPIO	PD5	17	GPIO
PD6	18	GPIO	PD7	19	GPIO
DVDD	20	Digital power supply.	DECOUPLE	21	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
PC13	22	GPIO (5V)	PC14	23	GPIO (5V)
PC15	24	GPIO (5V)	PF0	25	GPIO (5V)
PF1	26	GPIO (5V)	PF2	27	GPIO
PE10	29	GPIO	PE11	30	GPIO
PE12	31	GPIO	PE13	32	GPIO
Note:		,			

1. GPIO with 5V tolerance are indicated by (5V).

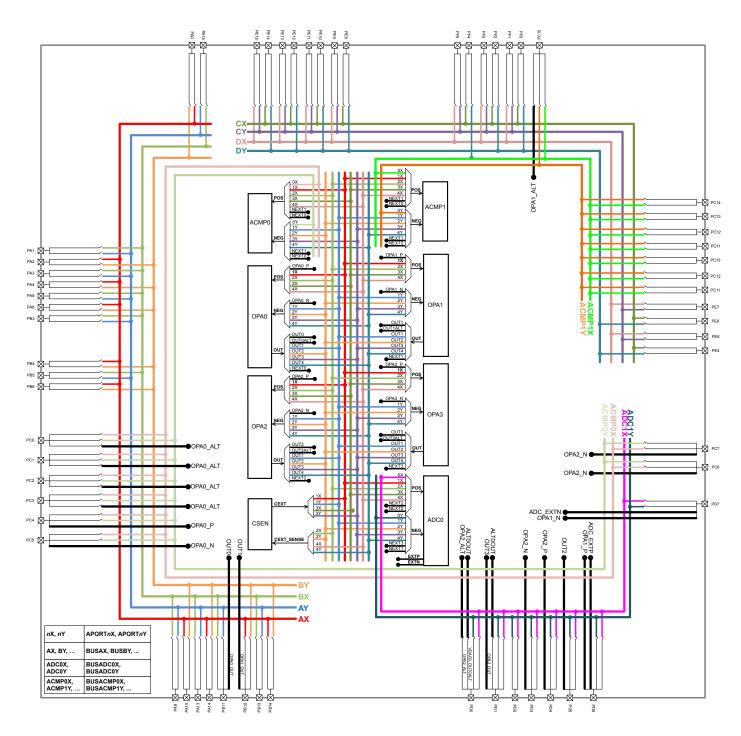
5.15 Alternate Functionality Overview

A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings and the associated GPIO pin. Refer to 5.14 GPIO Functionality Table for a list of functions available on each GPIO pin.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate	LOC	ATION	
Functionality	0 - 3	4 - 7	Description
	0: PE13	4: PA6	
ACMP0_O	2: PD6 3: PB11	7: PB3	Analog comparator ACMP0, digital output.
	0: PF2	4: PA14	
ACMP1_O	2: PD7 3: PA12	7: PA5	Analog comparator ACMP1, digital output.
	0: PD7		
ADC0_EXTN			Analog to digital converter ADC0 external reference input negative pin.
	0: PD6		
ADC0_EXTP			Analog to digital converter ADC0 external reference input positive pin.
	0: PF1		
BOOT_RX			Bootloader RX.
	0: PF0		
BOOT_TX			Bootloader TX.
	0: PA8		
BU_STAT			Backup Power Domain status, whether or not the system is in backup mode.
	0: PD8		
BU_VIN			Battery input for Backup Power Domain.
	0: PA12		
BU_VOUT			Power output for Backup Power Domain.
	0: PC0 1: PF0		
CAN0_RX	2: PD0		CAN0 RX.

Table 5.15. Alternate Functionality Overview


Alternate	LOC	ATION	
Functionality	0 - 3	4 - 7	Description
GPIO_EM4WU4	0: PF2		Pin can be used to wake the system up from EM4
GPIO_EM4WU5	0: PE13		Pin can be used to wake the system up from EM4
GPIO_EM4WU6	0: PC4		Pin can be used to wake the system up from EM4
GPIO_EM4WU7	0: PB11		Pin can be used to wake the system up from EM4
GPIO_EM4WU9	0: PE10		Pin can be used to wake the system up from EM4
HFXTAL_N	0: PB14		High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	0: PB13		High Frequency Crystal positive pin.
I2C0_SCL	0: PA1 1: PD7 2: PC7	4: PC1 5: PF1 6: PE13 7: PE5	I2C0 Serial Clock Line input / output.
I2C0_SDA	0: PA0 1: PD6 2: PC6	4: PC0 5: PF0 6: PE12 7: PE4	I2C0 Serial Data input / output.
I2C1_SCL	0: PC5 1: PB12 3: PD5	4: PF2	I2C1 Serial Clock Line input / output.
I2C1_SDA	0: PC4 1: PB11 3: PD4	4: PC11	I2C1 Serial Data input / output.
	0: PA14		LCD external supply bypass in step down or charge pump mode. If using the LCD in step-down or charge pump mode, a 1 uF (minimum) capacitor between this pin and VSS is required.
LCD_BEXT			To reduce supply ripple, a larger capcitor of approximately 1000 times the total LCD segment capacitance may be used. If using the LCD with the internal supply source, this pin may be left unconnected or used as a GPIO.

Alternate	LOCA	TION	
Functionality	0 - 3	4 - 7	Description
LCD_SEG35	0: PC9		LCD segment line 35.
LES_ALTEX0	0: PD6		LESENSE alternate excite output 0.
LES_ALTEX1	0: PD7		LESENSE alternate excite output 1.
LES_ALTEX2	0: PA3		LESENSE alternate excite output 2.
LES_ALTEX3	0: PA4		LESENSE alternate excite output 3.
LES_ALTEX4	0: PA5		LESENSE alternate excite output 4.
LES_ALTEX5	0: PE11		LESENSE alternate excite output 5.
LES_ALTEX6	0: PE12		LESENSE alternate excite output 6.
LES_ALTEX7	0: PE13		LESENSE alternate excite output 7.
LES_CH0	0: PC0		LESENSE channel 0.
LES_CH1	0: PC1		LESENSE channel 1.
LES_CH2	0: PC2		LESENSE channel 2.
LES_CH3	0: PC3		LESENSE channel 3.

Alternate	LOC	ATION							
Functionality	0 - 3	4 - 7	Description						
WTIM1_CC3	0: PD1 1: PD5 2: PC6	4: PE6	Wide timer 1 Capture Compare input / output channel 3.						

5.16 Analog Port (APORT) Client Maps

The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 5.14 APORT Connection Diagram on page 119 shows the APORT routing for this device family (note that available features may vary by part number). A complete description of APORT functionality can be found in the Reference Manual.

Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.

In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	СН9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	СНО
APORT0X	BUSACMP0X																									PC7	PC6	PC5	PC4	PC3	PC2	PC1	PCO
APORT0Y	BUSACMP0Y																									PC7	PC6	PC5	PC4	PC3	PC2	PC1	PCO
APORT1X	BUSAX		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT1Y	BUSAY			PB13		PB11						PB5		PB3				PA15		PA13				PA9				PA5		PA3		PA1	
APORT2X	BUSBX			PB13		PB11						PB5		PB3				PA15		PA13				PA9				PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT3X	BUSCX												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				
APORT3Y	BUSCY											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4X	BUSDX											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4Y	BUSDY												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				

PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared bus used by this connection is indicated in the Bus column.

Table 5.16. ACMP0 Bus and Pin Mapping

Table 8.2. TQFP64 PCB Land Pattern Dimensions

Dimension	Min	Мах						
C1	11.30	11.40						
C2	11.30	11.40						
E	0.50 BSC							
x	0.20	0.30						
Y	1.40	1.50						

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size can be 1:1 for all pads.
- 7. A No-Clean, Type-3 solder paste is recommended.
- 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8.3 TQFP64 Package Marking

Figure 8.3. TQFP64 Package Marking

The package marking consists of:

- PPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

Figure 11.3. QFN32 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.