

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 12bit SAR; D/A 12bit
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TJ)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32tg11b520f128im64-ar

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List

The EFM32TG11 highlighted features are listed below.

ARM Cortex-M0+ CPU platform

- High performance 32-bit processor @ up to 48 MHz
- Memory Protection Unit
- Wake-up Interrupt Controller
- Flexible Energy Management System
 - 37 µA/MHz in Active Mode (EM0)
 - 1.30 µA EM2 Deep Sleep current (8 kB RAM retention and RTCC running from LFRCO)
- Integrated DC-DC buck converter
- Backup Power Domain
 - RTCC and retention registers in a separate power domain, available in all energy modes
 - Operation from backup battery when main power absent/ insufficient
- Up to 128 kB flash program memory
- Up to 32 kB RAM data memory
- Communication Interfaces
 - CAN Bus Controller
 - Version 2.0A and 2.0B up to 1 Mbps
 - 4 × Universal Synchronous/Asynchronous Receiver/ Transmitter
 - UART/SPI/SmartCard (ISO 7816)/IrDA/I2S/LIN
 - Triple buffered full/half-duplex operation with flow control
 - Ultra high speed (24 MHz) operation on one instance
 - 1 × Universal Asynchronous Receiver/ Transmitter
 - 1 × Low Energy UART
 - Autonomous operation with DMA in Deep Sleep Mode
 - $2 \times I^2C$ Interface with SMBus support
 - Address recognition in EM3 Stop Mode

Up to 67 General Purpose I/O Pins

- Configurable push-pull, open-drain, pull-up/down, input filter, drive strength
- Configurable peripheral I/O locations
- · 5 V tolerance on select pins
- Asynchronous external interrupts
- Output state retention and wake-up from Shutoff Mode
- Up to 8 Channel DMA Controller
- Up to 8 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling
- Hardware Cryptography
 - AES 128/256-bit keys
 - ECC B/K163, B/K233, P192, P224, P256
 - SHA-1 and SHA-2 (SHA-224 and SHA-256)
 - True Random Number Generator (TRNG)
- Hardware CRC engine
 - Single-cycle computation with 8/16/32-bit data and 16-bit (programmable)/32-bit (fixed) polynomial
- Security Management Unit (SMU)
 - Fine-grained access control for on-chip peripherals
- Integrated Low-energy LCD Controller with up to 8 × 32 segments
 - Voltage boost, contrast and autonomous animation
 - Patented low-energy LCD driver
- Ultra Low-Power Precision Analog Peripherals
 - 12-bit 1 Msamples/s Analog to Digital Converter (ADC)
 - On-chip temperature sensor
 - 2 × 12-bit 500 ksamples/s Digital to Analog Converter (VDAC)
 - Up to 2 × Analog Comparator (ACMP)
 - Up to 4 × Operational Amplifier (OPAMP)
 - Robust current-based capacitive sensing with up to 38 inputs and wake-on-touch (CSEN)
 - Up to 62 GPIO pins are analog-capable. Flexible analog peripheral-to-pin routing via Analog Port (APORT)
 - Supply Voltage Monitor

3.10.1 Processor Core	.16
3.10.2 Memory System Controller (MSC)	
	.16
3.10.3 Linked Direct Memory Access Controller (LDMA)	.16
3.10.4 Bootloader	.16
3.11 Memory Map	.17
3.12 Configuration Summary	.18
Electrical Specifications	19
4.1 Electrical Characteristics	.19
4.1.1 Absolute Maximum Ratings	.19
4.1.2 Operating Conditions	.20
4.1.3 Thermal Characteristics	.22
4.1.4 DC-DC Converter	.23
4.1.5 Backup Supply Domain	.25
	.26
	.33
4.1.8 Brown Out Detector (BOD)	.34
	.35
	.41
4.1.11 General-Purpose I/O (GPIO)	.42
4.1.12 Voltage Mollitol (VMON).	.44 45
4 1 14 Analog Comparator (ACMP)	.47
4.1.15 Digital to Analog Converter (VDAC)	.50
4.1.16 Capacitive Sense (CSEN)	.53
4.1.17 Operational Amplifier (OPAMP)	.55
4.1.18 LCD Driver	.58
4.1.19 Pulse Counter (PCNT)	.59
4.1.20 Analog Port (APORT)	.59
4.1.21 I2C	.60
4.1.22 USART SPI	.63
4.2 Typical Performance Curves	.64
4.2.1 Supply Current	.65
4.2.2 DC-DC Converter	.70
Pin Definitions	72
5.1 EFM32TG11B5xx in QFP80 Device Pinout	.72
5.2 EFM32TG11B5xx in QFN80 Device Pinout	.75
5.3 EFM32TG11B5xx in QFP64 Device Pinout	.78
5.4 EFM32TG11B3xx in QFP64 Device Pinout	.80
5.5 EFM32TG11B1xx in QFP64 Device Pinout	.82
5.6 EFM32TG11B5xx in QFN64 Device Pinout	.84
5.7 EFM32TG11B3xx in QFN64 Device Pinout	.86
5.8 EFM32TG11B1xx in QFN64 Device Pinout	.88
F	3.10.3 Linked Direct Memory Access Controller (LDMA) 3.11 Memory Map. 3.12 Configuration Summary Electrical Specifications 4.1 Electrical Characteristics 4.1.1 Absolute Maximum Ratings 4.1.2 Operating Conditions 4.1.3 Thermal Characteristics 4.1.4 DC-DC Converter 4.1.5 Backup Supply Domain 4.1.6 Current Consumption 4.1.7 Wake Up Times 4.1.8 Brown Out Detector (BOD) 4.1.9 Oscillators 4.1.10 Flash Memory Characteristics 4.1.11 General-Purpose I/O (GPIO) 4.1.12 Voltage Monitor (VMON). 4.1.13 Analog to Digital Converter (ADC) 4.1.14 Analog Comparator (ACMP) 4.1.15 Digital to Analog Converter (VDAC) 4.1.16 Capacitive Sense (CSEN) 4.1.17 Operational Amplifier (OPAMP) 4.1.20 Analog Port (APORT). 4.1.21 Zo 4.1.22 USART SPI 4.2 Typical Performance Curves 4.2.1 Supply Current 4.2.2 DC-DC Converter PID Definitions 5.1 EFM32TG11B5xx in QFP80 Device Pinout 5.2 EFM32TG11B5xx in QFP84 Device Pinout 5.3 EFM32TG11B5xx in QFP64 Device Pinout

	5.9 EFM32TG11B5xx in QFP48 Device Pinout	90
	5.10 EFM32TG11B3xx in QFP48 Device Pinout	92
	5.11 EFM32TG11B1xx in QFP48 Device Pinout	94
	5.12 EFM32TG11B5xx in QFN32 Device Pinout	96
	5.13 EFM32TG11B1xx in QFN32 Device Pinout	98
	5.14 GPIO Functionality Table	00
	5.15 Alternate Functionality Overview	04
	5.16 Analog Port (APORT) Client Maps	19
6. [•]	TQFP80 Package Specifications	29
	6.1 TQFP80 Package Dimensions	29
	6.2 TQFP80 PCB Land Pattern	31
	6.3 TQFP80 Package Marking	32
7.	QFN80 Package Specifications	33
	7.1 QFN80 Package Dimensions	33
	7.2 QFN80 PCB Land Pattern	35
	7.3 QFN80 Package Marking	37
8.	TQFP64 Package Specifications	38
	8.1 TQFP64 Package Dimensions	38
	8.2 TQFP64 PCB Land Pattern	40
	8.3 TQFP64 Package Marking	41
9.	QFN64 Package Specifications.	42
	9.1 QFN64 Package Dimensions	42
	9.2 QFN64 PCB Land Pattern	44
	9.3 QFN64 Package Marking	46
10.	TQFP48 Package Specifications	47
	10.1 TQFP48 Package Dimensions	47
	10.2 TQFP48 PCB Land Pattern	49
	10.3 TQFP48 Package Marking	50
11.	QFN32 Package Specifications	51
	11.1 QFN32 Package Dimensions	51
	11.2 QFN32 PCB Land Pattern	53
	11.3 QFN32 Package Marking	55
12.	Revision History.	56

3.8.1 Analog Port (APORT)

The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog modules on a flexible selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs.

3.8.2 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the programmable threshold.

3.8.3 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential.

3.8.4 Capacitive Sense (CSEN)

The CSEN module is a dedicated Capacitive Sensing block for implementing touch-sensitive user interface elements such a switches and sliders. The CSEN module uses a charge ramping measurement technique, which provides robust sensing even in adverse conditions including radiated noise and moisture. The module can be configured to take measurements on a single port pin or scan through multiple pins and store results to memory through DMA. Several channels can also be shorted together to measure the combined capacitance or implement wake-on-touch from very low energy modes. Hardware includes a digital accumulator and an averaging filter, as well as digital threshold comparators to reduce software overhead.

3.8.5 Digital to Analog Converter (VDAC)

The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500 ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per singleended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any CPU intervention. The VDAC is available in all energy modes down to and including EM3.

3.8.6 Operational Amplifiers

The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas, and are available down to EM3. With flexible built-in programming for gain and interconnection they can be configured to support multiple common opamp functions. All pins are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to rail output. They can be used in conjunction with the VDAC module or in stand-alone configurations. The opamps save energy, PCB space, and cost as compared with standalone opamps because they are integrated on-chip.

3.8.7 Liquid Crystal Display Driver (LCD)

The LCD driver is capable of driving a segmented LCD display with up to 8x32 segments. A voltage boost function enables it to provide the LCD display with higher voltage than the supply voltage for the device. A patented charge redistribution driver can reduce the LCD module supply current by up to 40%. In addition, an animation feature can run custom animations on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up the device on a regular basis for updating data.

3.9 Reset Management Unit (RMU)

The RMU is responsible for handling reset of the EFM32TG11. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.

4.1.4 DC-DC Converter

Test conditions: L_DCDC=4.7 µH (Murata LQH3NPN4R7MM0L), C_DCDC=4.7 µF (Samsung CL10B475KQ8NQNC), V_DCDC_I=3.3 V, V_DCDC_O=1.8 V, I_DCDC_LOAD=50 mA, Heavy Drive configuration, F_DCDC_LN=7 MHz, unless otherwise indicated.

Table 4.4. DC-DC Converter

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input voltage range	V _{DCDC_I}	Bypass mode, I _{DCDC_LOAD} = 50 mA	1.8	_	V _{VREGVDD} MAX	V
		Low noise (LN) mode, 1.8 V out- put, I_{DCDC_LOAD} = 100 mA, or Low power (LP) mode, 1.8 V out- put, I_{DCDC_LOAD} = 10 mA	2.4	_	V _{VREGVDD} MAX	V
		Low noise (LN) mode, 1.8 V out- put, I _{DCDC_LOAD} = 200 mA	2.6	_	V _{VREGVDD} MAX	V
Output voltage programma- ble range ¹	V _{DCDC_0}		1.8	_	V _{VREGVDD}	V
Regulation DC accuracy	ACC _{DC}	Low Noise (LN) mode, 1.8 V tar- get output	TBD		TBD	V
Regulation window ⁴	WIN _{REG}	Low Power (LP) mode, LPCMPBIASEMxx ³ = 0, 1.8 V tar- get output, I _{DCDC_LOAD} ≤ 75 µA	TBD	_	TBD	V
		Low Power (LP) mode, LPCMPBIASEMxx ³ = 3, 1.8 V tar- get output, I _{DCDC_LOAD} ≤ 10 mA	TBD	_	TBD	V
Steady-state output ripple	V _R		_	3	—	mVpp
Output voltage under/over- shoot	Vov	CCM Mode (LNFORCECCM ³ = 1), Load changes between 0 mA and 100 mA	_	25	TBD	mV
		DCM Mode (LNFORCECCM ³ = 0), Load changes between 0 mA and 10 mA	_	45	TBD	mV
		Overshoot during LP to LN CCM/DCM mode transitions com- pared to DC level in LN mode	_	200	_	mV
		Undershoot during BYP/LP to LN CCM (LNFORCECCM ³ = 1) mode transitions compared to DC level in LN mode	_	40	_	mV
		Undershoot during BYP/LP to LN DCM (LNFORCECCM ³ = 0) mode transitions compared to DC level in LN mode		100	_	mV
DC line regulation	V _{REG}	Input changes between V _{VREGVDD_MAX} and 2.4 V	_	0.1	_	%
DC load regulation	I _{REG}	Load changes between 0 mA and 100 mA in CCM mode	_	0.1	—	%

4.1.6.2 Current Consumption 3.3 V using DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = 1.8 V DC-DC output. T = 25 °C. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_DCM	48 MHz crystal, CPU running while loop from flash	—	38	_	µA/MHz
DCM mode ²		48 MHz HFRCO, CPU running while loop from flash	_	37	_	µA/MHz
		48 MHz HFRCO, CPU running Prime from flash	_	45	_	µA/MHz
		48 MHz HFRCO, CPU running CoreMark loop from flash	—	53	—	µA/MHz
		32 MHz HFRCO, CPU running while loop from flash	_	43	—	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	_	47	—	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash	_	61	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	_	587	_	µA/MHz
Current consumption in EM0 mode with all peripherals dis- abled, DCDC in Low Noise CCM mode ¹	IACTIVE_CCM	48 MHz crystal, CPU running while loop from flash	_	49	_	µA/MHz
		48 MHz HFRCO, CPU running while loop from flash	_	48	_	µA/MHz
		48 MHz HFRCO, CPU running Prime from flash	_	55	—	µA/MHz
		48 MHz HFRCO, CPU running CoreMark loop from flash	_	63	_	µA/MHz
		32 MHz HFRCO, CPU running while loop from flash	_	60	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash	—	68	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash	—	96	—	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	—	1157	—	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_LPM	32 MHz HFRCO, CPU running while loop from flash	_	32	—	µA/MHz
abled, DCDC in LP mode ³		26 MHz HFRCO, CPU running while loop from flash	_	33	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash	_	36		µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	—	156	—	µA/MHz

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM4H mode, with voltage scaling enabled	I _{EM4H_VS}	128 byte RAM retention, RTCC running from LFXO	_	0.75	—	μA
		128 byte RAM retention, CRYO- TIMER running from ULFRCO	—	0.37	_	μA
		128 byte RAM retention, no RTCC	_	0.37	_	μA
Current consumption in EM4S mode	I _{EM4S}	No RAM retention, no RTCC	—	0.05	—	μA
Current consumption of pe- ripheral power domain 1, with voltage scaling enabled	IPD1_VS	Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled ¹	_	0.18	_	μA
Current consumption of pe- ripheral power domain 2, with voltage scaling enabled	IPD2_VS	Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled ¹	_	0.18	—	μA

Note:

1. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.3 EM2 and EM3 Power Domains for a list of the peripherals in each power domain.

2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1

4.1.15 Digital to Analog Converter (VDAC)

DRIVESTRENGTH = 2 unless otherwise specified. Primary VDAC output.

Table 4.22.	Digital to	Analog Converter	(VDAC)
-------------	------------	------------------	--------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output voltage	V _{DACOUT}	Single-Ended	0	_	V _{VREF}	V
		Differential ²	-V _{VREF}	—	V _{VREF}	V
Current consumption includ- ing references (2 channels) ¹	I _{DAC}	500 ksps, 12-bit, DRIVES- TRENGTH = 2, REFSEL = 4	_	396	_	μΑ
		44.1 ksps, 12-bit, DRIVES- TRENGTH = 1, REFSEL = 4	—	72	—	μA
		200 Hz refresh rate, 12-bit Sam- ple-Off mode in EM2, DRIVES- TRENGTH = 2, BGRREQTIME = 1, EM2REFENTIME = 9, REFSEL = 4, SETTLETIME = 0x0A, WAR- MUPTIME = 0x02	_	2	_	μA
Current from HFPERCLK ⁴	IDAC_CLK		_	5.8		µA/MHz
Sample rate	SR _{DAC}		—	—	500	ksps
DAC clock frequency	f _{DAC}		—	—	1	MHz
Conversion time	t _{DACCONV}	f _{DAC} = 1MHz	2	_		μs
Settling time	t _{DACSETTLE}	50% fs step settling to 5 LSB		2.5		μs
Startup time	t _{DACSTARTUP}	Enable to 90% fs output, settling to 10 LSB	—	—	12	μs
Output impedance	R _{OUT}	$\label{eq:output} \begin{split} &DRIVESTRENGTH = 2,\ 0.4\ V \leq \\ &V_{OUT} \leq V_{OPA} - 0.4\ V,\ -8\ mA < \\ &I_{OUT} < 8\ mA,\ Full \ supply \ range \end{split}$	_	2	_	Ω
		DRIVESTRENGTH = 0 or 1, 0.4 V $\leq V_{OUT} \leq V_{OPA} - 0.4 V$, -400 µA < $I_{OUT} < 400$ µA, Full supply range	_	2	_	Ω
		$\begin{array}{l} DRIVESTRENGTH = 2,\ 0.1\ V \leq \\ V_{OUT} \leq V_{OPA} - 0.1\ V,\ -2\ mA < \\ I_{OUT} < 2\ mA, \ Full \ supply \ range \end{array}$		2	_	Ω
		DRIVESTRENGTH = 0 or 1, 0.1 V $\leq V_{OUT} \leq V_{OPA} - 0.1 V$, -100 µA < $I_{OUT} < 100$ µA, Full supply range	_	2	_	Ω
Power supply rejection ratio ⁶	PSRR	Vout = 50% fs. DC		65.5	_	dB

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Note:						
 Supply current specification the load. 	ons are for VDAC	circuitry operating with static output o	only and do no	ot include curi	rent required	to drive
2. In differential mode, the o limited to the single-ender	utput is defined as d range.	the difference between two single-e	nded outputs	. Absolute vol	tage on each	output is
3. Entire range is monotonic	and has no missir	ng codes.				
4. Current from HFPERCLK the clock to the DAC mod	is dependent on H lule is enabled in th	IFPERCLK frequency. This current c ne CMU.	contributes to	the total supp	ly current use	ed when
5. Gain is calculated by mea 10% of full scale to ideal	asuring the slope fr VDAC output at 10	om 10% to 90% of full scale. Offset i % of full scale with the measured ga	is calculated t in.	by comparing	actual VDAC	output at
6. PSRR calculated as 20 *	log ₁₀ (ΔVDD / ΔV _O	_{UT}), VDAC output at 90% of full scale	е			

4.1.21 I2C

4.1.21.1 I2C Standard-mode (Sm)¹

Table 4.28. I2C Standard-mode (Sm

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SCL clock frequency ²	f _{SCL}		0	_	100	kHz
SCL clock low time	t _{LOW}		4.7	_	_	μs
SCL clock high time	t _{HIGH}		4	—	—	μs
SDA set-up time	t _{SU_DAT}		250	_	_	ns
SDA hold time ³	t _{HD_DAT}		100	_	3450	ns
Repeated START condition set-up time	t _{SU_STA}		4.7	_	_	μs
(Repeated) START condition hold time	t _{HD_STA}		4	_	_	μs
STOP condition set-up time	t _{SU_STO}		4	_	_	μs
Bus free time between a STOP and START condition	t _{BUF}		4.7		_	μs

Note:

1. For CLHR set to 0 in the I2Cn_CTRL register.

2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual.

3. The maximum SDA hold time (t_{HD DAT}) needs to be met only when the device does not stretch the low time of SCL (t_{LOW}).

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB4	10	GPIO	PB5	11	GPIO
PB6	12	GPIO	PC4	13	GPIO
PC5	14	GPIO	PB7	15	GPIO
PB8	16	GPIO	PA8	17	GPIO
PA12	18	GPIO	PA13	19	GPIO (5V)
PA14	20	GPIO	RESETn	21	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	22	GPIO	PB12	23	GPIO
AVDD	24 28	Analog power supply.	PB13	25	GPIO
PB14	26	GPIO	PD0	29	GPIO (5V)
PD1	30	GPIO	PD3	31	GPIO
PD4	32	GPIO	PD5	33	GPIO
PD6	34	GPIO	PD7	35	GPIO
PD8	36	GPIO	PC7	37	GPIO
VREGSW	39	DCDC regulator switching node	VREGVDD	40	Voltage regulator VDD input
DVDD	41	Digital power supply.	DECOUPLE	42	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
PE4	43	GPIO	PE5	44	GPIO
PE6	45	GPIO	PE7	46	GPIO
PC12	47	GPIO (5V)	PC13	48	GPIO (5V)
PF0	49	GPIO (5V)	PF1	50	GPIO (5V)
PF2	51	GPIO	PF3	52	GPIO
PF4	53	GPIO	PF5	54	GPIO
PE8	56	GPIO	PE9	57	GPIO
PE10	58	GPIO	PE11	59	GPIO
PE12	60	GPIO	PE13	61	GPIO
PE14	62	GPIO	PE15	63	GPIO
PA15	64	GPIO			
Note:					

1. GPIO with 5V tolerance are indicated by (5V).

Figure 5.7. EFM32TG11B3xx in QFN64 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Table 5.7. E	EFM32TG11B3xx i	n QFN64	Device	Pinout
--------------	-----------------	---------	--------	--------

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VREGVSS	0	Voltage regulator VSS	PA0	1	GPIO
PA1	2	GPIO	PA2	3	GPIO
PA3	4	GPIO	PA4	5	GPIO
PA5	6	GPIO	PA6	7	GPIO
IOVDD0	8 26 55	Digital IO power supply 0.	PB3	9	GPIO
PB4	10	GPIO	PB5	11	GPIO

Figure 5.10. EFM32TG11B3xx in QFP48 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Table 5.10. EFM32TG11B3xx in QFP48 Device Pinou

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	IOVDD0	4 22 43	Digital IO power supply 0.
VSS	5 18 44	Ground	PB3	6	GPIO
PB4	7	GPIO	PB5	8	GPIO
PB6	9	GPIO	PC4	10	GPIO

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB7	11	GPIO	PB8	12	GPIO
PA8	13	GPIO	PA9	14	GPIO
PA10	15	GPIO	RESETn	16	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	17	GPIO	AVDD	19 23	Analog power supply.
PB13	20	GPIO	PB14	21	GPIO
PD4	24	GPIO	PD5	25	GPIO
PD6	26	GPIO	PD7	27	GPIO
DVDD	28	Digital power supply.	DECOUPLE	29	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
PC8	30	GPIO	PC9	31	GPIO
PC10	32	GPIO (5V)	PC11	33	GPIO (5V)
PC13	34	GPIO (5V)	PC14	35	GPIO (5V)
PC15	36	GPIO (5V)	PF0	37	GPIO (5V)
PF1	38	GPIO (5V)	PF2	39	GPIO
PF3	40	GPIO	PF4	41	GPIO
PF5	42	GPIO	PE10	45	GPIO
PE11	46	GPIO	PE12	47	GPIO
PE13	48	GPIO			
Note:		·			

1. GPIO with 5V tolerance are indicated by (5V).

5.16 Analog Port (APORT) Client Maps

The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 5.14 APORT Connection Diagram on page 119 shows the APORT routing for this device family (note that available features may vary by part number). A complete description of APORT functionality can be found in the Reference Manual.

Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.

In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin

EFM32TG11 Family Data Sheet Pin Definitions

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
VD	/DAC0_OUT1 / OPA1_OUT																																
APORT1Y	BUSAY			PB13		PB11						PB5		PB3				PA15		PA13				PA9				PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT3Y	BUSCY											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4Y	BUSDY												PF4		PF2		PFO		PE14		PE12		PE10		PE8		PE6		PE4				

Table 7.2. QFN80 PCB Land Pattern Dimensions

Dimension	Тур
C1	8.90
C2	8.90
E	0.40
X1	0.20
Y1	0.85
X2	7.30
Y2	7.30

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm.

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

6. The stencil thickness should be 0.125 mm (5 mils).

7. The ratio of stencil aperture to land pad size can be 1:1 for all pads.

8. A 3x3 array of 1.45 mm square openings on a 2.00 mm pitch can be used for the center ground pad.

9. A No-Clean, Type-3 solder paste is recommended.

10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Dimension	Min	Тур	Мах							
A	_	1.15	1.20							
A1	0.05	—	0.15							
A2	0.95	1.00	1.05							
b	0.17	0.22	0.27							
b1	0.17	0.20	0.23							
С	0.09	—	0.20							
c1	0.09	—	0.16							
D		12.00 BSC								
D1	10.00 BSC									
е	0.50 BSC									
E	12.00 BSC									
E1	10.00 BSC									
L	0.45	0.60	0.75							
L1		1.00 REF								
R1	0.08	_	_							
R2	0.08	_	0.20							
S	0.20	_	_							
θ	0	3.5	7							
Θ1	0	_	0.10							
Θ2	11	12	13							
θ3	11	11 12 13								

Table 8.1. TQFP64 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Table 9.2. QFN64 PCB Land Pattern Dimensions

Dimension	Тур
C1	8.90
C2	8.90
E	0.50
X1	0.30
Y1	0.85
X2	7.30
Y2	7.30

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm.

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

6. The stencil thickness should be 0.125 mm (5 mils).

7. The ratio of stencil aperture to land pad size can be 1:1 for all pads.

8. A 3x3 array of 1.45 mm square openings on a 2.00 mm pitch can be used for the center ground pad.

9. A No-Clean, Type-3 solder paste is recommended.

10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

12. Revision History

Revision 0.5

February, 2018

- 4.1 Electrical Characteristics updated with latest characterization data and production test limits.
- Added 4.1.3 Thermal Characteristics.
- Added 4.2 Typical Performance Curves section.
- Corrected OPA / VDAC output connections in Figure 5.14 APORT Connection Diagram on page 119.

Revision 0.1

May 1st, 2017

Initial release.