

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 12bit SAR; D/A 12bit
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32tg11b340f64gq64-ar

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2.1. Ordering Code Key

3. System Overview

3.1 Introduction

The Tiny Gecko Series 1 product family is well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the MCU system. The detailed functional description can be found in the Tiny Gecko Series 1 Reference Manual. Any behavior that does not conform to the specifications in this data sheet or the functional descriptions in the Tiny Gecko Series 1 Reference Manual are detailed in the EFM32TG11 Errata document.

A block diagram of the Tiny Gecko Series 1 family is shown in Figure 3.1 Detailed EFM32TG11 Block Diagram on page 10. The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information.

Figure 3.1. Detailed EFM32TG11 Block Diagram

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit	
Note:							
1. The minimum voltage req other loads can be calcula	uired in bypass mo ated as V _{DVDD_min}	ode is calculated using R _{BYP} from the +I _{LOAD} * R _{BYP_max} .	e DCDC spec	cification table	. Requiremen	ts for	
2. VREGVDD must be tied t	o AVDD. Both VRI	EGVDD and AVDD minimum voltage	es must be sa	tisfied for the	part to operat	e.	
 The system designer sho ue stays within the specifi 	uld consult the cha ied bounds across	racteristic specs of the capacitor use temperature and DC bias.	ed on DECOL	JPLE to ensur	e its capacita	nce val-	
4. VSCALE0 to VSCALE2 v tion, peak currents will be mA (with a 2.7 μF capacit	oltage change tran dependent on the or).	sitions occur at a rate of 10 mV / use value of the DECOUPLE output cap	ec for approxi acitor, from 3	mately 20 use 35 mA (with a	ec. During this 1 μF capacito	s transi- r) to 70	
5. When the CSEN peripher	al is used with cho	pping enabled (CSEN_CTRL_CHOF	PEN = ENABI	LE), IOVDD m	ust be equal	to AVDD.	
6. The maximum limit on T_A may be lower due to device self-heating, which depends on the power dissipation of the specific appli- cation. T_A (max) = T_J (max) - (THETA _{JA} x PowerDissipation). Refer to the Absolute Maximum Ratings table and the Thermal Characteristics table for T_J and THETA _{JA} .							

4.1.3 Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Thermal resistance, QFN32	THETA _{JA_QFN32}	4-Layer PCB, Air velocity = 0 m/s	—	25.7	—	°C/W
Раскаде		4-Layer PCB, Air velocity = 1 m/s	—	23.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	21.3	_	°C/W
Thermal resistance, TQFP48	THE-	4-Layer PCB, Air velocity = 0 m/s	—	44.1	_	°C/W
Раскаде	IAJA_TQFP48	4-Layer PCB, Air velocity = 1 m/s	—	43.5	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	42.3	_	°C/W
Thermal resistance, QFN64	THETA _{JA_QFN64}	4-Layer PCB, Air velocity = 0 m/s	—	20.9	_	°C/W
Раскаде		4-Layer PCB, Air velocity = 1 m/s	—	18.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	16.4	_	°C/W
Thermal resistance, TQFP64	THE-	4-Layer PCB, Air velocity = 0 m/s	—	37.3	_	°C/W
Раскаде	IAJA_TQFP64	4-Layer PCB, Air velocity = 1 m/s	—	35.6	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	33.8	_	°C/W
Thermal resistance, QFN80	THETA _{JA_QFN80}	4-Layer PCB, Air velocity = 0 m/s	—	20.9	_	°C/W
Раскаде		4-Layer PCB, Air velocity = 1 m/s	—	18.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	—	16.4	_	°C/W
Thermal resistance, TQFP80	THE-	4-Layer PCB, Air velocity = 0 m/s	—	49.3	_	°C/W
Раскаде	TA _{JA_TQFP80}	4-Layer PCB, Air velocity = 1 m/s	—	44.5	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s		42.6		°C/W

Table 4.3. Thermal Characteristics

4.1.6.3 Current Consumption 1.8 V without DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 1.8 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.

Table 4.8. Current Consumption 1.8 V without DC-DC Converter

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Current consumption in EM0 mode with all peripherals dis-	IACTIVE	48 MHz crystal, CPU running while loop from flash	—	45	_	µA/MHz
abled		48 MHz HFRCO, CPU running while loop from flash	_	44	_	µA/MHz
		48 MHz HFRCO, CPU running Prime from flash	—	57	_	µA/MHz
		48 MHz HFRCO, CPU running CoreMark loop from flash	—	71	—	µA/MHz
		32 MHz HFRCO, CPU running while loop from flash	-	45	—	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	_	46	—	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash	—	49	—	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	—	158	_	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_VS	19 MHz HFRCO, CPU running while loop from flash	—	41	_	µA/MHz
enabled		1 MHz HFRCO, CPU running while loop from flash	—	142	—	µA/MHz
Current consumption in EM1	I _{EM1}	48 MHz crystal	_	34		µA/MHz
abled		48 MHz HFRCO	_	33	_	µA/MHz
		32 MHz HFRCO	—	34	_	µA/MHz
		26 MHz HFRCO	_	35	_	µA/MHz
		16 MHz HFRCO	_	39		µA/MHz
		1 MHz HFRCO	_	147		µA/MHz
Current consumption in EM1	I _{EM1_VS}	19 MHz HFRCO	_	32	_	µA/MHz
abled and voltage scaling enabled		1 MHz HFRCO	_	133	_	µA/MHz
Current consumption in EM2 mode, with voltage scaling	I _{EM2_VS}	Full 32 kB RAM retention and RTCC running from LFXO	_	1.39		μA
enabled		Full 32 kB RAM retention and RTCC running from LFRCO	_	1.63	_	μΑ
		8 kB (1 bank) RAM retention and RTCC running from LFRCO ²	_	1.37		μΑ
Current consumption in EM3 mode, with voltage scaling enabled	I _{EM3_VS}	Full 32 kB RAM retention and CRYOTIMER running from ULFR- CO	—	1.10	_	μΑ

4.1.13 Analog to Digital Converter (ADC)

Specified at 1 Msps, ADCCLK = 16 MHz, BIASPROG = 0, GPBIASACC = 0, unless otherwise indicated.

Table 4.20. Analog to Digital Converter (ADC)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Resolution	VRESOLUTION		6	_	12	Bits
Input voltage range ⁵	V _{ADCIN}	Single ended	—	—	V _{FS}	V
		Differential	-V _{FS} /2		V _{FS} /2	V
Input range of external refer- ence voltage, single ended and differential	Vadcrefin_p		1	—	V _{AVDD}	V
Power supply rejection ²	PSRR _{ADC}	At DC	—	80	_	dB
Analog input common mode rejection ratio	CMRR _{ADC}	At DC	_	80	_	dB
Current from all supplies, us- ing internal reference buffer.	I _{ADC_CONTI-} NOUS_LP	1 Msps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ³	_	270	TBD	μA
MUPMODE ⁴ = KEEPADC- WARM		250 ksps / 4 MHz ADCCLK, BIA- SPROG = 6, GPBIASACC = 1 ³	_	125	_	μA
		62.5 ksps / 1 MHz ADCCLK, BIA- SPROG = 15, GPBIASACC = 1 ³	_	80	-	μA
Current from all supplies, us- ing internal reference buffer.	IADC_NORMAL_LP	35 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ³	—	45	_	μA
MUPMODE ⁴ = NORMAL		5 ksps / 16 MHz ADCCLK BIA- SPROG = 0, GPBIASACC = 1 ³	_	8	_	μA
Current from all supplies, using internal reference buffer.	IADC_STAND- BY_LP	125 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ³	_	105	-	μA
AWARMUPMODE ⁴ = KEEP- INSTANDBY or KEEPIN- SLOWACC		35 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ³	_	70	_	μA
Current from all supplies, us- ing internal reference buffer.	I _{ADC_CONTI-} NOUS_HP	1 Msps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 0 ³		325	-	μA
MUPMODE ⁴ = KEEPADC- WARM		250 ksps / 4 MHz ADCCLK, BIA-SPROG = 6, GPBIASACC = 0 3	_	175	_	μA
		62.5 ksps / 1 MHz ADCCLK, BIA- SPROG = 15, GPBIASACC = 0 ³	_	125	-	μA
Current from all supplies, us- ing internal reference buffer.	IADC_NORMAL_HP	35 ksps / 16 MHz ADCCLK, BIA-SPROG = 0, GPBIASACC = 0 3	_	85	_	μA
Duty-cycled operation. WAR- MUPMODE ⁴ = NORMAL		5 ksps / 16 MHz ADCCLK BIA- SPROG = 0, GPBIASACC = 0 ³	_	16	_	μA
Current from all supplies, using internal reference buffer.	I _{ADC_STAND} - BY_HP	125 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 0 ³	_	160	-	μA
AWARMUPMODE ⁴ = KEEP- INSTANDBY or KEEPIN- SLOWACC		35 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 0 ³	_	125	-	μA
Current from HFPERCLK	IADC_CLK	HFPERCLK = 16 MHz	_	166	_	μA

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Note: 1. ACMPVDD is a supply ch 2. The total ACMP current is I _{ACMPREF} . 3. ± 100 mV differential drive 4. In ACMPn_CTRL register 5. In ACMPn_HYSTERESIS 6. In ACMPn_INPUTSEL reg	osen by the s the sum of the e. Fregisters. gister.	etting in ACMPn_CTRL_PWRS ne contributions from the ACMP	EL and may be IOVDE and its internal voltage), AVDD or D\ e reference. I₄	VDD. CMPTOTAL = I	ACMP +

4.1.22 USART SPI

SPI Master Timing

Table 4.31. SPI Master Timing

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCLK period ^{1 3 2}	t _{SCLK}		2 * t _{HFPERCLK}	_	_	ns
CS to MOSI ^{1 3}	t _{CS_MO}		-19.8		18.9	ns
SCLK to MOSI ^{1 3}	t _{SCLK_MO}		-10		14.5	ns
MISO setup time ^{1 3}	t _{SU_MI}	IOVDD = 1.62 V	75	_		ns
		IOVDD = 3.0 V	40		_	ns
MISO hold time ^{1 3}	t _{H_MI}		-10			ns

Note:

1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).

2. t_{HFPERCLK} is one period of the selected HFPERCLK.

3. Measurement done with 8 pF output loading at 10% and 90% of V_{DD} (figure shows 50% of V_{DD}).

Figure 4.1. SPI Master Timing Diagram

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
SCLK period ^{1 3 2}	t _{SCLK}		6 * t _{HFPERCLK}	—	_	ns
SCLK high time ^{1 3 2}	t _{SCLK_HI}		2.5 * t _{HFPERCLK}	_	_	ns
SCLK low time ^{1 3 2}	t _{SCLK_LO}		2.5 * t _{HFPERCLK}	—	—	ns
CS active to MISO ^{1 3}	t _{CS_ACT_MI}		20	_	70	ns
CS disable to MISO ^{1 3}	t _{CS_DIS_MI}		15		150	ns
MOSI setup time ^{1 3}	t _{SU_MO}		4		_	ns
MOSI hold time ^{1 3 2}	t _{H_MO}		7	_	_	ns
SCLK to MISO ^{1 3 2}	t _{SCLK_MI}		14 + 1.5 * t _{HFPERCLK}	_	40 + 2.5 * t _{HFPERCLK}	ns

Table 4.32. SPI Slave Timing

Note:

1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).

2. $t_{\mbox{\scriptsize HFPERCLK}}$ is one period of the selected $\mbox{\scriptsize HFPERCLK}.$

3. Measurement done with 8 pF output loading at 10% and 90% of V_{DD} (figure shows 50% of V_{DD}).

Figure 4.2. SPI Slave Timing Diagram

4.2 Typical Performance Curves

Typical performance curves indicate typical characterized performance under the stated conditions.

Figure 4.7. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Supply

Figure 5.4. EFM32TG11B3xx in QFP64 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Table 5.4. E	FM32TG11B3xx in	QFP64	Device	Pinout
--------------	-----------------	-------	--------	--------

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	PA3	4	GPIO
PA4	5	GPIO	PA5	6	GPIO
IOVDD0	7 26 55	Digital IO power supply 0.	VSS	8 22 56	Ground
PB3	9	GPIO	PB4	10	GPIO
PB5	11	GPIO	PB6	12	GPIO

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PC4	13	GPIO	PC5	14	GPIO
PB7	15	GPIO	PB8	16	GPIO
PA12	17	GPIO	PA13	18	GPIO (5V)
PA14	19	GPIO	RESETn	20	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	21	GPIO	AVDD	23 27	Analog power supply.
PB13	24	GPIO	PB14	25	GPIO
PD0	28	GPIO (5V)	PD1	29	GPIO
PD2	30	GPIO (5V)	PD3	31	GPIO
PD4	32	GPIO	PD5	33	GPIO
PD6	34	GPIO	PD7	35	GPIO
PD8	36	GPIO	PC6	37	GPIO
PC7	38	GPIO	DVDD	39	Digital power supply.
DECOUPLE	40	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PE4	41	GPIO
PE5	42	GPIO	PE6	43	GPIO
PE7	44	GPIO	PC12	45	GPIO (5V)
PC13	46	GPIO (5V)	PC14	47	GPIO (5V)
PC15	48	GPIO (5V)	PF0	49	GPIO (5V)
PF1	50	GPIO (5V)	PF2	51	GPIO
PF3	52	GPIO	PF4	53	GPIO
PF5	54	GPIO	PE8	57	GPIO
PE9	58	GPIO	PE10	59	GPIO
PE11	60	GPIO	PE12	61	GPIO
PE13	62	GPIO	PE14	63	GPIO
PE15	64	GPIO			
Note:					

1. GPIO with 5V tolerance are indicated by (5V).

Figure 5.7. EFM32TG11B3xx in QFN64 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Table 5.7. E	EFM32TG11B3xx i	n QFN64	Device	Pinout
--------------	-----------------	---------	--------	--------

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VREGVSS	0	Voltage regulator VSS	PA0	1	GPIO
PA1	2	GPIO	PA2	3	GPIO
PA3	4	GPIO	PA4	5	GPIO
PA5	6	GPIO	PA6	7	GPIO
IOVDD0	8 26 55	Digital IO power supply 0.	PB3	9	GPIO
PB4	10	GPIO	PB5	11	GPIO

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB6	12	GPIO	PC4	13	GPIO
PC5	14	GPIO	PB7	15	GPIO
PB8	16	GPIO	PA12	17	GPIO
PA13	18	GPIO (5V)	PA14	19	GPIO
RESETn	20	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	PB11	21	GPIO
PB12	22	GPIO	AVDD	23 27	Analog power supply.
PB13	24	GPIO	PB14	25	GPIO
PD0	28	GPIO (5V)	PD1	29	GPIO
PD2	30	GPIO (5V)	PD3	31	GPIO
PD4	32	GPIO	PD5	33	GPIO
PD6	34	GPIO	PD7	35	GPIO
PD8	36	GPIO	PC6	37	GPIO
PC7	38	GPIO	DVDD	39	Digital power supply.
DECOUPLE	40	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PE4	41	GPIO
PE5	42	GPIO	PE6	43	GPIO
PE7	44	GPIO	PC12	45	GPIO (5V)
PC13	46	GPIO (5V)	PC14	47	GPIO (5V)
PC15	48	GPIO (5V)	PF0	49	GPIO (5V)
PF1	50	GPIO (5V)	PF2	51	GPIO
PF3	52	GPIO	PF4	53	GPIO
PF5	54	GPIO	PE8	56	GPIO
PE9	57	GPIO	PE10	58	GPIO
PE11	59	GPIO	PE12	60	GPIO
PE13	61	GPIO	PE14	62	GPIO
PE15	63	GPIO	PA15	64	GPIO
Note:	-			-	

1. GPIO with 5V tolerance are indicated by (5V).

Figure 5.11. EFM32TG11B1xx in QFP48 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	IOVDD0	4 22 43	Digital IO power supply 0.
VSS	5 18 44	Ground	PC0	6	GPIO (5V)
PC1	7	GPIO (5V)	PC2	8	GPIO (5V)
PC3	9	GPIO (5V)	PC4	10	GPIO

Alternate	LOCA	TION	
Functionality	0 - 3	4 - 7	Description
LCD_COM0	0: PE4		LCD driver common line number 0.
LCD_COM1	0: PE5		LCD driver common line number 1.
LCD_COM2	0: PE6		LCD driver common line number 2.
LCD_COM3	0: PE7		LCD driver common line number 3.
LCD_SEG0	0: PF2		LCD segment line 0.
LCD_SEG1	0: PF3		LCD segment line 1.
LCD_SEG2	0: PF4		LCD segment line 2.
LCD_SEG3	0: PF5		LCD segment line 3.
LCD_SEG4	0: PE8		LCD segment line 4.
LCD_SEG5	0: PE9		LCD segment line 5.
LCD_SEG6	0: PE10		LCD segment line 6.
LCD_SEG7	0: PE11		LCD segment line 7.
LCD_SEG8	0: PE12		LCD segment line 8.

Alternate	LOCA		
Functionality	0 - 3	4 - 7	Description
LCD_SEG22 / LCD_COM6	0: PB5		LCD segment line 22. This pin may also be used as LCD COM line 6
LCD_SEG23 / LCD_COM7	0: PB6		LCD segment line 23. This pin may also be used as LCD COM line 7
LCD_SEG24	0: PC4		LCD segment line 24.
LCD_SEG25	0: PC5		LCD segment line 25.
LCD_SEG26	0: PA9		LCD segment line 26.
LCD_SEG27	0: PA10		LCD segment line 27.
LCD_SEG28	0: PB11		LCD segment line 28.
LCD_SEG29	0: PB12		LCD segment line 29.
LCD_SEG30	0: PD3		LCD segment line 30.
LCD_SEG31	0: PD4		LCD segment line 31.
LCD_SEG32	0: PC6		LCD segment line 32.
LCD_SEG33	0: PC7		LCD segment line 33.
LCD_SEG34	0: PC8		LCD segment line 34.

Alternate	LOCATION			
Functionality	0 - 3	4 - 7	Description	
OPA3_N	0: PC7		Operational Amplifier 3 external negative input.	
OPA3_OUT	0: PD1		Operational Amplifier 3 output.	
OPA3_P	0: PC6		Operational Amplifier 3 external positive input.	
PCNT0_S0IN	0: PC13 2: PC0 3: PD6	4: PA0 6: PB5 7: PB12	Pulse Counter PCNT0 input number 0.	
PCNT0_S1IN	0: PC14 2: PC1 3: PD7	4: PA1 6: PB6 7: PB11	Pulse Counter PCNT0 input number 1.	
PRS_CH0	0: PA0 1: PF3 2: PC14 3: PF2		Peripheral Reflex System PRS, channel 0.	
PRS_CH1	0: PA1 1: PF4 2: PC15 3: PE12		Peripheral Reflex System PRS, channel 1.	
PRS_CH2	0: PC0 1: PF5 2: PE10 3: PE13		Peripheral Reflex System PRS, channel 2.	
PRS_CH3	0: PC1 1: PE8 2: PE11 3: PA0		Peripheral Reflex System PRS, channel 3.	
PRS_CH4	0: PC8 2: PF1		Peripheral Reflex System PRS, channel 4.	
PRS_CH5	0: PC9 2: PD6		Peripheral Reflex System PRS, channel 5.	
PRS_CH6	0: PA6 1: PB14 2: PE6		Peripheral Reflex System PRS, channel 6.	
PRS_CH7	0: PB13 2: PE7		Peripheral Reflex System PRS, channel 7.	

8.2 TQFP64 PCB Land Pattern

Figure 8.2. TQFP64 PCB Land Pattern Drawing

9. QFN64 Package Specifications

9.1 QFN64 Package Dimensions

Figure 9.1. QFN64 Package Drawing

Figure 11.2. QFN32 PCB Land Pattern Drawing