

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 12bit SAR; D/A 12bit
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TJ)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32tg11b340f64im64-ar

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.10 Core and Memory

3.10.1 Processor Core

The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:

- ARM Cortex-M0+ RISC processor
- Memory Protection Unit (MPU) supporting up to 8 memory segments
- Micro-Trace Buffer (MTB)
- Up to 128 kB flash program memory
- · Up to 32 kB RAM data memory
- · Configuration and event handling of all modules
- · 2-pin Serial-Wire debug interface

3.10.2 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep.

3.10.3 Linked Direct Memory Access Controller (LDMA)

The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling so-phisticated operations to be implemented.

3.10.4 Bootloader

All devices come pre-programmed with a UART bootloader. This bootloader resides in flash and can be erased if it is not needed. More information about the bootloader protocol and usage can be found in *AN0003: UART Bootloader*. Application notes can be found on the Silicon Labs website (www.silabs.com/32bit-appnotes) or within Simplicity Studio in the [**Documentation**] area.

4.1.2.1 General Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Operating ambient tempera-	T _A	-G temperature grade	-40	25	85	°C
ture range ⁶		-I temperature grade	-40	25	125	°C
AVDD supply voltage ²	V _{AVDD}		1.8	3.3	3.8	V
VREGVDD operating supply	V _{VREGVDD}	DCDC in regulation	2.4	3.3	3.8	V
voltage ^{2 1}		DCDC in bypass, 50mA load	1.8	3.3	3.8	V
		DCDC not in use. DVDD external- ly shorted to VREGVDD	1.8	3.3	3.8	V
VREGVDD current	I _{VREGVDD}	DCDC in bypass, T ≤ 85 °C	_	_	200	mA
		DCDC in bypass, T > 85 °C	_	_	100	mA
DVDD operating supply volt- age	V _{DVDD}		1.62	_	V _{VREGVDD}	V
IOVDD operating supply volt- age	VIOVDD	All IOVDD pins ⁵	1.62	_	V _{VREGVDD}	V
DECOUPLE output capaci- tor ^{3 4}	C _{DECOUPLE}		0.75	1.0	2.75	μF
HFCORECLK frequency	f _{CORE}	VSCALE2, MODE = WS1	_	_	48	MHz
		VSCALE2, MODE = WS0	_	_	25	MHz
		VSCALE0, MODE = WS1	_	_	20	MHz
		VSCALE0, MODE = WS0	_	_	10	MHz
HFCLK frequency	f _{HFCLK}	VSCALE2	_	_	48	MHz
		VSCALE0	_	_	20	MHz
HFSRCCLK frequency	f _{HFSRCCLK}	VSCALE2	_	_	48	MHz
		VSCALE0	_	_	20	MHz
HFBUSCLK frequency	f _{HFBUSCLK}	VSCALE2	_	_	48	MHz
		VSCALE0		_	20	MHz
HFPERCLK frequency	f _{HFPERCLK}	VSCALE2	_	_	48	MHz
		VSCALE0	_	_	20	MHz
HFPERBCLK frequency	f _{HFPERBCLK}	VSCALE2	_	_	48	MHz
		VSCALE0	_	_	20	MHz
HFPERCCLK frequency	fHFPERCCLK	VSCALE2	_	—	48	MHz
		VSCALE0	_	_	20	MHz

Table 4.2. General Operating Conditions

4.1.5 Backup Supply Domain

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Backup supply voltage range	V _{BU_VIN}		TBD	—	3.8	V
PWRRES resistor	R _{PWRRES}	EMU_BUCTRL_PWRRES = RES0	TBD	3900	TBD	Ω
		EMU_BUCTRL_PWRRES = RES1	TBD	1800	TBD	Ω
		EMU_BUCTRL_PWRRES = RES2	TBD	1330	TBD	Ω
		EMU_BUCTRL_PWRRES = RES3	TBD	815	TBD	Ω
Output impedance between BU_VIN and BU_VOUT ²	R _{BU_VOUT}	EMU_BUCTRL_VOUTRES = STRONG	TBD	110	TBD	Ω
		EMU_BUCTRL_VOUTRES = MED	TBD	775	TBD	Ω
		EMU_BUCTRL_VOUTRES = WEAK	TBD	6500	TBD	Ω
Supply current	I _{BU_VIN}	BU_VIN not powering backup do- main	_	10	TBD	nA
		BU_VIN powering backup do- main ¹		450	TBD	nA

Table 4.5. Backup Supply Domain

Note:

1. Additional current required by backup circuitry when backup is active. Includes supply current of backup switches and backup regulator. Does not include supply current required for backed-up circuitry.

2. BU_VOUT and BU_STAT signals are not available in all package configurations. Check the device pinout for availability.

4.1.6.2 Current Consumption 3.3 V using DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = 1.8 V DC-DC output. T = 25 °C. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_DCM	48 MHz crystal, CPU running while loop from flash	_	38	-	µA/MHz
abled, DCDC in Low Noise DCM mode ²		48 MHz HFRCO, CPU running while loop from flash	_	37	_	µA/MHz
		48 MHz HFRCO, CPU running Prime from flash	_	45	_	µA/MHz
		48 MHz HFRCO, CPU running CoreMark loop from flash	_	53	_	µA/MHz
		32 MHz HFRCO, CPU running while loop from flash	_	43	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash		47	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash		61	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash		587	_	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	I _{ACTIVE_CCM}	48 MHz crystal, CPU running while loop from flash	_	49	_	µA/MHz
abled, DCDC in Low Noise CCM mode ¹		48 MHz HFRCO, CPU running while loop from flash		48	_	µA/MHz
		48 MHz HFRCO, CPU running Prime from flash	_	55	_	µA/MHz
		48 MHz HFRCO, CPU running CoreMark loop from flash		63	_	µA/MHz
		32 MHz HFRCO, CPU running while loop from flash		60	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash		68	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash		96	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash		1157	_	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	I _{ACTIVE_LPM}	32 MHz HFRCO, CPU running while loop from flash	_	32	_	µA/MHz
abled, DCDC in LP mode ³		26 MHz HFRCO, CPU running while loop from flash		33	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash		36	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	_	156	_	µA/MHz

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Frequency accuracy	f _{HFRCO_ACC}	At production calibrated frequen- cies, across supply voltage and temperature	TBD	_	TBD	%
Start-up time	t _{HFRCO}	f _{HFRCO} ≥ 19 MHz	_	300	—	ns
		4 < f _{HFRCO} < 19 MHz	_	1	—	μs
		f _{HFRCO} ≤ 4 MHz	_	2.5	_	μs
Current consumption on all	I _{HFRCO}	f _{HFRCO} = 48 MHz		258	TBD	μA
supplies		f _{HFRCO} = 38 MHz	_	218	TBD	μA
		f _{HFRCO} = 32 MHz		182	TBD	μA
		f _{HFRCO} = 26 MHz		156	TBD	μA
		f _{HFRCO} = 19 MHz		130	TBD	μA
		f _{HFRCO} = 16 MHz		112	TBD	μA
		f _{HFRCO} = 13 MHz		101	TBD	μA
		f _{HFRCO} = 7 MHz		80	TBD	μA
		f _{HFRCO} = 4 MHz		29	TBD	μA
		f _{HFRCO} = 2 MHz		26	TBD	μA
		f _{HFRCO} = 1 MHz		24	TBD	μA
		f _{HFRCO} = 40 MHz, DPLL enabled		393	TBD	μA
		f _{HFRCO} = 32 MHz, DPLL enabled		313	TBD	μA
		f _{HFRCO} = 16 MHz, DPLL enabled		180	TBD	μA
		f _{HFRCO} = 4 MHz, DPLL enabled		46	TBD	μA
		f _{HFRCO} = 1 MHz, DPLL enabled		33	TBD	μA
Coarse trim step size (% of period)	SS _{HFRCO_COARS}			0.8	_	%
Fine trim step size (% of pe- riod)	SS _{HFRCO_FINE}			0.1	-	%
Period jitter	PJ _{HFRCO}			0.2	_	% RMS

Table 4.14. High-Frequency RC Oscillator (HFRCO)

4.1.21.2 I2C Fast-mode (Fm)¹

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
SCL clock frequency ²	f _{SCL}		0	_	400	kHz
SCL clock low time	t _{LOW}		1.3	—	_	μs
SCL clock high time	t _{HIGH}		0.6	—	_	μs
SDA set-up time	t _{SU_DAT}		100	_	_	ns
SDA hold time ³	t _{HD_DAT}		100	—	900	ns
Repeated START condition set-up time	t _{SU_STA}		0.6	_	_	μs
(Repeated) START condition hold time	t _{HD_STA}		0.6			μs
STOP condition set-up time	t _{SU_STO}		0.6	_		μs
Bus free time between a STOP and START condition	t _{BUF}		1.3	_	—	μs

Table 4.29. I2C Fast-mode (Fm)¹

Note:

1. For CLHR set to 1 in the I2Cn_CTRL register.

2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual.

3. The maximum SDA hold time (t_{HD,DAT}) needs to be met only when the device does not stretch the low time of SCL (t_{LOW}).

4.1.22 USART SPI

SPI Master Timing

Table 4.31. SPI Master Timing

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
SCLK period ^{1 3 2}	t _{SCLK}		2 * ^t HFPERCLK	—	_	ns
CS to MOSI ^{1 3}	t _{CS_MO}		-19.8	_	18.9	ns
SCLK to MOSI ^{1 3}	t _{SCLK_MO}		-10	_	14.5	ns
MISO setup time ^{1 3}	t _{su_мi}	IOVDD = 1.62 V	75	_	_	ns
		IOVDD = 3.0 V	40	—	_	ns
MISO hold time ^{1 3}	t _{H_MI}		-10	_	_	ns

Note:

1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).

2. t_{HFPERCLK} is one period of the selected HFPERCLK.

3. Measurement done with 8 pF output loading at 10% and 90% of V_{DD} (figure shows 50% of V_{DD}).

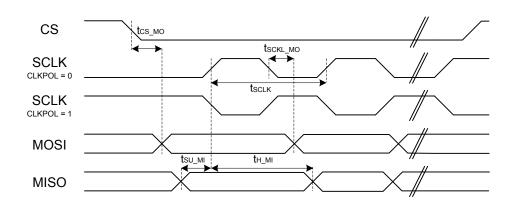


Figure 4.1. SPI Master Timing Diagram

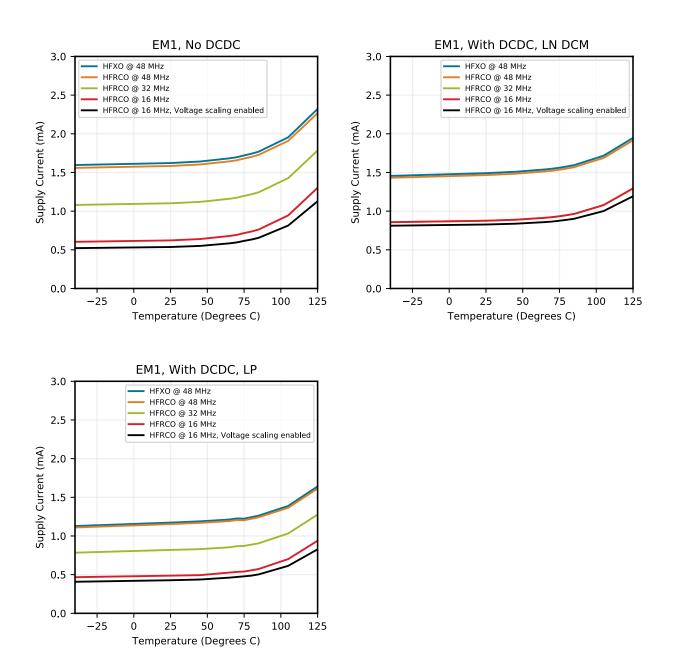
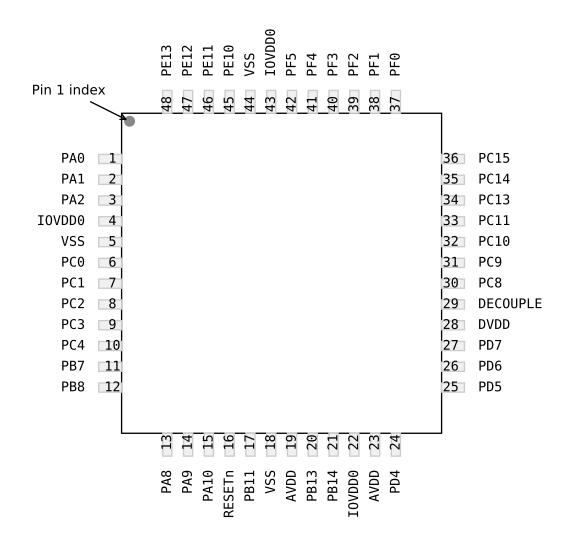


Figure 4.4. EM1 Sleep Mode Typical Supply Current vs. Temperature


Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PC4	13	GPIO	PC5	14	GPIO
PB7	15	GPIO	PB8	16	GPIO
PA8	17	GPIO	PA9	18	GPIO
PA10	19	GPIO	RESETn	20	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	21	GPIO	AVDD	23 27	Analog power supply.
PB13	24	GPIO	PB14	25	GPIO
PD0	28	GPIO (5V)	PD1	29	GPIO
PD2	30	GPIO (5V)	PD3	31	GPIO
PD4	32	GPIO	PD5	33	GPIO
PD6	34	GPIO	PD7	35	GPIO
PD8	36	GPIO	PC6	37	GPIO
PC7	38	GPIO	DVDD	39	Digital power supply.
DECOUPLE	40	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PC8	41	GPIO
PC9	42	GPIO	PC10	43	GPIO (5V)
PC11	44	GPIO (5V)	PC12	45	GPIO (5V)
PC13	46	GPIO (5V)	PC14	47	GPIO (5V)
PC15	48	GPIO (5V)	PF0	49	GPIO (5V)
PF1	50	GPIO (5V)	PF2	51	GPIO
PF3	52	GPIO	PF4	53	GPIO
PF5	54	GPIO	PE8	57	GPIO
PE9	58	GPIO	PE10	59	GPIO
PE11	60	GPIO	PE12	61	GPIO
PE13	62	GPIO	PE14	63	GPIO
PE15	64	GPIO			

1. GPIO with 5V tolerance are indicated by (5V).

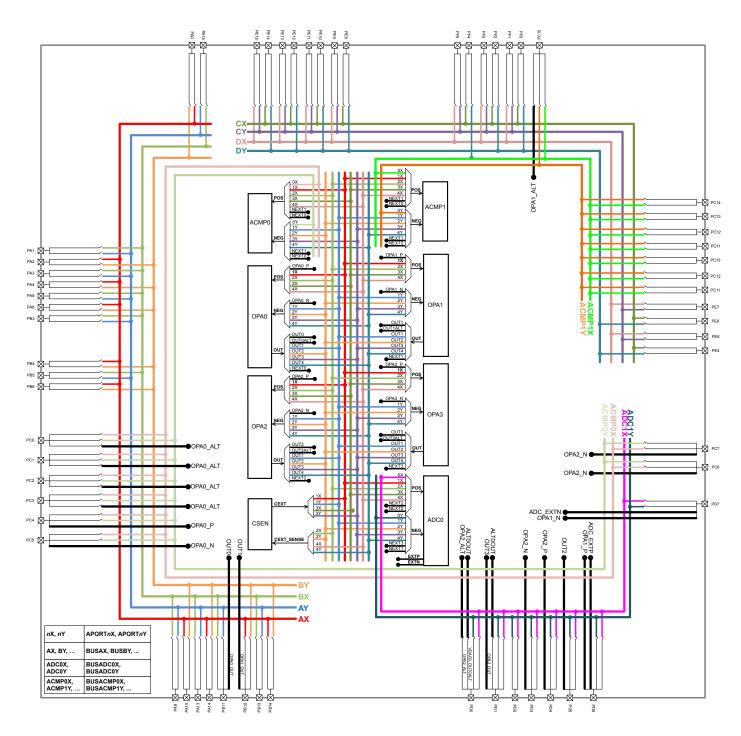
Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB4	10	GPIO	PB5	11	GPIO
PB6	12	GPIO	PC4	13	GPIO
PC5	14	GPIO	PB7	15	GPIO
PB8	16	GPIO	PA8	17	GPIO
PA12	18	GPIO	PA13	19	GPIO (5V)
PA14	20	GPIO	RESETn	21	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	22	GPIO	PB12	23	GPIO
AVDD	24 28	Analog power supply.	PB13	25	GPIO
PB14	26	GPIO	PD0	29	GPIO (5V)
PD1	30	GPIO	PD3	31	GPIO
PD4	32	GPIO	PD5	33	GPIO
PD6	34	GPIO	PD7	35	GPIO
PD8	36	GPIO	PC7	37	GPIO
VREGSW	39	DCDC regulator switching node	VREGVDD	40	Voltage regulator VDD input
DVDD	41	Digital power supply.	DECOUPLE	42	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
PE4	43	GPIO	PE5	44	GPIO
PE6	45	GPIO	PE7	46	GPIO
PC12	47	GPIO (5V)	PC13	48	GPIO (5V)
PF0	49	GPIO (5V)	PF1	50	GPIO (5V)
PF2	51	GPIO	PF3	52	GPIO
PF4	53	GPIO	PF5	54	GPIO
PE8	56	GPIO	PE9	57	GPIO
PE10	58	GPIO	PE11	59	GPIO
PE12	60	GPIO	PE13	61	GPIO
PE14	62	GPIO	PE15	63	GPIO
PA15	64	GPIO			

1. GPIO with 5V tolerance are indicated by (5V).

Figure 5.11. EFM32TG11B1xx in QFP48 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Table 5.11. E	EFM32TG11B1xx in	QFP48	Device Pinout
---------------	------------------	-------	---------------


Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	IOVDD0	4 22 43	Digital IO power supply 0.
VSS	5 18 44	Ground	PC0	6	GPIO (5V)
PC1	7	GPIO (5V)	PC2	8	GPIO (5V)
PC3	9	GPIO (5V)	PC4	10	GPIO

Alternate	LOC	OCATION								
Functionality	0 - 3	4 - 7	Description							
LETIM0_OUT1	0: PD7 1: PB12 2: PF1 3: PC5	4: PE13 5: PC15 6: PA9	Low Energy Timer LETIM0, output channel 1.							
LEU0_RX	0: PD5 1: PB14 2: PE15 3: PF1	4: PA0 5: PC15	LEUART0 Receive input.							
LEU0_TX	0: PD4 1: PB13 2: PE14 3: PF0	4: PF2 5: PC14	LEUART0 Transmit output. Also used as receive input in half duplex communication.							
LFXTAL_N	0: PB8		Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional ex- ternal clock input pin.							
LFXTAL_P	0: PB7		Low Frequency Crystal (typically 32.768 kHz) positive pin.							
OPA0_N	0: PC5		Operational Amplifier 0 external negative input.							
OPA0_P	0: PC4		Operational Amplifier 0 external positive input.							
OPA1_N	0: PD7		Operational Amplifier 1 external negative input.							
OPA1_P	0: PD6		Operational Amplifier 1 external positive input.							
OPA2_N	0: PD3		Operational Amplifier 2 external negative input.							
OPA2_OUT	0: PD5		Operational Amplifier 2 output.							
OPA2_OUTALT	0: PD0		Operational Amplifier 2 alternative output.							
OPA2_P	0: PD4		Operational Amplifier 2 external positive input.							

Alternate	LOCA	ATION	
Functionality	0 - 3	4 - 7	Description
VDAC0_OUT0 / OPA0_OUT	0: PB11		Digital to Analog Converter DAC0 output channel number 0.
VDAC0_OUT0ALT / OPA0_OUTALT	0: PC0 1: PC1 2: PC2 3: PC3	4: PD0	Digital to Analog Converter DAC0 alternative output for channel 0.
VDAC0_OUT1 / OPA1_OUT	0: PB12		Digital to Analog Converter DAC0 output channel number 1.
VDAC0_OUT1ALT / OPA1_OUTALT	0: PC12 1: PC13 2: PC14 3: PC15	4: PD1	Digital to Analog Converter DAC0 alternative output for channel 1.
WTIM0_CC0	0: PE4 1: PA6	4: PC15 6: PB3 7: PC1	Wide timer 0 Capture Compare input / output channel 0.
WTIM0_CC1	0: PE5	4: PF0 6: PB4 7: PC2	Wide timer 0 Capture Compare input / output channel 1.
WTIM0_CC2	0: PE6	4: PF1 6: PB5 7: PC3	Wide timer 0 Capture Compare input / output channel 2.
WTIM0_CDTI0	0: PE10 2: PA12	4: PD4	Wide timer 0 Complimentary Dead Time Insertion channel 0.
WTIM0_CDTI1	0: PE11 2: PA13	4: PD5	Wide timer 0 Complimentary Dead Time Insertion channel 1.
WTIM0_CDTI2	0: PE12 2: PA14	4: PD6	Wide timer 0 Complimentary Dead Time Insertion channel 2.
WTIM1_CC0	0: PB13 1: PD2 2: PD6 3: PC7	5: PE7	Wide timer 1 Capture Compare input / output channel 0.
WTIM1_CC1	0: PB14 1: PD3 2: PD7	4: PE4	Wide timer 1 Capture Compare input / output channel 1.
WTIM1_CC2	0: PD0 1: PD4 2: PD8	4: PE5	Wide timer 1 Capture Compare input / output channel 2.

5.16 Analog Port (APORT) Client Maps

The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 5.14 APORT Connection Diagram on page 119 shows the APORT routing for this device family (note that available features may vary by part number). A complete description of APORT functionality can be found in the Reference Manual.

Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.

In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	СН9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	СНО
APORT0X	BUSACMP0X																									PC7	PC6	PC5	PC4	PC3	PC2	PC1	PCO
APORT0Y	BUSACMP0Y																									PC7	PC6	PC5	PC4	PC3	PC2	PC1	PCO
APORT1X	BUSAX		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT1Y	BUSAY			PB13		PB11						PB5		PB3				PA15		PA13				PA9				PA5		PA3		PA1	
APORT2X	BUSBX			PB13		PB11						PB5		PB3				PA15		PA13				PA9				PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT3X	BUSCX												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				
APORT3Y	BUSCY											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4X	BUSDX											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4Y	BUSDY												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				

PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared bus used by this connection is indicated in the Bus column.

Table 5.16. ACMP0 Bus and Pin Mapping

Dimension	Min	Тур	Мах								
A	_	_	1.20								
A1	0.05	—	0.15								
A2	0.95	1.00	1.05								
b	0.17	0.20	0.27								
с	0.09	—	0.20								
D		14.00 BSC									
D1		12.00 BSC									
е	0.50 BSC										
E	14.00 BSC										
E1		12.00 BSC									
L	0.45	0.60	0.75								
L1		1.00 REF									
θ	0 3.5 7										
ааа		0.20									
bbb		0.20									
ссс		0.08									
ddd		0.08									
eee	0.05										
Note:											

Table 6.1. TQFP80 Package Dimensions

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This package outline conforms to JEDEC MS-026, variant ADD.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

9. QFN64 Package Specifications

9.1 QFN64 Package Dimensions

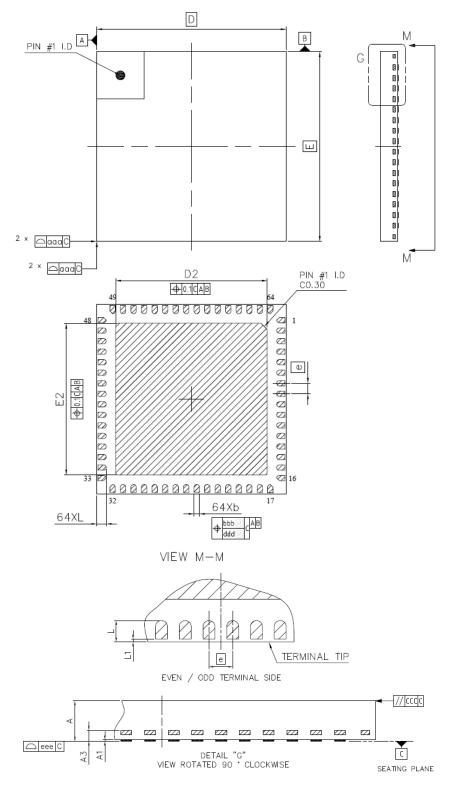


Figure 9.1. QFN64 Package Drawing

Table 9.2. QFN64 PCB Land Pattern Dimensions

Dimension	Тур
C1	8.90
C2	8.90
E	0.50
X1	0.30
Y1	0.85
X2	7.30
Y2	7.30

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm.

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

6. The stencil thickness should be 0.125 mm (5 mils).

7. The ratio of stencil aperture to land pad size can be 1:1 for all pads.

8. A 3x3 array of 1.45 mm square openings on a 2.00 mm pitch can be used for the center ground pad.

9. A No-Clean, Type-3 solder paste is recommended.

10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 9.3. QFN64 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

Figure 11.3. QFN32 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.