

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 12bit SAR; D/A 12bit
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-WFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32tg11b520f128gm32-a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4. Electrical Specifications

4.1 Electrical Characteristics

All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:

- Typical values are based on T_{AMB} =25 °C and V_{DD} = 3.3 V, by production test and/or technology characterization.
- Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise.

Refer to 4.1.2.1 General Operating Conditions for more details about operational supply and temperature limits.

4.1.1 Absolute Maximum Ratings

Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Storage temperature range	T _{STG}		-50	_	150	°C
Voltage on any supply pin	V _{DDMAX}		-0.3		3.8	V
Voltage ramp rate on any supply pin	VDDRAMPMAX		-	_	1	V / µs
DC voltage on any GPIO pin	V _{DIGPIN}	5V tolerant GPIO pins ^{1 2 3}	-0.3	_	Min of 5.25 and IOVDD +2	V
		LCD pins ³	-0.3	_	Min of 3.8 and IOVDD +2	V
		Standard GPIO pins	-0.3		IOVDD+0.3	V
Total current into VDD power lines	I _{VDDMAX}	Source	-		200	mA
Total current into VSS ground lines	I _{VSSMAX}	Sink	-	_	200	mA
Current per I/O pin	I _{IOMAX}	Sink	_	_	50	mA
		Source	_	_	50	mA
Current for all I/O pins	IIOALLMAX	Sink	_	_	200	mA
		Source	_	_	200	mA
Junction temperature	TJ	-G grade devices	-40	_	105	°C
		-I grade devices	-40		125	°C

Table 4.1. Absolute Maximum Ratings

Note:

1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD.

 Valid for IOVDD in valid operating range or when IOVDD is undriven (high-Z). If IOVDD is connected to a low-impedance source below the valid operating range (e.g. IOVDD shorted to VSS), the pin voltage maximum is IOVDD + 0.3 V, to avoid exceeding the maximum IO current specifications.

3. To operate above the IOVDD supply rail, over-voltage tolerance must be enabled according to the GPIO_Px_OVTDIS register. Pins with over-voltage tolerance disabled have the same limits as Standard GPIO.

4.1.2 Operating Conditions

When assigning supply sources, the following requirements must be observed:

- VREGVDD must be greater than or equal to AVDD, DVDD and all IOVDD supplies.
- VREGVDD = AVDD
- DVDD ≤ AVDD
- IOVDD ≤ AVDD

4.1.8 Brown Out Detector (BOD)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
DVDD BOD threshold	V _{DVDDBOD}	DVDD rising	_	—	TBD	V
		DVDD falling (EM0/EM1)	TBD	—	_	V
		DVDD falling (EM2/EM3)	TBD	_	_	V
DVDD BOD hysteresis	V _{DVDDBOD_HYST}		_	18	_	mV
DVDD BOD response time	tDVDDBOD_DELAY	Supply drops at 0.1V/µs rate	_	2.4	_	μs
AVDD BOD threshold	V _{AVDDBOD}	AVDD rising	_	_	TBD	V
		AVDD falling (EM0/EM1)	TBD		_	V
		AVDD falling (EM2/EM3)	TBD	—	—	V
AVDD BOD hysteresis	V _{AVDDBOD_HYST}		_	20	_	mV
AVDD BOD response time	t _{AVDDBOD_DELAY}	Supply drops at 0.1V/µs rate	_	2.4		μs
EM4 BOD threshold	V _{EM4DBOD}	AVDD rising	_	_	TBD	V
		AVDD falling	TBD	—	—	V
EM4 BOD hysteresis	V _{EM4BOD_HYST}		_	25	_	mV
EM4 BOD response time	t _{EM4BOD_DELAY}	Supply drops at 0.1V/µs rate	_	300	_	μs

Table 4.10. Brown Out Detector (BOD)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Frequency accuracy	fhfrco_acc	At production calibrated frequen- cies, across supply voltage and temperature	TBD	_	TBD	%
Start-up time	t _{HFRCO}	f _{HFRCO} ≥ 19 MHz	—	300	—	ns
		4 < f _{HFRCO} < 19 MHz	_	1	—	μs
		f _{HFRCO} ≤ 4 MHz	—	2.5	—	μs
Current consumption on all	I _{HFRCO}	f _{HFRCO} = 48 MHz	—	258	TBD	μA
supplies		f _{HFRCO} = 38 MHz	_	218	TBD	μA
		f _{HFRCO} = 32 MHz	_	182	TBD	μA
		f _{HFRCO} = 26 MHz	_	156	TBD	μA
		f _{HFRCO} = 19 MHz	_	130	TBD	μA
		f _{HFRCO} = 16 MHz	_	112	TBD	μA
		f _{HFRCO} = 13 MHz	_	101	TBD	μA
		f _{HFRCO} = 7 MHz	_	80	TBD	μA
		f _{HFRCO} = 4 MHz	_	29	TBD	μA
		f _{HFRCO} = 2 MHz	_	26	TBD	μA
		f _{HFRCO} = 1 MHz	_	24	TBD	μA
		f _{HFRCO} = 40 MHz, DPLL enabled	—	393	TBD	μA
		f _{HFRCO} = 32 MHz, DPLL enabled	—	313	TBD	μA
		f _{HFRCO} = 16 MHz, DPLL enabled	—	180	TBD	μA
		f _{HFRCO} = 4 MHz, DPLL enabled	_	46	TBD	μA
		f _{HFRCO} = 1 MHz, DPLL enabled	—	33	TBD	μA
Coarse trim step size (% of period)	SS _{HFRCO_COARS}		—	0.8	_	%
Fine trim step size (% of pe- riod)	SS _{HFRCO_FINE}			0.1		%
Period jitter	PJ _{HFRCO}		_	0.2		% RMS

Table 4.14. High-Frequency RC Oscillator (HFRCO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Note:						
1. Specified configuration fo V. Nominal voltage gain is	r 3X-Gain configu s 3.	uration is: INCBW = 1, HCMDIS = 1, I	RESINSEL = '	/SS, V _{INPUT} =	= 0.5 V, V _{OUT}	_{PUT} = 1.5
2. If the maximum C _{LOAD} is	exceeded, an iso	lation resistor is required for stability.	See AN0038	for more infor	mation.	
3. When INCBW is set to 1 or the OPAMP may not b	the OPAMP band e stable.	width is increased. This is allowed or	nly when the n	on-inverting c	lose-loop gai	n is ≥ 3,
4. Current into the load resist drive the resistor feedbac another ~10 μA current w	stor is excluded. V k network. The in hen the OPAMP	When the OPAMP is connected with on ternal resistor feedback network has drives 1.5 V between output and grout drives 1.5 V between	closed-loop ga total resistand und.	ain > 1, there v ce of 143.5 kC	will be extra c)hm, which wi	urrent to ill cause
5. Step between 0.2V and V	/ _{OPA} -0.2V, 10%-9	0% rising/falling range.				
6. From enable to output se	ttled. In sample-a	nd-off mode, RC network after OPAN	IP will contrib	ute extra dela	y. Settling err	or < 1mV.
7. In unit gain connection, U product of the OPAMP ar	 In unit gain connection, UGF is the gain-bandwidth product of the OPAMP. In 3x Gain connection, UGF is the gain-bandwidth product of the OPAMP and 1/3 attenuation of the feedback network. 					
8. Specified configuration fo V _{OUTPUT} = 0.5 V.	r Unit gain buffer	configuration is: INCBW = 0, HCMDI	S = 0, RESIN	SEL = DISAB	LE. V _{INPUT} =	0.5 V,
9. When HCMDIS=1 and inp and CMRR specifications	put common mode do not apply to th	e transitions the region from V _{OPA} -1.4 his transition region.	4V to V _{OPA} -1\	/, input offset	will change. F	PSRR
4.1.18 LCD Driver						

Table 4.25. LCD Driver

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Frame rate	f _{LCDFR}		TBD	_	TBD	Hz
LCD supply range ²	V _{LCDIN}		1.8		3.8	V
LCD output voltage range	V _{LCD}	Current source mode, No external LCD capacitor	2.0		V _{LCDIN} -0.4	V
		Step-down mode with external LCD capacitor	2.0		V _{LCDIN}	V
		Charge pump mode with external LCD capacitor	2.0	_	Min of 3.8 and 1.9 * V _{LCDIN}	V
Contrast control step size	STEP _{CONTRAST}	Current source mode	_	64	—	mV
		Charge pump or Step-down mode	_	43	—	mV
Contrast control step accura- cy ¹	ACC _{CONTRAST}		_	+/-4	_	%

Note:

1. Step size accuracy is measured relative to the typical step size, and typ value represents one standard deviation.

2. V_{LCDIN} is selectable between the AVDD or DVDD supply pins, depending on EMU_PWRCTRL_ANASW.

4.1.21 I2C

4.1.21.1 I2C Standard-mode (Sm)¹

Table 4.28. I2C Standard-mode (Sm

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCL clock frequency ²	f _{SCL}		0	_	100	kHz
SCL clock low time	t _{LOW}		4.7	_	_	μs
SCL clock high time	t _{HIGH}		4	—	—	μs
SDA set-up time	t _{SU_DAT}		250	_	—	ns
SDA hold time ³	t _{HD_DAT}		100	_	3450	ns
Repeated START condition set-up time	t _{SU_STA}		4.7	_	_	μs
(Repeated) START condition hold time	t _{HD_STA}		4	_	_	μs
STOP condition set-up time	t _{SU_STO}		4	_	_	μs
Bus free time between a STOP and START condition	t _{BUF}		4.7		_	μs

Note:

1. For CLHR set to 0 in the I2Cn_CTRL register.

2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual.

3. The maximum SDA hold time (t_{HD DAT}) needs to be met only when the device does not stretch the low time of SCL (t_{LOW}).

Figure 4.4. EM1 Sleep Mode Typical Supply Current vs. Temperature

Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.

	1 11(3)	Description
PE13	77	GPIO
PE15	79	GPIO
	PE13 PE15	PE13 77 PE15 79

Note:

1. GPIO with 5V tolerance are indicated by (5V).

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PC3	12	GPIO (5V)	PC4	13	GPIO
PC5	14	GPIO	PB7	15	GPIO
PB8	16	GPIO	PA8	17	GPIO
PA9	18	GPIO	PA10	19	GPIO
RESETn	20	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	PB11	21	GPIO
PB12	22	GPIO	AVDD	23 27	Analog power supply.
PB13	24	GPIO	PB14	25	GPIO
PD0	28	GPIO (5V)	PD1	29	GPIO
PD2	30	GPIO (5V)	PD3	31	GPIO
PD4	32	GPIO	PD5	33	GPIO
PD6	34	GPIO	PD7	35	GPIO
PD8	36	GPIO	PC6	37	GPIO
PC7	38	GPIO	DVDD	39	Digital power supply.
DECOUPLE	40	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PC8	41	GPIO
PC9	42	GPIO	PC10	43	GPIO (5V)
PC11	44	GPIO (5V)	PC12	45	GPIO (5V)
PC13	46	GPIO (5V)	PC14	47	GPIO (5V)
PC15	48	GPIO (5V)	PF0	49	GPIO (5V)
PF1	50	GPIO (5V)	PF2	51	GPIO
PF3	52	GPIO	PF4	53	GPIO
PF5	54	GPIO	PE8	56	GPIO
PE9	57	GPIO	PE10	58	GPIO
PE11	59	GPIO	PE12	60	GPIO
PE13	61	GPIO	PE14	62	GPIO
PE15	63	GPIO	PA15	64	GPIO
Note:	-			-	

1. GPIO with 5V tolerance are indicated by (5V).

Figure 5.13. EFM32TG11B1xx in QFN32 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Table 5.13. EFM32TG1	1B1xx in QFN32	Device Pinout
----------------------	----------------	----------------------

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VREGVSS	0	Voltage regulator VSS	PA0	1	GPIO
PA1	2	GPIO	PA2	3	GPIO
IOVDD0	4 14 28	Digital IO power supply 0.	PC0	5	GPIO (5V)
PC1	6	GPIO (5V)	PB7	7	GPIO

5.14 GPIO Functionality Table

A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of each GPIO pin, followed by the functionality available on that pin. Refer to 5.15 Alternate Functionality Overview for a list of GPIO locations available for each function.

GPIO Name	Pin Alternate Functionality / Description											
	Analog	Timers	Communication	Other								
PA0	BUSBY BUSAX LCD_SEG13	TIM0_CC0 #0 TIM0_CC1 #7 PCNT0_S0IN #4	US1_RX #5 US3_TX #0 LEU0_RX #4 I2C0_SDA #0	CMU_CLK2 #0 PRS_CH0 #0 PRS_CH3 #3 GPIO_EM4WU0								
PA1	BUSAY BUSBX LCD_SEG14	TIM0_CC0 #7 TIM0_CC1 #0 PCNT0_S1IN #4	US3_RX #0 I2C0_SCL #0	CMU_CLK1 #0 PRS_CH1 #0								
PA2	BUSBY BUSAX LCD_SEG15	TIM0_CC2 #0	US1_RX #6 US3_CLK #0	CMU_CLK0 #0								
PA3	BUSAY BUSBX LCD_SEG16	TIM0_CDTI0 #0	TIM0_CDTI0 #0 US3_CS #0 U0_TX #2									
PA4	BUSBY BUSAX LCD_SEG17	TIM0_CDTI1 #0	US3_CTS #0 U0_RX #2	LES_ALTEX3								
PA5	BUSAY BUSBX LCD_SEG18	TIM0_CDTI2 #0	US3_RTS #0 U0_CTS #2	LES_ALTEX4 ACMP1_O #7								
PA6	BUSBY BUSAX LCD_SEG19	WTIM0_CC0 #1	U0_RTS #2	PRS_CH6 #0 ACMP0_O #4 GPIO_EM4WU1								
PB3	BUSAY BUSBX LCD_SEG20 / LCD_COM4	TIM1_CC3 #2 WTIM0_CC0 #6	US2_TX #1 US3_TX #2	ACMP0_O #7								
PB4	BUSBY BUSAX LCD_SEG21 / LCD_COM5	WTIM0_CC1 #6	US2_RX #1									
PB5	BUSAY BUSBX LCD_SEG22 / LCD_COM6	WTIM0_CC2 #6 PCNT0_S0IN #6	US0_RTS #4 US2_CLK #1									
PB6	BUSBY BUSAX LCD_SEG23 / LCD_COM7	TIM0_CC0 #3 PCNT0_S1IN #6	US0_CTS #4 US2_CS #1									
PC0	VDAC0_OUT0ALT / OPA0_OUTALT #0 BU- SACMP0Y BUSACMP0X	TIM0_CC1 #3 PCNT0_S0IN #2	CAN0_RX #0 US0_TX #5 US1_TX #0 US1_CS #4 US2_RTS #0 US3_CS #3 I2C0_SDA #4	LES_CH0 PRS_CH2 #0								
PC1	VDAC0_OUT0ALT / OPA0_OUTALT #1 BU- SACMP0Y BUSACMP0X	TIM0_CC2 #3 WTIM0_CC0 #7 PCNT0_S1IN #2	CAN0_TX #0 US0_RX #5 US1_TX #4 US1_RX #0 US2_CTS #0 US3_RTS #1 I2C0_SCL #4	LES_CH1 PRS_CH3 #0								
PC2	VDAC0_OUT0ALT / OPA0_OUTALT #2 BU- SACMP0Y BUSACMP0X	TIM0_CDTI0 #3 WTIM0_CC1 #7	US1_RX #4 US2_TX #0	LES_CH2								
PC3	VDAC0_OUT0ALT / OPA0_OUTALT #3 BU- SACMP0Y BUSACMP0X	TIM0_CDTI1 #3 WTIM0_CC2 #7	US1_CLK #4 US2_RX #0	LES_CH3								

Table 5.14. GPIO Functionality Table

Alternate	LOC						
Functionality	0 - 3	4 - 7	Description				
U0_TX	2: PA3 3: PC14	4: PC4 5: PF1 6: PD7	UART0 Transmit output. Also used as receive input in half duplex communication.				
US0_CLK	0: PE12 1: PE5 2: PC9 3: PC15	4: PB13 5: PA12	USART0 clock input / output.				
US0_CS	0: PE13 1: PE4 2: PC8 3: PC14	4: PB14 5: PA13	USART0 chip select input / output.				
US0_CTS	0: PE14 2: PC7 3: PC13	4: PB6 5: PB11	USART0 Clear To Send hardware flow control input.				
US0_RTS	0: PE15 2: PC6 3: PC12	4: PB5 5: PD6	USART0 Request To Send hardware flow control output.				
US0_RX	0: PE11 1: PE6 2: PC10 3: PE12	4: PB8 5: PC1	USART0 Asynchronous Receive. USART0 Synchronous mode Master Input / Slave Output (MISO).				
US0_TX	0: PE10 1: PE7 2: PC11 3: PE13	4: PB7 5: PC0	USART0 Asynchronous Transmit. Also used as receive input in half duplex communica- tion. USART0 Synchronous mode Master Output / Slave Input (MOSI).				
US1_CLK	0: PB7 1: PD2 2: PF0 3: PC15	4: PC3 5: PB11 6: PE5	USART1 clock input / output.				
US1_CS	0: PB8 1: PD3 2: PF1 3: PC14	4: PC0 5: PE4	USART1 chip select input / output.				
US1_CTS	1: PD4 2: PF3 3: PC6	4: PC12 5: PB13	USART1 Clear To Send hardware flow control input.				
US1_RTS	1: PD5 2: PF4 3: PC7	4: PC13 5: PB14	USART1 Request To Send hardware flow control output.				
US1_RX	0: PC1 1: PD1 2: PD6	4: PC2 5: PA0 6: PA2	USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO).				
US1_TX	0: PC0 1: PD0 2: PD7	4: PC1 5: PF2 6: PA14	USART1 Asynchronous Transmit. Also used as receive input in half duplex communica- tion. USART1 Synchronous mode Master Output / Slave Input (MOSI).				

Alternate	LOCA	LOCATION							
Functionality	0 - 3	4 - 7	Description						
VDAC0_OUT0 / OPA0_OUT	0: PB11		Digital to Analog Converter DAC0 output channel number 0.						
VDAC0_OUT0ALT / OPA0_OUTALT	0: PC0 1: PC1 2: PC2 3: PC3	4: PD0	Digital to Analog Converter DAC0 alternative output for channel 0.						
VDAC0_OUT1 / OPA1_OUT	0: PB12		Digital to Analog Converter DAC0 output channel number 1.						
VDAC0_OUT1ALT / OPA1_OUTALT	0: PC12 1: PC13 2: PC14 3: PC15	4: PD1	Digital to Analog Converter DAC0 alternative output for channel 1.						
WTIM0_CC0	0: PE4 1: PA6	4: PC15 6: PB3 7: PC1	Wide timer 0 Capture Compare input / output channel 0.						
WTIM0_CC1	0: PE5	4: PF0 6: PB4 7: PC2	Wide timer 0 Capture Compare input / output channel 1.						
WTIM0_CC2	0: PE6	4: PF1 6: PB5 7: PC3	Wide timer 0 Capture Compare input / output channel 2.						
WTIM0_CDTI0	0: PE10 2: PA12	4: PD4	Wide timer 0 Complimentary Dead Time Insertion channel 0.						
WTIM0_CDTI1	0: PE11 2: PA13	4: PD5	Wide timer 0 Complimentary Dead Time Insertion channel 1.						
WTIM0_CDTI2	0: PE12 2: PA14	4: PD6	Wide timer 0 Complimentary Dead Time Insertion channel 2.						
WTIM1_CC0	0: PB13 1: PD2 2: PD6 3: PC7	5: PE7	Wide timer 1 Capture Compare input / output channel 0.						
WTIM1_CC1	0: PB14 1: PD3 2: PD7	4: PE4	Wide timer 1 Capture Compare input / output channel 1.						
WTIM1_CC2	0: PD0 1: PD4 2: PD8	4: PE5	Wide timer 1 Capture Compare input / output channel 2.						

Port	Bus	CH31	СНЗС	CH26	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH16	CH18	CH17	CH16	CH1	CH14	CH13	CH12	CH11	CH10	сн9	CH8	CH7	9HC	CH5	CH4	CH3	CH2	CH1	СНО
CEXT																																	
APORT1X	BUSAX		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT1Y	BUSAY			PB13		PB11						PB5		PB3				PA15		PA13				PA9				PA5		PA3		PA1	
APORT3X	BUSCX												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				
APORT3Y	BUSCY											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
CE	хт_	SEN	ISE																														
APORT2X	BUSBX			PB13		PB11						PB5		PB3				PA15		PA13				PA9				PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT4X	BUSDX											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4Y	BUSDY												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				

Table 5.19. CSEN Bus and Pin Mapping

7. QFN80 Package Specifications

7.1 QFN80 Package Dimensions

Figure 7.1. QFN80 Package Drawing

Figure 7.3. QFN80 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

8. TQFP64 Package Specifications

8.1 TQFP64 Package Dimensions

Figure 8.1. TQFP64 Package Drawing

8.2 TQFP64 PCB Land Pattern

Figure 8.2. TQFP64 PCB Land Pattern Drawing

9. QFN64 Package Specifications

9.1 QFN64 Package Dimensions

Figure 9.1. QFN64 Package Drawing

9.2 QFN64 PCB Land Pattern

Figure 9.2. QFN64 PCB Land Pattern Drawing