

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	67
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 12bit SAR; D/A 12bit
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TJ)
Mounting Type	Surface Mount
Package / Case	80-WFQFN Exposed Pad
Supplier Device Package	80-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32tg11b520f128im80-ar

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	5.9 EFM32TG11B5xx in QFP48 Device Pinout	90
	5.10 EFM32TG11B3xx in QFP48 Device Pinout	92
	5.11 EFM32TG11B1xx in QFP48 Device Pinout	94
	5.12 EFM32TG11B5xx in QFN32 Device Pinout	96
	5.13 EFM32TG11B1xx in QFN32 Device Pinout	98
	5.14 GPIO Functionality Table	00
	5.15 Alternate Functionality Overview	04
	5.16 Analog Port (APORT) Client Maps	19
6.	TQFP80 Package Specifications	29
	6.1 TQFP80 Package Dimensions	29
	6.2 TQFP80 PCB Land Pattern	31
	6.3 TQFP80 Package Marking	32
7.	QFN80 Package Specifications.	33
	7.1 QFN80 Package Dimensions	33
	7.2 QFN80 PCB Land Pattern	35
	7.3 QFN80 Package Marking	37
8.	TQFP64 Package Specifications	38
	8.1 TQFP64 Package Dimensions	38
	8.2 TQFP64 PCB Land Pattern	40
	8.3 TQFP64 Package Marking	41
9.	QFN64 Package Specifications.	42
	9.1 QFN64 Package Dimensions	42
	9.2 QFN64 PCB Land Pattern	44
	9.3 QFN64 Package Marking	46
10.	TQFP48 Package Specifications	47
	10.1 TQFP48 Package Dimensions	47
	10.2 TQFP48 PCB Land Pattern	49
	10.3 TQFP48 Package Marking	50
11.	QFN32 Package Specifications	51
	11.1 QFN32 Package Dimensions	51
	11.2 QFN32 PCB Land Pattern	53
	11.3 QFN32 Package Marking	55
12.	Revision History.	56

3.5.4 Low Energy Timer (LETIMER)

The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC.

3.5.5 Ultra Low Power Wake-up Timer (CRYOTIMER)

The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation.

3.5.6 Pulse Counter (PCNT)

The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from among any of the internal oscillators, except the AUXHFRCO. The module may operate in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop.

3.5.7 Watchdog Timer (WDOG)

The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can also monitor autonomous systems driven by PRS.

3.6 Communications and Other Digital Peripherals

3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting:

- ISO7816 SmartCards
- IrDA
- I²S

3.6.2 Universal Asynchronous Receiver/Transmitter (UART)

The Universal Asynchronous Receiver/Transmitter is a subset of the USART module, supporting full duplex asynchronous UART communication with hardware flow control and RS-485.

3.6.3 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)

The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication possible with a minimum of software intervention and energy consumption.

3.6.4 Inter-Integrated Circuit Interface (I²C)

The I²C module provides an interface between the MCU and a serial I²C bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the I²C module allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes.

3.8.1 Analog Port (APORT)

The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog modules on a flexible selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs.

3.8.2 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the programmable threshold.

3.8.3 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential.

3.8.4 Capacitive Sense (CSEN)

The CSEN module is a dedicated Capacitive Sensing block for implementing touch-sensitive user interface elements such a switches and sliders. The CSEN module uses a charge ramping measurement technique, which provides robust sensing even in adverse conditions including radiated noise and moisture. The module can be configured to take measurements on a single port pin or scan through multiple pins and store results to memory through DMA. Several channels can also be shorted together to measure the combined capacitance or implement wake-on-touch from very low energy modes. Hardware includes a digital accumulator and an averaging filter, as well as digital threshold comparators to reduce software overhead.

3.8.5 Digital to Analog Converter (VDAC)

The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500 ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per singleended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any CPU intervention. The VDAC is available in all energy modes down to and including EM3.

3.8.6 Operational Amplifiers

The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas, and are available down to EM3. With flexible built-in programming for gain and interconnection they can be configured to support multiple common opamp functions. All pins are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to rail output. They can be used in conjunction with the VDAC module or in stand-alone configurations. The opamps save energy, PCB space, and cost as compared with standalone opamps because they are integrated on-chip.

3.8.7 Liquid Crystal Display Driver (LCD)

The LCD driver is capable of driving a segmented LCD display with up to 8x32 segments. A voltage boost function enables it to provide the LCD display with higher voltage than the supply voltage for the device. A patented charge redistribution driver can reduce the LCD module supply current by up to 40%. In addition, an animation feature can run custom animations on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up the device on a regular basis for updating data.

3.9 Reset Management Unit (RMU)

The RMU is responsible for handling reset of the EFM32TG11. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.

4. Electrical Specifications

4.1 Electrical Characteristics

All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:

- Typical values are based on T_{AMB} =25 °C and V_{DD} = 3.3 V, by production test and/or technology characterization.
- Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise.

Refer to 4.1.2.1 General Operating Conditions for more details about operational supply and temperature limits.

4.1.1 Absolute Maximum Ratings

Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.

Symbol	Test Condition	Min	Тур	Мах	Unit
T _{STG}		-50	_	150	°C
V _{DDMAX}		-0.3		3.8	V
VDDRAMPMAX		_	_	1	V / µs
V _{DIGPIN}	5V tolerant GPIO pins ^{1 2 3}	-0.3	_	Min of 5.25 and IOVDD +2	V
	LCD pins ³	-0.3	_	Min of 3.8 and IOVDD +2	V
	Standard GPIO pins	-0.3		IOVDD+0.3	V
IVDDMAX	Source	—	_	200	mA
IVSSMAX	Sink	_	_	200	mA
I _{IOMAX}	Sink		_	50	mA
	Source		_	50	mA
I _{IOALLMAX}	Sink		_	200	mA
	Source	_		200	mA
TJ	-G grade devices	-40		105	°C
1	Laurada da da a	-40		405	°C
	T _{STG} V _{DDMAX} V _{DDRAMPMAX} V _{DIGPIN} I _{VDDMAX} I _{VSSMAX} I _{IOMAX}	TSTGImage: style	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 4.1. Absolute Maximum Ratings

Note:

1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD.

 Valid for IOVDD in valid operating range or when IOVDD is undriven (high-Z). If IOVDD is connected to a low-impedance source below the valid operating range (e.g. IOVDD shorted to VSS), the pin voltage maximum is IOVDD + 0.3 V, to avoid exceeding the maximum IO current specifications.

3. To operate above the IOVDD supply rail, over-voltage tolerance must be enabled according to the GPIO_Px_OVTDIS register. Pins with over-voltage tolerance disabled have the same limits as Standard GPIO.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_CCM_VS	19 MHz HFRCO, CPU running while loop from flash	_	81	_	µA/MHz
abled and voltage scaling enabled, DCDC in Low Noise CCM mode ¹		1 MHz HFRCO, CPU running while loop from flash	—	1147		µA/MHz
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_LPM_VS	19 MHz HFRCO, CPU running while loop from flash	_	30	_	µA/MHz
abled and voltage scaling enabled, DCDC in LP mode ³		1 MHz HFRCO, CPU running while loop from flash	_	144	_	µA/MHz
Current consumption in EM1	I _{EM1_DCM}	48 MHz crystal	_	31	_	µA/MHz
mode with all peripherals dis- abled, DCDC in Low Noise		48 MHz HFRCO	_	30	_	µA/MHz
DCM mode ²		32 MHz HFRCO	_	36	_	µA/MHz
		26 MHz HFRCO	_	41	_	µA/MHz
		16 MHz HFRCO		54	_	µA/MHz
		1 MHz HFRCO		581	_	µA/MHz
Current consumption in EM1	I _{EM1_LPM}	32 MHz HFRCO		25	_	µA/MHz
mode with all peripherals dis- abled, DCDC in Low Power mode ³		26 MHz HFRCO	_	26	_	µA/MHz
		16 MHz HFRCO	_	29	_	µA/MHz
		1 MHz HFRCO	_	153	_	µA/MHz
Current consumption in EM1	IEM1_DCM_VS	19 MHz HFRCO	_	46	_	µA/MHz
mode with all peripherals dis- abled and voltage scaling enabled, DCDC in Low Noise DCM mode ²		1 MHz HFRCO	_	573	_	µA/MHz
Current consumption in EM1	I _{EM1_LPM_VS}	19 MHz HFRCO	_	25	_	µA/MHz
mode with all peripherals dis- abled and voltage scaling enabled. DCDC in LP mode ³		1 MHz HFRCO	_	140	_	µA/MHz
Current consumption in EM2 mode, with voltage scaling	I _{EM2_VS}	Full 32 kB RAM retention and RTCC running from LFXO	_	1.26	_	μΑ
enabled, DCDC in LP mode ³		Full 32 kB RAM retention and RTCC running from LFRCO	_	1.54	_	μA
		8 kB (1 bank) RAM retention and RTCC running from LFRCO ⁵	—	1.30	_	μA
Current consumption in EM3 mode, with voltage scaling enabled	IEM3_VS	Full 32 kB RAM retention and CRYOTIMER running from ULFR- CO	_	0.93		μA
Current consumption in EM4H mode, with voltage	I _{EM4H_VS}	128 byte RAM retention, RTCC running from LFXO	_	0.78	_	μΑ
scaling enabled		128 byte RAM retention, CRYO- TIMER running from ULFRCO	_	0.50		μΑ
		128 byte RAM retention, no RTCC	_	0.50	_	μA
Current consumption in EM4S mode	I _{EM4S}	No RAM retention, no RTCC		0.06		μΑ

4.1.9 Oscillators

4.1.9.1 Low-Frequency Crystal Oscillator (LFXO)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Crystal frequency	f _{LFXO}		_	32.768	_	kHz
Supported crystal equivalent series resistance (ESR)	ESR _{LFXO}		-	-	70	kΩ
Supported range of crystal load capacitance ¹	C _{LFXO_CL}		6	_	18	pF
On-chip tuning cap range ²	C _{LFXO_T}	On each of LFXTAL_N and LFXTAL_P pins	8	-	40	pF
On-chip tuning cap step size	SS _{LFXO}		_	0.25	_	pF
Current consumption after startup ³	I _{LFXO}	ESR = 70 kOhm, C_L = 7 pF, GAIN ⁴ = 2, AGC ⁴ = 1	_	273	_	nA
Start- up time	t _{LFXO}	ESR = 70 kOhm, C_L = 7 pF, GAIN ⁴ = 2	-	308	_	ms

Note:

1. Total load capacitance as seen by the crystal.

2. The effective load capacitance seen by the crystal will be C_{LFXO_T} /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal.

3. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register.

4. In CMU_LFXOCTRL register.

4.1.12 Voltage Monitor (VMON)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Supply current (including I_SENSE)	I _{VMON}	In EM0 or EM1, 1 supply monitored, T \leq 85 °C	_	6.3	TBD	μA
		In EM0 or EM1, 4 supplies monitored, T \leq 85 °C	—	12.5	TBD	μA
		In EM2, EM3 or EM4, 1 supply monitored and above threshold	—	62		nA
		In EM2, EM3 or EM4, 1 supply monitored and below threshold	_	62	_	nA
		In EM2, EM3 or EM4, 4 supplies monitored and all above threshold	_	99	_	nA
		In EM2, EM3 or EM4, 4 supplies monitored and all below threshold	—	99	_	nA
Loading of monitored supply	I _{SENSE}	In EM0 or EM1	—	2	_	μA
		In EM2, EM3 or EM4	_	2	_	nA
Threshold range	V _{VMON_RANGE}		1.62	_	3.4	V
Threshold step size	N _{VMON_STESP}	Coarse	_	200		mV
		Fine	_	20	_	mV
Response time	t _{VMON_RES}	Supply drops at 1V/µs rate	_	460	_	ns
Hysteresis	V _{VMON_HYST}			26	_	mV

Table 4.19. Voltage Monitor (VMON)

3.	uration is: INCBW = 1, HCMDIS = 1, F	RESINSEL = V	√SS, V _{INPUT} =	= 0.5 V, V _{OUTI}			
3.	uration is: INCBW = 1, HCMDIS = 1, F	RESINSEL = \	VSS, V _{INPUT} =	= 0.5 V, V _{OUT}			
xceeded, an isc					PUI - 1.0		
	plation resistor is required for stability.	See AN0038	for more infor	mation.			
3. When INCBW is set to 1 the OPAMP bandwidth is increased. This is allowed only when the non-inverting close-loop gain is ≥ 3, or the OPAMP may not be stable.							
4. Current into the load resistor is excluded. When the OPAMP is connected with closed-loop gain > 1, there will be extra current to drive the resistor feedback network. The internal resistor feedback network has total resistance of 143.5 kOhm, which will cause another ~10 μA current when the OPAMP drives 1.5 V between output and ground.							
_{PA} -0.2V, 10%-9	90% rising/falling range.						
ed. In sample-a	and-off mode, RC network after OPAM	IP will contrib	ute extra dela	y. Settling err	or < 1m\		
•	•	x Gain connec	tion, UGF is t	he gain-band	width		
 Specified configuration for Unit gain buffer configuration is: INCBW = 0, HCMDIS = 0, RESINSEL = DISABLE. V_{INPUT} = 0.5 V, V_{OUTPUT} = 0.5 V. 							
		4V to V _{OPA} -1∖	/, input offset	will change. F	'SRR		
	or is excluded. network. The in en the OPAMP oPA-0.2V, 10%-9 led. In sample-a GF is the gain-b 1/3 attenuation Unit gain buffer ut common moo	or is excluded. When the OPAMP is connected with a network. The internal resistor feedback network has en the OPAMP drives 1.5 V between output and grou opA-0.2V, 10%-90% rising/falling range. led. In sample-and-off mode, RC network after OPAM GF is the gain-bandwidth product of the OPAMP. In 32 I 1/3 attenuation of the feedback network. Unit gain buffer configuration is: INCBW = 0, HCMDI	or is excluded. When the OPAMP is connected with closed-loop ga network. The internal resistor feedback network has total resistance en the OPAMP drives 1.5 V between output and ground. _{OPA} -0.2V, 10%-90% rising/falling range. led. In sample-and-off mode, RC network after OPAMP will contribu- SF is the gain-bandwidth product of the OPAMP. In 3x Gain connect 1/3 attenuation of the feedback network. Unit gain buffer configuration is: INCBW = 0, HCMDIS = 0, RESIN ut common mode transitions the region from V _{OPA} -1.4V to V _{OPA} -1.	or is excluded. When the OPAMP is connected with closed-loop gain > 1, there were network. The internal resistor feedback network has total resistance of 143.5 kC en the OPAMP drives 1.5 V between output and ground. _{OPA} -0.2V, 10%-90% rising/falling range. led. In sample-and-off mode, RC network after OPAMP will contribute extra dela GF is the gain-bandwidth product of the OPAMP. In 3x Gain connection, UGF is the 1/3 attenuation of the feedback network. Unit gain buffer configuration is: INCBW = 0, HCMDIS = 0, RESINSEL = DISAB ut common mode transitions the region from V _{OPA} -1.4V to V _{OPA} -1V, input offset	or is excluded. When the OPAMP is connected with closed-loop gain > 1, there will be extra c network. The internal resistor feedback network has total resistance of 143.5 kOhm, which wi en the OPAMP drives 1.5 V between output and ground. _{OPA} -0.2V, 10%-90% rising/falling range. led. In sample-and-off mode, RC network after OPAMP will contribute extra delay. Settling err GF is the gain-bandwidth product of the OPAMP. In 3x Gain connection, UGF is the gain-band 1/3 attenuation of the feedback network. Unit gain buffer configuration is: INCBW = 0, HCMDIS = 0, RESINSEL = DISABLE. V _{INPUT} = ut common mode transitions the region from V _{OPA} -1.4V to V _{OPA} -1V, input offset will change. F		

Table 4.25. LCD Driver

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Frame rate	f _{LCDFR}		TBD	—	TBD	Hz
LCD supply range ²	V _{LCDIN}		1.8	_	3.8	V
LCD output voltage range	V _{LCD}	Current source mode, No external LCD capacitor	2.0	_	V _{LCDIN} -0.4	V
		Step-down mode with external LCD capacitor	2.0		V _{LCDIN}	V
		Charge pump mode with external LCD capacitor	2.0	_	Min of 3.8 and 1.9 * V _{LCDIN}	V
Contrast control step size	STEP _{CONTRAST}	Current source mode	_	64	_	mV
		Charge pump or Step-down mode	_	43	—	mV
Contrast control step accura- cy ¹	ACC _{CONTRAST}		—	+/-4	—	%

Note:

1. Step size accuracy is measured relative to the typical step size, and typ value represents one standard deviation.

2. V_{LCDIN} is selectable between the AVDD or DVDD supply pins, depending on EMU_PWRCTRL_ANASW.

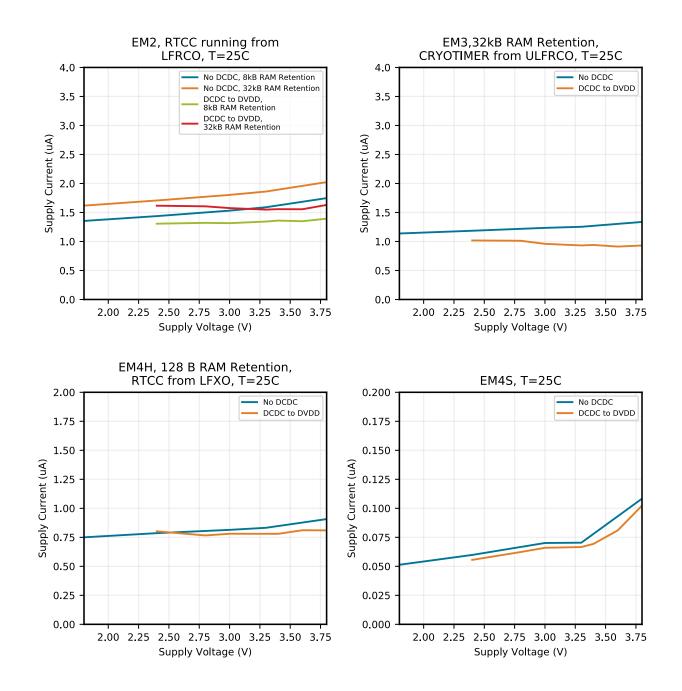
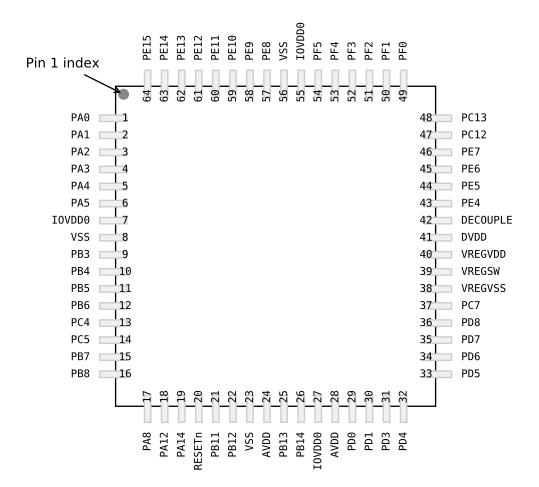



Figure 4.7. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Supply

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description		
PE15	79	GPIO	PA15	80	GPIO		
Note: 1. GPIO with 5V tolerance are indicated by (5V).							

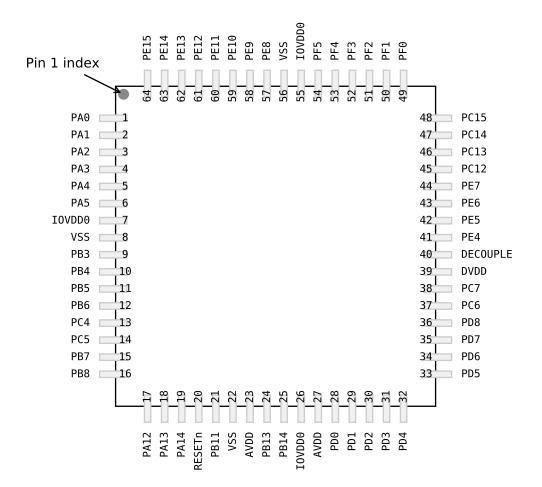


Figure 5.3. EFM32TG11B5xx in QFP64 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Table 5.3. EFM32TG11B5xx in Q	FP64 Device Pinout
-------------------------------	--------------------

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	PA3	4	GPIO
PA4	5	GPIO	PA5	6	GPIO
IOVDD0	7 27 55	Digital IO power supply 0.	VSS	8 23 56	Ground
PB3	9	GPIO	PB4	10	GPIO
PB5	11	GPIO	PB6	12	GPIO

Figure 5.4. EFM32TG11B3xx in QFP64 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Table 5.4. EFM32TG11B3xx in QFP64 Device Pir	າout
--	------

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	PA3	4	GPIO
PA4	5	GPIO	PA5	6	GPIO
IOVDD0	7 26 55	Digital IO power supply 0.	VSS	8 22 56	Ground
PB3	9	GPIO	PB4	10	GPIO
PB5	11	GPIO	PB6	12	GPIO

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB8	8	GPIO	RESETn	9	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	10	GPIO	AVDD	11 15	Analog power supply.
PB13	12	GPIO	PB14	13	GPIO
PD4	16	GPIO	PD5	17	GPIO
PD6	18	GPIO	PD7	19	GPIO
DVDD	20	Digital power supply.	DECOUPLE	21	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
PC13	22	GPIO (5V)	PC14	23	GPIO (5V)
PC15	24	GPIO (5V)	PF0	25	GPIO (5V)
PF1	26	GPIO (5V)	PF2	27	GPIO
PE10	29	GPIO	PE11	30	GPIO
PE12	31	GPIO	PE13	32	GPIO
Note:		,			

1. GPIO with 5V tolerance are indicated by (5V).

Alternate	LOCA	ATION	
Functionality	0 - 3	4 - 7	Description
CAN0_TX	0: PC1 1: PF2 2: PD1		CAN0 TX.
CMU_CLK0	0: PA2 1: PC12 2: PD7	4: PF2 5: PA12	Clock Management Unit, clock output number 0.
CMU_CLK1	0: PA1 1: PD8 2: PE12	4: PF3 5: PB11	Clock Management Unit, clock output number 1.
CMU_CLK2	0: PA0 1: PA3 2: PD6	4: PA3	Clock Management Unit, clock output number 2.
CMU_CLKI0	0: PD4 1: PA3 2: PB8 3: PB13	6: PE12 7: PB11	Clock Management Unit, clock input number 0.
DBG_SWCLKTCK	0: PF0		Debug-interface Serial Wire clock input and JTAG Test Clock. Note that this function is enabled to the pin out of reset, and has a built-in pull down.
DBG_SWDIOTMS	0: PF1		Debug-interface Serial Wire data input / output and JTAG Test Mode Select. Note that this function is enabled to the pin out of reset, and has a built-in pull up.
DBG_TDI	0: PF5		Debug-interface JTAG Test Data In. Note that this function becomes available after the first valid JTAG command is re- ceived, and has a built-in pull up when JTAG is active.
DBG_TDO	0: PF2		Debug-interface JTAG Test Data Out. Note that this function becomes available after the first valid JTAG command is re- ceived.
GPIO_EM4WU0	0: PA0		Pin can be used to wake the system up from EM4
GPIO_EM4WU1	0: PA6		Pin can be used to wake the system up from EM4
GPIO_EM4WU2	0: PC9		Pin can be used to wake the system up from EM4
GPIO_EM4WU3	0: PF1		Pin can be used to wake the system up from EM4

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	СН9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
CE	CEXT																																
APORT1X	BUSAX		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT1Y	BUSAY			PB13		PB11						PB5		PB3				PA15		PA13				PA9				PA5		PA3		PA1	
APORT3X	BUSCX												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				
APORT3Y	BUSCY											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
CE	хт_	SEN	ISE																														
APORT2X	BUSBX			PB13		PB11						PB5		PB3				PA15		PA13				6Yd				PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PAO
APORT4X	BUSDX											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4Y	BUSDY												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				

Table 5.19. CSEN Bus and Pin Mapping

EFM32TG11 Family Data Sheet Pin Definitions

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
OP	A3_	00	Г																														
APORT1Y	BUSAY			PB13		PB11						PB5		PB3				PA15		PA13				PA9				PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT3Y	BUSCY											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4Y	BUSDY												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				
OP	A3_	P																															
APORT1X	BUSAX		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PAO
APORT2X	BUSBX			PB13		PB11						PB5		PB3				PA15		PA13				6A9				PA5		PA3		PA1	
APORT3X	BUSCX												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				
APORT4X	BUSDX											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
VD	AC	0_0	UT0	/ 0	PA0	_οι	JT						1			1					1	1					1						
APORT1Y	BUSAY			PB13		PB11						PB5		PB3				PA15		PA13				6A9				PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT3Y	BUSCY											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4Y	BUSDY												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				

Table 6.2. TQFP80 PCB Land Pattern Dimensions

Dimension	Min	Мах
C1	13.30	13.40
C2	13.30	13.40
E	0.50	BSC
x	0.20	0.30
Y	1.40	1.50

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size can be 1:1 for all pads.
- 7. A No-Clean, Type-3 solder paste is recommended.
- 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

6.3 TQFP80 Package Marking

Figure 6.3. TQFP80 Package Marking

The package marking consists of:

- PPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

Dimension	Min	Тур	Мах							
A	0.70	0.75	0.80							
A1	0.00	_	0.05							
b	0.20	0.25	0.30							
A3		0.203 REF								
D		9.00 BSC								
е		0.40 BSC								
E		9.00 BSC								
D2	7.10	7.20	7.30							
E2	7.10	7.20	7.30							
L	0.35	0.40	0.45							
ааа		0.10								
bbb		0.10								
ссс	0.10									
ddd	0.05									
eee	0.08									
Nata										

Table 7.1. QFN80 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Dimension	Min	Тур	Мах							
A	_	1.15	1.20							
A1	0.05									
A2	0.95	0.95 1.00								
b	0.17	0.17 0.22 0.2								
b1	0.17	0.20	0.23							
с	0.09	_	0.20							
c1	0.09	—	0.16							
D		12.00 BSC								
D1		10.00 BSC								
е		0.50 BSC								
E		12.00 BSC								
E1		10.00 BSC								
L	0.45	0.60	0.75							
L1		1.00 REF								
R1	0.08	—	—							
R2	0.08	_	0.20							
S	0.20	—	—							
θ	0	3.5	7							
θ1	0	0 — 0.10								
θ2	11	12 13								
θ3	11	12	13							
Note:		·								

Table 8.1. TQFP64 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9.2 QFN64 PCB Land Pattern

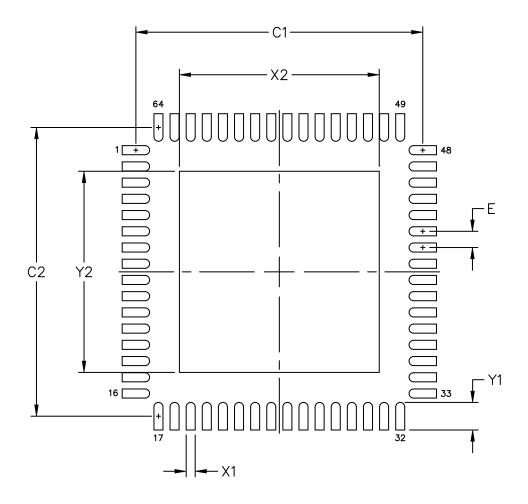


Figure 9.2. QFN64 PCB Land Pattern Drawing