

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	67
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 12bit SAR; D/A 12bit
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TJ)
Mounting Type	Surface Mount
Package / Case	80-WFQFN Exposed Pad
Supplier Device Package	80-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32tg11b520f128im80-a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6.5 Controller Area Network (CAN)

The CAN peripheral provides support for communication at up to 1 Mbps over CAN protocol version 2.0 part A and B. It includes 32 message objects with independent identifier masks and retains message RAM in EM2. Automatic retransmittion may be disabled in order to support Time Triggered CAN applications.

3.6.6 Peripheral Reflex System (PRS)

The Peripheral Reflex System provides a communication network between different peripheral modules without software involvement. Peripheral modules producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals which in turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT) can be applied by the PRS to the signals. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.

3.6.7 Low Energy Sensor Interface (LESENSE)

The Low Energy Sensor Interface LESENSETM is a highly configurable sensor interface with support for up to 16 individually configurable sensors. By controlling the analog comparators, ADC, and DAC, LESENSE is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable finite state machine which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget.

3.7 Security Features

3.7.1 GPCRC (General Purpose Cyclic Redundancy Check)

The GPCRC module implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the needs of the application.

3.7.2 Crypto Accelerator (CRYPTO)

The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. Tiny Gecko Series 1 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2^m), and SHA-1 and SHA-2 (SHA-224 and SHA-256).

Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM.

Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.

The CRYPTO module allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations.

3.7.3 True Random Number Generator (TRNG)

The TRNG module is a non-deterministic random number generator based on a full hardware solution. The TRNG is validated with NIST800-22 and AIS-31 test suites as well as being suitable for FIPS 140-2 certification (for the purposes of cryptographic key generation).

3.7.4 Security Management Unit (SMU)

The Security Management Unit (SMU) allows software to set up fine-grained security for peripheral access, which is not possible in the Memory Protection Unit (MPU). Peripherals may be secured by hardware on an individual basis, such that only priveleged accesses to the peripheral's register interface will be allowed. When an access fault occurs, the SMU reports the specific peripheral involved and can optionally generate an interrupt.

3.8 Analog

4.1.2 Operating Conditions

When assigning supply sources, the following requirements must be observed:

- VREGVDD must be greater than or equal to AVDD, DVDD and all IOVDD supplies.
- VREGVDD = AVDD
- DVDD ≤ AVDD
- IOVDD ≤ AVDD

4.1.6 Current Consumption

4.1.6.1 Current Consumption 3.3 V without DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 3.3 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.

Table 4.6. Current Consumption 3.3 V without DC-DC Converter

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Current consumption in EM0 mode with all peripherals dis-	IACTIVE	48 MHz crystal, CPU running while loop from flash	_	45		µA/MHz
abled		48 MHz HFRCO, CPU running while loop from flash	—	44	TBD	µA/MHz
		48 MHz HFRCO, CPU running Prime from flash		57	_	µA/MHz
		48 MHz HFRCO, CPU running CoreMark loop from flash		71	_	µA/MHz
		32 MHz HFRCO, CPU running while loop from flash	_	45	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash		46	TBD	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash		50	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash		161	TBD	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	I _{ACTIVE_VS}	19 MHz HFRCO, CPU running while loop from flash	—	41	_	µA/MHz
abled and voltage scaling enabled		1 MHz HFRCO, CPU running while loop from flash	—	145	_	µA/MHz
Current consumption in EM1	I _{EM1}	48 MHz crystal	—	34	_	µA/MHz
abled		48 MHz HFRCO	_	33	TBD	µA/MHz
		32 MHz HFRCO	—	34	_	µA/MHz
		26 MHz HFRCO	—	35	TBD	µA/MHz
		16 MHz HFRCO	—	39	_	µA/MHz
		1 MHz HFRCO	_	150	TBD	µA/MHz
Current consumption in EM1	I _{EM1_VS}	19 MHz HFRCO	_	32	_	µA/MHz
abled and voltage scaling enabled		1 MHz HFRCO	_	136	—	µA/MHz
Current consumption in EM2 mode, with voltage scaling	I _{EM2_VS}	Full 32 kB RAM retention and RTCC running from LFXO		1.48	_	μA
enabled		Full 32 kB RAM retention and RTCC running from LFRCO		1.86	_	μA
		8 kB (1 bank) RAM retention and RTCC running from LFRCO ²		1.59	TBD	μA
Current consumption in EM3 mode, with voltage scaling enabled	I _{EM3_VS}	Full 32 kB RAM retention and CRYOTIMER running from ULFR- CO		1.23	TBD	μA

4.1.11 General-Purpose I/O (GPIO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input low voltage	V _{IL}	GPIO pins	—	_	IOVDD*0.3	V
Input high voltage	V _{IH}	GPIO pins	IOVDD*0.7	_	—	V
Output high voltage relative	V _{OH}	Sourcing 3 mA, IOVDD \ge 3 V,	IOVDD*0.8		—	V
		DRIVESTRENGTH ¹ = WEAK				
		Sourcing 1.2 mA, IOVDD \ge 1.62 V,	IOVDD*0.6		_	V
		DRIVESTRENGTH ¹ = WEAK				
		Sourcing 20 mA, IOVDD ≥ 3 V,	IOVDD*0.8		—	V
		DRIVESTRENGTH ¹ = STRONG				
		Sourcing 8 mA, IOVDD ≥ 1.62 V,	IOVDD*0.6		—	V
		DRIVESTRENGTH ¹ = STRONG				
Output low voltage relative to	V _{OL}	Sinking 3 mA, IOVDD \ge 3 V,	_		IOVDD*0.2	V
		DRIVESTRENGTH ¹ = WEAK				
		Sinking 1.2 mA, IOVDD \ge 1.62 V,	—		IOVDD*0.4	V
		DRIVESTRENGTH ¹ = WEAK				
		Sinking 20 mA, IOVDD ≥ 3 V,	—	_	IOVDD*0.2	V
		DRIVESTRENGTH ¹ = STRONG				
		Sinking 8 mA, IOVDD ≥ 1.62 V,	—		IOVDD*0.4	V
		DRIVESTRENGTH ¹ = STRONG				
Input leakage current	I _{IOLEAK}	All GPIO except LFXO pins, GPIO ≤ IOVDD, T ≤ 85 °C	—	0.1	TBD	nA
		LFXO Pins, GPIO ≤ IOVDD, T ≤ 85 °C	_	0.1	TBD	nA
		All GPIO except LFXO pins, GPIO ≤ IOVDD, T > 85 °C	—		TBD	nA
		LFXO Pins, GPIO ≤ IOVDD, T > 85 °C	—	_	TBD	nA
Input leakage current on 5VTOL pads above IOVDD	I _{5VTOLLEAK}	IOVDD < GPIO ≤ IOVDD + 2 V	_	3.3	TBD	μA
I/O pin pull-up/pull-down re- sistor	R _{PUD}		TBD	40	TBD	kΩ
Pulse width of pulses re- moved by the glitch suppres- sion filter	t _{IOGLITCH}		TBD	25	TBD	ns

Table 4.18. General-Purpose I/O (GPIO)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Output fall time, From 70%	t _{IOOF}	C _L = 50 pF,	—	1.8	_	ns
		DRIVESTRENGTH ¹ = STRONG,				
		SLEWRATE ¹ = 0x6				
		C _L = 50 pF,	_	4.5	_	ns
		DRIVESTRENGTH ¹ = WEAK,				
		SLEWRATE ¹ = 0x6				
Output rise time, From 30%	t _{ioor}	C _L = 50 pF,	_	2.2	_	ns
to 70% of V _{IO}		DRIVESTRENGTH ¹ = STRONG,				
		SLEWRATE = 0x6 ¹				
		C _L = 50 pF,	—	7.4	_	ns
		DRIVESTRENGTH ¹ = WEAK,				
		SLEWRATE ¹ = 0x6				
Note:	-1		1	1	1	
1. In GPIO_Pn_CTRL regis	iter.					

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
ADC clock frequency	f _{ADCCLK}		_	_	16	MHz
Throughput rate	fADCRATE		_	—	1	Msps
Conversion time ¹	t _{ADCCONV}	6 bit	_	7	_	cycles
		8 bit	—	9	_	cycles
		12 bit	_	13	_	cycles
Startup time of reference	t _{ADCSTART}	WARMUPMODE ⁴ = NORMAL	_	_	5	μs
generator and ADC core		WARMUPMODE ⁴ = KEEPIN- STANDBY	—	_	2	μs
		WARMUPMODE ⁴ = KEEPINSLO- WACC	_		1	μs
SNDR at 1Msps and f _{IN} = 10kHz	SNDR _{ADC}	Internal reference ⁷ , differential measurement	TBD	67	—	dB
		External reference ⁶ , differential measurement	—	68	_	dB
Spurious-free dynamic range (SFDR)	SFDR _{ADC}	1 MSamples/s, 10 kHz full-scale sine wave	—	75		dB
Differential non-linearity (DNL)	DNL _{ADC}	12 bit resolution, No missing co- des	TBD	_	TBD	LSB
Integral non-linearity (INL), End point method	INL _{ADC}	12 bit resolution	TBD	—	TBD	LSB
Offset error	VADCOFFSETERR		TBD	0	TBD	LSB
Gain error in ADC	VADCGAIN	Using internal reference	_	-0.2	TBD	%
		Using external reference	_	-1	_	%
Temperature sensor slope	V _{TS_SLOPE}			-1.84		mV/°C

Note:

1. Derived from ADCCLK.

2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL.

3. In ADCn_BIASPROG register.

4. In ADCn CNTL register.

5. The absolute voltage allowed at any ADC input is dictated by the power rail supplied to on-chip circuitry, and may be lower than the effective full scale voltage. All ADC inputs are limited to the ADC supply (AVDD or DVDD depending on EMU PWRCTRL ANASW). Any ADC input routed through the APORT will further be limited by the IOVDD supply to the pin.

6. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential input range with this configuration is ± 1.25 V.

7. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The differential input range with this configuration is ± 1.25 V. Typical value is characterized using full-scale sine wave input. Minimum value is production-tested using sine wave input at 1.5 dB lower than full scale.

4.1.15 Digital to Analog Converter (VDAC)

DRIVESTRENGTH = 2 unless otherwise specified. Primary VDAC output.

Table 4.22.	Digital to	Analog Converter	(VDAC)
-------------	------------	------------------	--------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output voltage	V _{DACOUT}	Single-Ended	0	_	V _{VREF}	V
		Differential ²	-V _{VREF}	—	V _{VREF}	V
Current consumption includ- ing references (2 channels) ¹	I _{DAC}	500 ksps, 12-bit, DRIVES- TRENGTH = 2, REFSEL = 4	_	396	_	μΑ
		44.1 ksps, 12-bit, DRIVES- TRENGTH = 1, REFSEL = 4	—	72	—	μA
		200 Hz refresh rate, 12-bit Sam- ple-Off mode in EM2, DRIVES- TRENGTH = 2, BGRREQTIME = 1, EM2REFENTIME = 9, REFSEL = 4, SETTLETIME = 0x0A, WAR- MUPTIME = 0x02	_	2	_	μA
Current from HFPERCLK ⁴	IDAC_CLK		_	5.8		µA/MHz
Sample rate	SR _{DAC}		—	—	500	ksps
DAC clock frequency	f _{DAC}		—	—	1	MHz
Conversion time	t _{DACCONV}	f _{DAC} = 1MHz	2	_	_	μs
Settling time	t _{DACSETTLE}	50% fs step settling to 5 LSB		2.5		μs
Startup time	t _{DACSTARTUP}	Enable to 90% fs output, settling to 10 LSB	—	_	12	μs
Output impedance	R _{OUT}	$\label{eq:output} \begin{split} &DRIVESTRENGTH = 2,\ 0.4\ V \leq \\ &V_{OUT} \leq V_{OPA} - 0.4\ V,\ -8\ mA < \\ &I_{OUT} < 8\ mA,\ Full \ supply \ range \end{split}$	_	2	_	Ω
		DRIVESTRENGTH = 0 or 1, 0.4 V $\leq V_{OUT} \leq V_{OPA} - 0.4 V$, -400 µA < $I_{OUT} < 400$ µA, Full supply range	_	2	_	Ω
		$\begin{array}{l} DRIVESTRENGTH = 2,\ 0.1\ V \leq \\ V_{OUT} \leq V_{OPA} - 0.1\ V,\ -2\ mA < \\ I_{OUT} < 2\ mA, \ Full \ supply \ range \end{array}$		2	_	Ω
		DRIVESTRENGTH = 0 or 1, 0.1 V $\leq V_{OUT} \leq V_{OPA} - 0.1 V$, -100 µA < $I_{OUT} < 100$ µA, Full supply range	_	2	_	Ω
Power supply rejection ratio ⁶	PSRR	Vout = 50% fs. DC		65.5	_	dB

4.2.2 DC-DC Converter

Default test conditions: CCM mode, LDCDC = 4.7 µH, CDCDC = 4.7 µF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz

Figure 4.8. DC-DC Converter Typical Performance Characteristics

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB4	10	GPIO	PB5	11	GPIO
PB6	12	GPIO	PC0	13	GPIO (5V)
PC1	14	GPIO (5V)	PC2	15	GPIO (5V)
PC3	16	GPIO (5V)	PC4	17	GPIO
PC5	18	GPIO	PB7	19	GPIO
PB8	20	GPIO	PA8	21	GPIO
PA9	22	GPIO	PA10	23	GPIO
PA12	24	GPIO	PA13	25	GPIO (5V)
PA14	26	GPIO	RESETn	27	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	28	GPIO	PB12	29	GPIO
AVDD	30 34	Analog power supply.	PB13	31	GPIO
PB14	32	GPIO	PD0	35	GPIO (5V)
PD1	36	GPIO	PD2	37	GPIO (5V)
PD3	38	GPIO	PD4	39	GPIO
PD5	40	GPIO	PD6	41	GPIO
PD7	42	GPIO	PD8	43	GPIO
PC6	44	GPIO	PC7	45	GPIO
VREGSW	47	DCDC regulator switching node	VREGVDD	48	Voltage regulator VDD input
DVDD	49	Digital power supply.	DECOUPLE	50	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
PE4	52	GPIO	PE5	53	GPIO
PE6	54	GPIO	PE7	55	GPIO
PC8	56	GPIO	PC9	57	GPIO
PC10	58	GPIO (5V)	PC11	59	GPIO (5V)
PC12	60	GPIO (5V)	PC13	61	GPIO (5V)
PC14	62	GPIO (5V)	PC15	63	GPIO (5V)
PF0	64	GPIO (5V)	PF1	65	GPIO (5V)
PF2	66	GPIO	PF3	67	GPIO
PF4	68	GPIO	PF5	69	GPIO
PE8	71	GPIO	PE9	72	GPIO
PE10	73	GPIO	PE11	74	GPIO
BODEN	75	Brown-Out Detector Enable. This pin may be left disconnected or tied to AVDD.	PE12	76	GPIO
PE13	77	GPIO	PE14	78	GPIO

Figure 5.3. EFM32TG11B5xx in QFP64 Device Pinout

Table 5.3. EFM32TO	11B5xx in QF	P64 Device Pinout
--------------------	--------------	-------------------

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	PA3	4	GPIO
PA4	5	GPIO	PA5	6	GPIO
IOVDD0	7 27 55	Digital IO power supply 0.	VSS	8 23 56	Ground
PB3	9	GPIO	PB4	10	GPIO
PB5	11	GPIO	PB6	12	GPIO

Figure 5.6. EFM32TG11B5xx in QFN64 Device Pinout

Table 5.6.	EFM32TG11B5xx	in QFN64	Device	Pinout
------------	---------------	----------	--------	--------

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VREGVSS	0 38	Voltage regulator VSS	PA0	1	GPIO
PA1	2	GPIO	PA2	3	GPIO
PA3	4	GPIO	PA4	5	GPIO
PA5	6	GPIO	PA6	7	GPIO
IOVDD0	8 27 55	Digital IO power supply 0.	PB3	9	GPIO

Figure 5.9. EFM32TG11B5xx in QFP48 Device Pinout

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	IOVDD0	4 21 43	Digital IO power supply 0.
VSS	5 17 44	Ground	PB3	6	GPIO
PB4	7	GPIO	PB5	8	GPIO
PB6	9	GPIO	PB7	10	GPIO

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB8	11	GPIO	PA8	12	GPIO
PA12	13	GPIO	PA14	14	GPIO
RESETn	15	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	PB11	16	GPIO
AVDD	18 22	Analog power supply.	PB13	19	GPIO
PB14	20	GPIO	PD4	23	GPIO
PD5	24	GPIO	PD6	25	GPIO
PD7	26	GPIO	PD8	27	GPIO
VREGVSS	28	Voltage regulator VSS	VREGSW	29	DCDC regulator switching node
VREGVDD	30	Voltage regulator VDD input	DVDD	31	Digital power supply.
DECOUPLE	32	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PE4	33	GPIO
PE5	34	GPIO	PE6	35	GPIO
PE7	36	GPIO	PF0	37	GPIO (5V)
PF1	38	GPIO (5V)	PF2	39	GPIO
PF3	40	GPIO	PF4	41	GPIO
PF5	42	GPIO	PE10	45	GPIO
PE11	46	GPIO	PE12	47	GPIO
PE13	48	GPIO			
Note:	1		-	1	

1. GPIO with 5V tolerance are indicated by (5V).

Figure 5.13. EFM32TG11B1xx in QFN32 Device Pinout

Table 5.13. EFM32TG1	1B1xx in QFN32	Device Pinout
----------------------	----------------	----------------------

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VREGVSS	0	Voltage regulator VSS	PA0	1	GPIO
PA1	2	GPIO	PA2	3	GPIO
IOVDD0	4 14 28	Digital IO power supply 0.	PC0	5	GPIO (5V)
PC1	6	GPIO (5V)	PB7	7	GPIO

Alternate	LOC	ATION	
Functionality	0 - 3	4 - 7	Description
GPIO_EM4WU4	0: PF2		Pin can be used to wake the system up from EM4
GPIO_EM4WU5	0: PE13		Pin can be used to wake the system up from EM4
GPIO_EM4WU6	0: PC4		Pin can be used to wake the system up from EM4
GPIO_EM4WU7	0: PB11		Pin can be used to wake the system up from EM4
GPIO_EM4WU9	0: PE10		Pin can be used to wake the system up from EM4
HFXTAL_N	0: PB14		High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	0: PB13		High Frequency Crystal positive pin.
I2C0_SCL	0: PA1 1: PD7 2: PC7	4: PC1 5: PF1 6: PE13 7: PE5	I2C0 Serial Clock Line input / output.
I2C0_SDA	0: PA0 1: PD6 2: PC6	4: PC0 5: PF0 6: PE12 7: PE4	I2C0 Serial Data input / output.
I2C1_SCL	0: PC5 1: PB12 3: PD5	4: PF2	I2C1 Serial Clock Line input / output.
I2C1_SDA	0: PC4 1: PB11 3: PD4	4: PC11	I2C1 Serial Data input / output.
LCD_BEXT	0: PA14		LCD external supply bypass in step down or charge pump mode. If using the LCD in step-down or charge pump mode, a 1 uF (minimum) capacitor between this pin and VSS is required. To reduce supply ripple, a larger capcitor of approximately 1000 times the total LCD segment capacitance may be used. If using the LCD with the internal supply source, this pin may be left unconnected or used as a GPIO.

Alternate	LOCA	TION	
Functionality	0 - 3	4 - 7	Description
LCD_COM0	0: PE4		LCD driver common line number 0.
LCD_COM1	0: PE5		LCD driver common line number 1.
LCD_COM2	0: PE6		LCD driver common line number 2.
LCD_COM3	0: PE7		LCD driver common line number 3.
LCD_SEG0	0: PF2		LCD segment line 0.
LCD_SEG1	0: PF3		LCD segment line 1.
LCD_SEG2	0: PF4		LCD segment line 2.
LCD_SEG3	0: PF5		LCD segment line 3.
LCD_SEG4	0: PE8		LCD segment line 4.
LCD_SEG5	0: PE9		LCD segment line 5.
LCD_SEG6	0: PE10		LCD segment line 6.
LCD_SEG7	0: PE11		LCD segment line 7.
LCD_SEG8	0: PE12		LCD segment line 8.

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8	CH7	CH6	CH5	CH4	СНЗ	CH2	CH1	CH0
APORT0X	BUSADC0X																									PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
APORT0Y	BUSADC0Y																									PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
APORT1X	BUSAX		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT1Y	BUSAY			PB13		PB11						PB5		PB3				PA15		PA13				PA9				PA5		PA3		PA1	
APORT2X	BUSBX			PB13		PB11						PB5		PB3				PA15		PA13				6A9				PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT3X	BUSCX												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				
APORT3Y	BUSCY											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4X	BUSDX											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4Y	BUSDY												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				

Table 5.18. ADC0 Bus and Pin Mapping

6. TQFP80 Package Specifications

6.1 TQFP80 Package Dimensions

Figure 6.1. TQFP80 Package Drawing

10.2 TQFP48 PCB Land Pattern

Figure 10.2. TQFP48 PCB Land Pattern Drawing

 Table 10.2.
 TQFP48 PCB Land Pattern Dimensions

Тур
8.50
8.50
0.50
0.30
1.60

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μ m minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size can be 1:1 for all pads.
- 7. A No-Clean, Type-3 solder paste is recommended.
- 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

Dimension	Min	Мах								
A	0.70	0.75	0.80							
A1	0.00	_	0.05							
A3		0.203 REF								
b	0.20	0.30								
D	5.0 BSC									
D2/E2	3.60	3.70	3.80							
E	5.0 BSC									
е	0.50 BSC									
L	0.35	0.40	0.45							
ааа	0.10									
bbb		0.10								
ссс	0.10									
ddd		0.05								
еее	0.08									

Table 11.1. QFN32 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.