

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 12bit SAR; D/A 12bit
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32tg11b340f64gq64-a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Note:						
1. The minimum voltage req other loads can be calcula	uired in bypass mo ated as V _{DVDD_min}	ode is calculated using R _{BYP} from the +I _{LOAD} * R _{BYP_max} .	e DCDC spec	cification table	. Requiremen	ts for
2. VREGVDD must be tied t	o AVDD. Both VRI	EGVDD and AVDD minimum voltage	es must be sa	tisfied for the	part to operat	e.
 The system designer sho ue stays within the specifi 	uld consult the cha ied bounds across	racteristic specs of the capacitor use temperature and DC bias.	ed on DECOL	JPLE to ensur	e its capacita	nce val-
4. VSCALE0 to VSCALE2 v tion, peak currents will be mA (with a 2.7 μF capacit	oltage change tran dependent on the or).	sitions occur at a rate of 10 mV / use value of the DECOUPLE output cap	ec for approxi acitor, from 3	mately 20 use 35 mA (with a	ec. During this 1 μF capacito	s transi- r) to 70
5. When the CSEN peripher	al is used with cho	pping enabled (CSEN_CTRL_CHOF	PEN = ENABI	LE), IOVDD m	ust be equal	to AVDD.
6. The maximum limit on T _A cation. T _A (max) = T _J (ma Characteristics table for T	may be lower due ix) - (THETA _{JA} x P - _J and THETA _{JA} .	to device self-heating, which depend owerDissipation). Refer to the Absolution	ds on the pov ute Maximum	ver dissipatior Ratings table	of the specifies and the The	ic appli- rmal

4.1.3 Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Thermal resistance, QFN32	THETA _{JA_QFN32}	4-Layer PCB, Air velocity = 0 m/s	—	25.7	—	°C/W
Раскаде		4-Layer PCB, Air velocity = 1 m/s	—	23.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	21.3	_	°C/W
Thermal resistance, TQFP48	THE-	4-Layer PCB, Air velocity = 0 m/s	—	44.1	_	°C/W
Раскаде	IAJA_TQFP48	4-Layer PCB, Air velocity = 1 m/s	—	43.5	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	42.3	_	°C/W
Thermal resistance, QFN64	THETAJA_QFN64	4-Layer PCB, Air velocity = 0 m/s	—	20.9	_	°C/W
Раскаде		4-Layer PCB, Air velocity = 1 m/s	—	18.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	16.4	_	°C/W
Thermal resistance, TQFP64	THE-	4-Layer PCB, Air velocity = 0 m/s	—	37.3	_	°C/W
Раскаде	IAJA_TQFP64	4-Layer PCB, Air velocity = 1 m/s	—	35.6	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	33.8	_	°C/W
Thermal resistance, QFN80	THETA _{JA_QFN80}	4-Layer PCB, Air velocity = 0 m/s	—	20.9	_	°C/W
Раскаде		4-Layer PCB, Air velocity = 1 m/s	—	18.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	16.4	_	°C/W
Thermal resistance, TQFP80	THE-	4-Layer PCB, Air velocity = 0 m/s	—	49.3	_	°C/W
Раскаде	IAJA_TQFP80	4-Layer PCB, Air velocity = 1 m/s	—	44.5	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s		42.6		°C/W

Table 4.3. Thermal Characteristics

4.1.6 Current Consumption

4.1.6.1 Current Consumption 3.3 V without DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 3.3 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.

Table 4.6. Current Consumption 3.3 V without DC-DC Converter

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Current consumption in EM0 mode with all peripherals dis-	IACTIVE	48 MHz crystal, CPU running while loop from flash	_	45		µA/MHz
abled		48 MHz HFRCO, CPU running while loop from flash	—	44	TBD	µA/MHz
		48 MHz HFRCO, CPU running Prime from flash		57	_	µA/MHz
		48 MHz HFRCO, CPU running CoreMark loop from flash		71	_	µA/MHz
		32 MHz HFRCO, CPU running while loop from flash	_	45	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash		46	TBD	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash		50	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash		161	TBD	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	I _{ACTIVE_VS}	19 MHz HFRCO, CPU running while loop from flash	—	41	_	µA/MHz
abled and voltage scaling enabled		1 MHz HFRCO, CPU running while loop from flash	—	145	_	µA/MHz
Current consumption in EM1	I _{EM1}	48 MHz crystal	—	34	_	µA/MHz
abled		48 MHz HFRCO	_	33	TBD	µA/MHz
		32 MHz HFRCO	—	34	_	µA/MHz
		26 MHz HFRCO	—	35	TBD	µA/MHz
		16 MHz HFRCO	—	39	_	µA/MHz
		1 MHz HFRCO	_	150	TBD	µA/MHz
Current consumption in EM1	I _{EM1_VS}	19 MHz HFRCO	_	32	_	µA/MHz
abled and voltage scaling enabled		1 MHz HFRCO	_	136	—	µA/MHz
Current consumption in EM2 mode, with voltage scaling	I _{EM2_VS}	Full 32 kB RAM retention and RTCC running from LFXO		1.48	_	μA
enabled		Full 32 kB RAM retention and RTCC running from LFRCO		1.86	_	μA
		8 kB (1 bank) RAM retention and RTCC running from LFRCO ²		1.59	TBD	μA
Current consumption in EM3 mode, with voltage scaling enabled	I _{EM3_VS}	Full 32 kB RAM retention and CRYOTIMER running from ULFR- CO		1.23	TBD	μA

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM4H mode, with voltage	I _{EM4H_VS}	128 byte RAM retention, RTCC running from LFXO	_	0.75	—	μA
scaling enabled		128 byte RAM retention, CRYO- TIMER running from ULFRCO	—	0.37	_	μA
		128 byte RAM retention, no RTCC	_	0.37	_	μA
Current consumption in EM4S mode	I _{EM4S}	No RAM retention, no RTCC	—	0.05	—	μA
Current consumption of pe- ripheral power domain 1, with voltage scaling enabled	IPD1_VS	Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled ¹	_	0.18	_	μA
Current consumption of pe- ripheral power domain 2, with voltage scaling enabled	IPD2_VS	Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled ¹	_	0.18	_	μA

Note:

1. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.3 EM2 and EM3 Power Domains for a list of the peripherals in each power domain.

2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1

4.1.9.5 Auxiliary High-Frequency RC Oscillator (AUXHFRCO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Frequency accuracy	f _{AUXHFRCO_ACC}	At production calibrated frequen- cies, across supply voltage and temperature	TBD	_	TBD	%
Start-up time	t _{AUXHFRCO}	f _{AUXHFRCO} ≥ 19 MHz	_	400	_	ns
		4 < f _{AUXHFRCO} < 19 MHz	_	1.4	_	μs
		f _{AUXHFRCO} ≤ 4 MHz	_	2.5		μs
Current consumption on all	IAUXHFRCO	f _{AUXHFRCO} = 48 MHz	_	238	TBD	μA
supplies		f _{AUXHFRCO} = 38 MHz	—	196	TBD	μA
		f _{AUXHFRCO} = 32 MHz		160	TBD	μA
		f _{AUXHFRCO} = 26 MHz	_	137	TBD	μA
		f _{AUXHFRCO} = 19 MHz	—	110	TBD	μA
		f _{AUXHFRCO} = 16 MHz	_	101	TBD	μA
		f _{AUXHFRCO} = 13 MHz	_	78	TBD	μA
		f _{AUXHFRCO} = 7 MHz	—	54	TBD	μA
		f _{AUXHFRCO} = 4 MHz	_	30	TBD	μA
		f _{AUXHFRCO} = 2 MHz	_	27	TBD	μA
		f _{AUXHFRCO} = 1 MHz	_	25	TBD	μA
Coarse trim step size (% of period)	SS _{AUXHFR-} CO_COARSE		_	0.8	_	%
Fine trim step size (% of pe- riod)	SS _{AUXHFR-} CO_FINE		—	0.1	_	%
Period jitter	PJ _{AUXHFRCO}		—	0.2	—	% RMS

Table 4.15. Auxiliary High-Frequency RC Oscillator (AUXHFRCO)

4.1.9.6 Ultra-low Frequency RC Oscillator (ULFRCO)

Table 4.16. Ultra-low Frequency RC Oscillator (ULFRCO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Oscillation frequency	f _{ULFRCO}		TBD	1	TBD	kHz

4.1.11 General-Purpose I/O (GPIO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input low voltage	V _{IL}	GPIO pins	—	_	IOVDD*0.3	V
Input high voltage	V _{IH}	GPIO pins	IOVDD*0.7	_	—	V
Output high voltage relative	V _{OH}	Sourcing 3 mA, IOVDD \ge 3 V,	IOVDD*0.8		—	V
		DRIVESTRENGTH ¹ = WEAK				
		Sourcing 1.2 mA, IOVDD \ge 1.62 V,	IOVDD*0.6		_	V
		DRIVESTRENGTH ¹ = WEAK				
		Sourcing 20 mA, IOVDD ≥ 3 V,	IOVDD*0.8		—	V
		DRIVESTRENGTH ¹ = STRONG				
		Sourcing 8 mA, IOVDD ≥ 1.62 V,	IOVDD*0.6		—	V
		DRIVESTRENGTH ¹ = STRONG				
Output low voltage relative to	V _{OL}	Sinking 3 mA, IOVDD \ge 3 V,	_		IOVDD*0.2	V
		DRIVESTRENGTH ¹ = WEAK				
		Sinking 1.2 mA, IOVDD \ge 1.62 V,	—		IOVDD*0.4	V
		DRIVESTRENGTH ¹ = WEAK				
		Sinking 20 mA, IOVDD ≥ 3 V,	—	_	IOVDD*0.2	V
		DRIVESTRENGTH ¹ = STRONG				
		Sinking 8 mA, IOVDD ≥ 1.62 V,	—		IOVDD*0.4	V
		DRIVESTRENGTH ¹ = STRONG				
Input leakage current	I _{IOLEAK}	All GPIO except LFXO pins, GPIO ≤ IOVDD, T ≤ 85 °C	—	0.1	TBD	nA
		LFXO Pins, GPIO ≤ IOVDD, T ≤ 85 °C	_	0.1	TBD	nA
		All GPIO except LFXO pins, GPIO ≤ IOVDD, T > 85 °C	—		TBD	nA
		LFXO Pins, GPIO ≤ IOVDD, T > 85 °C	—	_	TBD	nA
Input leakage current on 5VTOL pads above IOVDD	I _{5VTOLLEAK}	IOVDD < GPIO ≤ IOVDD + 2 V	_	3.3	TBD	μA
I/O pin pull-up/pull-down re- sistor	R _{PUD}		TBD	40	TBD	kΩ
Pulse width of pulses re- moved by the glitch suppres- sion filter	t _{IOGLITCH}		TBD	25	TBD	ns

Table 4.18. General-Purpose I/O (GPIO)

4.1.21.2 I2C Fast-mode (Fm)¹

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCL clock frequency ²	f _{SCL}		0	_	400	kHz
SCL clock low time	t _{LOW}		1.3	—	_	μs
SCL clock high time	t _{HIGH}		0.6	—	_	μs
SDA set-up time	t _{SU_DAT}		100	—	—	ns
SDA hold time ³	t _{HD_DAT}		100	_	900	ns
Repeated START condition set-up time	t _{SU_STA}		0.6	_	_	μs
(Repeated) START condition hold time	t _{HD_STA}		0.6		_	μs
STOP condition set-up time	t _{SU_STO}		0.6		_	μs
Bus free time between a STOP and START condition	t _{BUF}		1.3			μs

Table 4.29. I2C Fast-mode (Fm)¹

Note:

1. For CLHR set to 1 in the I2Cn_CTRL register.

2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual.

3. The maximum SDA hold time (t_{HD,DAT}) needs to be met only when the device does not stretch the low time of SCL (t_{LOW}).

Figure 4.4. EM1 Sleep Mode Typical Supply Current vs. Temperature

Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.

Figure 4.7. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Supply

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VSS	9 24 51 70	Ground	PB3	10	GPIO
PB4	11	GPIO	PB5	12	GPIO
PB6	13	GPIO	PC1	14	GPIO (5V)
PC2	15	GPIO (5V)	PC3	16	GPIO (5V)
PC4	17	GPIO	PC5	18	GPIO
PB7	19	GPIO	PB8	20	GPIO
PA8	21	GPIO	PA9	22	GPIO
PA10	23	GPIO	PA12	25	GPIO
PA14	26	GPIO	RESETn	27	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	28	GPIO	PB12	29	GPIO
AVDD	30 34	Analog power supply.	PB13	31	GPIO
PB14	32	GPIO	PD0	35	GPIO (5V)
PD1	36	GPIO	PD3	37	GPIO
PD4	38	GPIO	PD5	39	GPIO
PD6	40	GPIO	PD7	41	GPIO
PD8	42	GPIO	PC6	43	GPIO
PC7	44	GPIO	VREGVSS	45	Voltage regulator VSS
VREGSW	46	DCDC regulator switching node	VREGVDD	47	Voltage regulator VDD input
DVDD	48	Digital power supply.	DECOUPLE	49	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
PE4	52	GPIO	PE5	53	GPIO
PE6	54	GPIO	PE7	55	GPIO
PC8	56	GPIO	PC9	57	GPIO
PC10	58	GPIO (5V)	PC11	59	GPIO (5V)
PC13	60	GPIO (5V)	PC14	61	GPIO (5V)
PC15	62	GPIO (5V)	PF0	63	GPIO (5V)
PF1	64	GPIO (5V)	PF2	65	GPIO
PF3	66	GPIO	PF4	67	GPIO
PF5	68	GPIO	PE8	71	GPIO
PE9	72	GPIO	PE10	73	GPIO
PE11	74	GPIO	BODEN	75	Brown-Out Detector Enable. This pin may be left disconnected or tied to AVDD.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB4	10	GPIO	PB5	11	GPIO
PB6	12	GPIO	PC0	13	GPIO (5V)
PC1	14	GPIO (5V)	PC2	15	GPIO (5V)
PC3	16	GPIO (5V)	PC4	17	GPIO
PC5	18	GPIO	PB7	19	GPIO
PB8	20	GPIO	PA8	21	GPIO
PA9	22	GPIO	PA10	23	GPIO
PA12	24	GPIO	PA13	25	GPIO (5V)
PA14	26	GPIO	RESETn	27	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	28	GPIO	PB12	29	GPIO
AVDD	30 34	Analog power supply.	PB13	31	GPIO
PB14	32	GPIO	PD0	35	GPIO (5V)
PD1	36	GPIO	PD2	37	GPIO (5V)
PD3	38	GPIO	PD4	39	GPIO
PD5	40	GPIO	PD6	41	GPIO
PD7	42	GPIO	PD8	43	GPIO
PC6	44	GPIO	PC7	45	GPIO
VREGSW	47	DCDC regulator switching node	VREGVDD	48	Voltage regulator VDD input
DVDD	49	Digital power supply.	DECOUPLE	50	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
PE4	52	GPIO	PE5	53	GPIO
PE6	54	GPIO	PE7	55	GPIO
PC8	56	GPIO	PC9	57	GPIO
PC10	58	GPIO (5V)	PC11	59	GPIO (5V)
PC12	60	GPIO (5V)	PC13	61	GPIO (5V)
PC14	62	GPIO (5V)	PC15	63	GPIO (5V)
PF0	64	GPIO (5V)	PF1	65	GPIO (5V)
PF2	66	GPIO	PF3	67	GPIO
PF4	68	GPIO	PF5	69	GPIO
PE8	71	GPIO	PE9	72	GPIO
PE10	73	GPIO	PE11	74	GPIO
BODEN	75	Brown-Out Detector Enable. This pin may be left disconnected or tied to AVDD.	PE12	76	GPIO
PE13	77	GPIO	PE14	78	GPIO

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PE15	79	GPIO	PA15	80	GPIO
Note: 1. GPIO with	5V tolera	nce are indicated by (5V).			

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB8	8	GPIO	RESETn	9	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	10	GPIO	AVDD	11 15	Analog power supply.
PB13	12	GPIO	PB14	13	GPIO
PD4	16	GPIO	PD5	17	GPIO
PD6	18	GPIO	PD7	19	GPIO
DVDD	20	Digital power supply.	DECOUPLE	21	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
PC13	22	GPIO (5V)	PC14	23	GPIO (5V)
PC15	24	GPIO (5V)	PF0	25	GPIO (5V)
PF1	26	GPIO (5V)	PF2	27	GPIO
PE10	29	GPIO	PE11	30	GPIO
PE12	31	GPIO	PE13	32	GPIO
Note:					

1. GPIO with 5V tolerance are indicated by (5V).

Alternate	LOC	ATION								
Functionality	0 - 3	4 - 7	Description							
ТІМ0_СС0	0: PA0 2: PD1 3: PB6	4: PF0 5: PC4 6: PA8 7: PA1	Timer 0 Capture Compare input / output channel 0.							
TIM0_CC1	0: PA1 2: PD2 3: PC0	4: PF1 5: PC5 6: PA9 7: PA0	Timer 0 Capture Compare input / output channel 1.							
TIM0_CC2	0: PA2 2: PD3 3: PC1	4: PF2 6: PA10 7: PA13	Timer 0 Capture Compare input / output channel 2.							
TIM0_CDTI0	0: PA3 1: PC13 2: PF3 3: PC2	4: PB7	Timer 0 Complimentary Dead Time Insertion channel 0.							
TIM0_CDTI1	0: PA4 1: PC14 2: PF4 3: PC3	4: PB8	Timer 0 Complimentary Dead Time Insertion channel 1.							
TIM0_CDTI2	0: PA5 1: PC15 2: PF5 3: PC4	A5 4: PB11 PC15 PF5 PC4 Timer 0 Complimentary Dead Time Insertion channel 2.								
TIM1_CC0	0: PC13 1: PE10 3: PB7	4: PD6 5: PF2	Timer 1 Capture Compare input / output channel 0.							
TIM1_CC1	0: PC14 1: PE11 3: PB8	4: PD7 5: PF3	Timer 1 Capture Compare input / output channel 1.							
TIM1_CC2	0: PC15 1: PE12 3: PB11	4: PC13 5: PF4	Timer 1 Capture Compare input / output channel 2.							
TIM1_CC3	0: PC12 1: PE13 2: PB3 3: PB12	4: PC14 6: PF5	Timer 1 Capture Compare input / output channel 3.							
U0_CTS	2: PA5 3: PC13	4: PB7 5: PD5	UART0 Clear To Send hardware flow control input.							
U0_RTS	2: PA6 3: PC12	4: PB8 5: PD6	UART0 Request To Send hardware flow control output.							
U0_RX	2: PA4 3: PC15	4: PC5 5: PF2 6: PE4	UART0 Receive input.							

Alternate	LOCA	ATION							
Functionality	0 - 3	4 - 7	Description						
VDAC0_OUT0 / OPA0_OUT	0: PB11		Digital to Analog Converter DAC0 output channel number 0.						
VDAC0_OUT0ALT / OPA0_OUTALT	0: PC0 1: PC1 2: PC2 3: PC3	4: PD0	Digital to Analog Converter DAC0 alternative output for channel 0.						
VDAC0_OUT1 / OPA1_OUT	0: PB12		Digital to Analog Converter DAC0 output channel number 1.						
VDAC0_OUT1ALT / OPA1_OUTALT	0: PC12 1: PC13 2: PC14 3: PC15	4: PD1	Digital to Analog Converter DAC0 alternative output for channel 1.						
WTIM0_CC0	0: PE4 1: PA6	4: PC15 6: PB3 7: PC1	Wide timer 0 Capture Compare input / output channel 0.						
WTIM0_CC1	0: PE5	4: PF0 6: PB4 7: PC2 Wide timer 0 Capture Compare input / output channel 1.							
WTIM0_CC2	0: PE6	4: PF1 6: PB5 7: PC3	Wide timer 0 Capture Compare input / output channel 2.						
WTIM0_CDTI0	0: PE10 2: PA12	4: PD4	Wide timer 0 Complimentary Dead Time Insertion channel 0.						
WTIM0_CDTI1	0: PE11 2: PA13	4: PD5	Wide timer 0 Complimentary Dead Time Insertion channel 1.						
WTIM0_CDTI2	0: PE12 2: PA14	4: PD6	Wide timer 0 Complimentary Dead Time Insertion channel 2.						
WTIM1_CC0	0: PB13 1: PD2 2: PD6 3: PC7	5: PE7	Wide timer 1 Capture Compare input / output channel 0.						
WTIM1_CC1	0: PB14 1: PD3 2: PD7	4: PE4	Wide timer 1 Capture Compare input / output channel 1.						
WTIM1_CC2	0: PD0 1: PD4 2: PD8	4: PE5	Wide timer 1 Capture Compare input / output channel 2.						

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	СН9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
APORT0X	BUSACMP0X																									PC7	PC6	PC5	PC4	PC3	PC2	PC1	PCO
APORT0Y	BUSACMP0Y																									PC7	PC6	PC5	PC4	PC3	PC2	PC1	PCO
APORT1X	BUSAX		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT1Y	BUSAY			PB13		PB11						PB5		PB3				PA15		PA13				6A9				PA5		PA3		PA1	
APORT2X	BUSBX			PB13		PB11						PB5		PB3				PA15		PA13				6Yd				PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12						PB6		PB4						PA14				PA10				9AG		PA4		PA2		PA0
APORT3X	BUSCX												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				
APORT3Y	BUSCY											PF5		PF3		PF1		PE15		PE13		PE11		63d		PE7		PE5					
APORT4X	BUSDX											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4Y	BUSDY												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				

PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared bus used by this connection is indicated in the Bus column.

Table 5.16. ACMP0 Bus and Pin Mapping

Table 6.2. TQFP80 PCB Land Pattern Dimensions

Dimension	Min	Мах				
C1	13.30	13.40				
C2	13.30 13.40					
E	0.50	BSC				
x	0.20	0.30				
Y	1.40	1.50				

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size can be 1:1 for all pads.
- 7. A No-Clean, Type-3 solder paste is recommended.
- 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

6.3 TQFP80 Package Marking

Figure 6.3. TQFP80 Package Marking

The package marking consists of:

- PPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

Dimension	Min	Тур	Max							
A	_	1.15	1.20							
A1	0.05	—	0.15							
A2	0.95	1.00	1.05							
b	0.17	0.22	0.27							
b1	0.17	0.20	0.23							
С	0.09	—	0.20							
c1	0.09	—	0.16							
D		12.00 BSC								
D1	10.00 BSC									
е	0.50 BSC									
E	12.00 BSC									
E1	10.00 BSC									
L	0.45	0.45 0.60 0.75								
L1		1.00 REF								
R1	0.08	_	_							
R2	0.08	_	0.20							
S	0.20	0.20 — —								
θ	0	0 3.5 7								
Θ1	0	_	0.10							
Θ2	11	12	13							
θ3	11	12	13							

Table 8.1. TQFP64 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Dimension	Min	Тур	Мах								
A	0.70	0.75	0.80								
A1	0.00	—	0.05								
b	0.20	0.25	0.30								
A3		0.203 REF									
D	9.00 BSC										
е		0.50 BSC									
E	9.00 BSC										
D2	7.10	7.20	7.30								
E2	7.10	7.20	7.30								
L	0.40	0.45	0.50								
L1	0.00	—	0.10								
ааа	0.10										
bbb	0.10										
ссс		0.10									
ddd		0.05									
eee		0.08									

Table 9.1. QFN64 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9.2 QFN64 PCB Land Pattern

Figure 9.2. QFN64 PCB Land Pattern Drawing

11. QFN32 Package Specifications

11.1 QFN32 Package Dimensions

