

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	63
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 12bit SAR; D/A 12bit
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TJ)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32tg11b520f128iq80-a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List

The EFM32TG11 highlighted features are listed below.

ARM Cortex-M0+ CPU platform

- High performance 32-bit processor @ up to 48 MHz
- Memory Protection Unit
- Wake-up Interrupt Controller
- Flexible Energy Management System
 - 37 µA/MHz in Active Mode (EM0)
 - 1.30 µA EM2 Deep Sleep current (8 kB RAM retention and RTCC running from LFRCO)
- Integrated DC-DC buck converter
- Backup Power Domain
 - RTCC and retention registers in a separate power domain, available in all energy modes
 - Operation from backup battery when main power absent/ insufficient
- Up to 128 kB flash program memory
- Up to 32 kB RAM data memory
- Communication Interfaces
 - CAN Bus Controller
 - Version 2.0A and 2.0B up to 1 Mbps
 - 4 × Universal Synchronous/Asynchronous Receiver/ Transmitter
 - UART/SPI/SmartCard (ISO 7816)/IrDA/I2S/LIN
 - Triple buffered full/half-duplex operation with flow control
 - Ultra high speed (24 MHz) operation on one instance
 - 1 × Universal Asynchronous Receiver/ Transmitter
 - 1 × Low Energy UART
 - Autonomous operation with DMA in Deep Sleep Mode
 - $2 \times I^2C$ Interface with SMBus support
 - Address recognition in EM3 Stop Mode

Up to 67 General Purpose I/O Pins

- Configurable push-pull, open-drain, pull-up/down, input filter, drive strength
- Configurable peripheral I/O locations
- · 5 V tolerance on select pins
- Asynchronous external interrupts
- Output state retention and wake-up from Shutoff Mode
- Up to 8 Channel DMA Controller
- Up to 8 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling
- Hardware Cryptography
 - AES 128/256-bit keys
 - ECC B/K163, B/K233, P192, P224, P256
 - SHA-1 and SHA-2 (SHA-224 and SHA-256)
 - True Random Number Generator (TRNG)
- Hardware CRC engine
 - Single-cycle computation with 8/16/32-bit data and 16-bit (programmable)/32-bit (fixed) polynomial
- Security Management Unit (SMU)
 - Fine-grained access control for on-chip peripherals
- Integrated Low-energy LCD Controller with up to 8 × 32 segments
 - Voltage boost, contrast and autonomous animation
 - Patented low-energy LCD driver
- Ultra Low-Power Precision Analog Peripherals
 - 12-bit 1 Msamples/s Analog to Digital Converter (ADC)
 - On-chip temperature sensor
 - 2 × 12-bit 500 ksamples/s Digital to Analog Converter (VDAC)
 - Up to 2 × Analog Comparator (ACMP)
 - Up to 4 × Operational Amplifier (OPAMP)
 - Robust current-based capacitive sensing with up to 38 inputs and wake-on-touch (CSEN)
 - Up to 62 GPIO pins are analog-capable. Flexible analog peripheral-to-pin routing via Analog Port (APORT)
 - Supply Voltage Monitor

3.3 General Purpose Input/Output (GPIO)

EFM32TG11 has up to 67 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The GPIO subsystem supports asynchronous external pin interrupts.

3.4 Clocking

3.4.1 Clock Management Unit (CMU)

The Clock Management Unit controls oscillators and clocks in the EFM32TG11. Individual enabling and disabling of clocks to all peripheral modules is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators.

3.4.2 Internal and External Oscillators

The EFM32TG11 supports two crystal oscillators and fully integrates four RC oscillators, listed below.

- A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 4 to 48 MHz are supported. An external clock source such as a TCXO can also be applied to the HFXO input for improved accuracy over temperature.
- A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.
- An integrated high frequency RC oscillator (HFRCO) is available for the MCU system. The HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range. When crystal accuracy is not required, it can be operated in free-running mode at a number of factory-calibrated frequencies. A digital phase-locked loop (DPLL) feature allows the HFRCO to achieve higher accuracy and stability by referencing other available clock sources such as LFXO and HFXO.
- An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC with a wide frequency range.
- An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required.
- An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes.

3.5 Counters/Timers and PWM

3.5.1 Timer/Counter (TIMER)

TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit TIMER_0 only.

3.5.2 Wide Timer/Counter (WTIMER)

WTIMER peripherals function just as TIMER peripherals, but are 32 bits wide. They keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each WTIMER is a 32-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the WTIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit WTIMER_0 only.

3.5.3 Real Time Counter and Calendar (RTCC)

The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. The RTCC includes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes down to EM4H.

3.8.1 Analog Port (APORT)

The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog modules on a flexible selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs.

3.8.2 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the programmable threshold.

3.8.3 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential.

3.8.4 Capacitive Sense (CSEN)

The CSEN module is a dedicated Capacitive Sensing block for implementing touch-sensitive user interface elements such a switches and sliders. The CSEN module uses a charge ramping measurement technique, which provides robust sensing even in adverse conditions including radiated noise and moisture. The module can be configured to take measurements on a single port pin or scan through multiple pins and store results to memory through DMA. Several channels can also be shorted together to measure the combined capacitance or implement wake-on-touch from very low energy modes. Hardware includes a digital accumulator and an averaging filter, as well as digital threshold comparators to reduce software overhead.

3.8.5 Digital to Analog Converter (VDAC)

The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500 ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per singleended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any CPU intervention. The VDAC is available in all energy modes down to and including EM3.

3.8.6 Operational Amplifiers

The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas, and are available down to EM3. With flexible built-in programming for gain and interconnection they can be configured to support multiple common opamp functions. All pins are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to rail output. They can be used in conjunction with the VDAC module or in stand-alone configurations. The opamps save energy, PCB space, and cost as compared with standalone opamps because they are integrated on-chip.

3.8.7 Liquid Crystal Display Driver (LCD)

The LCD driver is capable of driving a segmented LCD display with up to 8x32 segments. A voltage boost function enables it to provide the LCD display with higher voltage than the supply voltage for the device. A patented charge redistribution driver can reduce the LCD module supply current by up to 40%. In addition, an animation feature can run custom animations on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up the device on a regular basis for updating data.

3.9 Reset Management Unit (RMU)

The RMU is responsible for handling reset of the EFM32TG11. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.

3.11 Memory Map

The EFM32TG11 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.

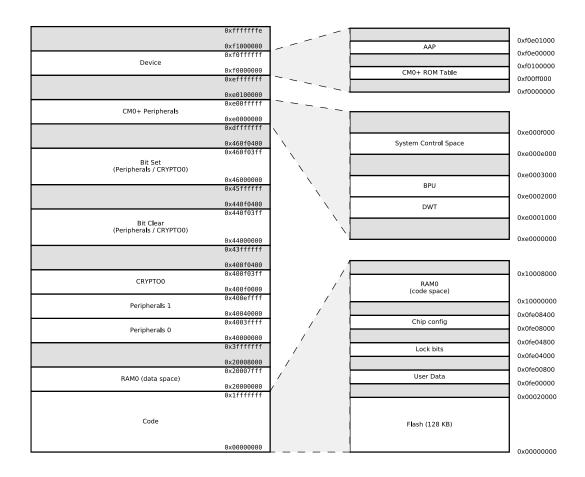


Figure 3.2. EFM32TG11 Memory Map — Core Peripherals and Code Space

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Note:						
		mode is calculated using R_{BYP} _min+ILOAD * R_{BYP} _max.	from the DCDC spec	cification table	e. Requiremer	nts for
2. VREGVDD must be	e tied to AVDD. Both	VREGVDD and AVDD minimum	voltages must be sa	atisfied for the	part to opera	te.
		characteristic specs of the capa oss temperature and DC bias.	citor used on DECOU	JPLE to ensu	re its capacita	ance val-
	will be dependent on	transitions occur at a rate of 10 r the value of the DECOUPLE ou				
5. When the CSEN pe	ripheral is used with	chopping enabled (CSEN_CTRI	CHOPEN = ENAB	LE), IOVDD n	nust be equal	to AVDE
cation. T _A (max) =		due to device self-heating, which x PowerDissipation). Refer to th		•	-	

4.1.3 Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Thermal resistance, QFN32	THETA _{JA_QFN32}	4-Layer PCB, Air velocity = 0 m/s	_	25.7	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	23.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	21.3	_	°C/W
Thermal resistance, TQFP48	THE-	4-Layer PCB, Air velocity = 0 m/s	_	44.1	_	°C/W
Package	TA _{JA_TQFP48}	4-Layer PCB, Air velocity = 1 m/s		43.5	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	42.3	_	°C/W
Thermal resistance, QFN64	THETA _{JA_QFN64}	4-Layer PCB, Air velocity = 0 m/s	_	20.9	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	18.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	16.4	_	°C/W
Thermal resistance, TQFP64	THE- TA _{JA_TQFP64}	4-Layer PCB, Air velocity = 0 m/s	_	37.3	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	35.6	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	33.8	_	°C/W
Thermal resistance, QFN80	THETA _{JA_QFN80}	4-Layer PCB, Air velocity = 0 m/s		20.9	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	18.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	16.4	_	°C/W
Thermal resistance, TQFP80	THE-	4-Layer PCB, Air velocity = 0 m/s	_	49.3	_	°C/W
Package	TA _{JA_TQFP80}	4-Layer PCB, Air velocity = 1 m/s	_	44.5	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	42.6	_	°C/W

Table 4.3. Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM4H mode, with voltage scaling enabled	I _{EM4H_VS}	128 byte RAM retention, RTCC running from LFXO	—	0.82		μA
		128 byte RAM retention, CRYO- TIMER running from ULFRCO	—	0.45	_	μA
		128 byte RAM retention, no RTCC	—	0.45	TBD	μA
Current consumption in EM4S mode	I _{EM4S}	No RAM retention, no RTCC	—	0.07	TBD	μA
Current consumption of pe- ripheral power domain 1, with voltage scaling enabled	IPD1_VS	Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled ¹	_	0.18	_	μA
Current consumption of pe- ripheral power domain 2, with voltage scaling enabled	IPD2_VS	Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled ¹	_	0.18	_	μA

Note:

1. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.3 EM2 and EM3 Power Domains for a list of the peripherals in each power domain.

2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1

4.1.6.2 Current Consumption 3.3 V using DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = 1.8 V DC-DC output. T = 25 °C. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_DCM	48 MHz crystal, CPU running while loop from flash	_	38	-	µA/MHz
abled, DCDC in Low Noise DCM mode ²		48 MHz HFRCO, CPU running while loop from flash	_	37	_	µA/MHz
		48 MHz HFRCO, CPU running Prime from flash	_	45	_	µA/MHz
		48 MHz HFRCO, CPU running CoreMark loop from flash	_	53	_	µA/MHz
		32 MHz HFRCO, CPU running while loop from flash	_	43	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash		47	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash		61	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash		587	_	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_CCM	48 MHz crystal, CPU running while loop from flash	_	49	_	µA/MHz
abled, DCDC in Low Noise CCM mode ¹		48 MHz HFRCO, CPU running while loop from flash		48	_	µA/MHz
		48 MHz HFRCO, CPU running Prime from flash	_	55	_	µA/MHz
		48 MHz HFRCO, CPU running CoreMark loop from flash		63	_	µA/MHz
		32 MHz HFRCO, CPU running while loop from flash		60	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash		68	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash		96	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash		1157	_	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	I _{ACTIVE} LPM	32 MHz HFRCO, CPU running while loop from flash	_	32	_	µA/MHz
abled, DCDC in LP mode ³		26 MHz HFRCO, CPU running while loop from flash		33	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash		36	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	_	156	_	µA/MHz

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM4H mode, with voltage scaling enabled	I _{EM4H_VS}	128 byte RAM retention, RTCC running from LFXO	—	0.75	_	μA
		128 byte RAM retention, CRYO- TIMER running from ULFRCO	—	0.37	_	μA
		128 byte RAM retention, no RTCC	_	0.37	_	μA
Current consumption in EM4S mode	I _{EM4S}	No RAM retention, no RTCC	—	0.05	_	μA
Current consumption of pe- ripheral power domain 1, with voltage scaling enabled	I _{PD1_VS}	Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled ¹	_	0.18	_	μA
Current consumption of pe- ripheral power domain 2, with voltage scaling enabled	I _{PD2_VS}	Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled ¹	_	0.18	_	μΑ

Note:

1. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.3 EM2 and EM3 Power Domains for a list of the peripherals in each power domain.

2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Wake up time from EM1	t _{EM1_WU}		_	3	_	AHB Clocks
Wake up from EM2	t _{EM2_WU}	Code execution from flash		10.1	_	μs
		Code execution from RAM	_	3.1	_	μs
Wake up from EM3	t _{EM3_WU}	Code execution from flash	_	10.1	_	μs
		Code execution from RAM	_	3.1	_	μs
Wake up from EM4H ¹	t _{EM4H_WU}	Executing from flash	—	88	—	μs
Wake up from EM4S ¹	t _{EM4S_WU}	Executing from flash	_	282	_	μs
Time from release of reset	t _{RESET}	Soft Pin Reset released	_	50	_	μs
source to first instruction ex- ecution		Any other reset released	_	352	_	μs
Power mode scaling time	t _{SCALE}	VSCALE0 to VSCALE2, HFCLK = 19 MHz ^{4 2}	_	31.8	_	μs
		VSCALE2 to VSCALE0, HFCLK = 19 MHz ³	_	4.3	_	μs

Table 4.9. Wake Up Times

Note:

1. Time from wake up request until first instruction is executed. Wakeup results in device reset.

2. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV/μs for approximately 20 μs. During this transition, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 μF capacitor) to 70 mA (with a 2.7 μF capacitor).

3. Scaling down from VSCALE2 to VSCALE0 requires approximately 2.8 µs + 29 HFCLKs.

4. Scaling up from VSCALE0 to VSCALE2 requires approximately 30.3 µs + 28 HFCLKs.

4.1.9 Oscillators

4.1.9.1 Low-Frequency Crystal Oscillator (LFXO)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Crystal frequency	f _{LFXO}		_	32.768	_	kHz
Supported crystal equivalent series resistance (ESR)	ESR _{LFXO}		-	-	70	kΩ
Supported range of crystal load capacitance ¹	C _{LFXO_CL}		6	_	18	pF
On-chip tuning cap range ²	C _{LFXO_T}	On each of LFXTAL_N and LFXTAL_P pins	8	-	40	pF
On-chip tuning cap step size	SS _{LFXO}		_	0.25	_	pF
Current consumption after startup ³	I _{LFXO}	ESR = 70 kOhm, C_L = 7 pF, GAIN ⁴ = 2, AGC ⁴ = 1	_	273	_	nA
Start- up time	t _{LFXO}	ESR = 70 kOhm, C_L = 7 pF, GAIN ⁴ = 2	-	308	_	ms

Note:

1. Total load capacitance as seen by the crystal.

2. The effective load capacitance seen by the crystal will be C_{LFXO_T} /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal.

3. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register.

4. In CMU_LFXOCTRL register.

4.1.13 Analog to Digital Converter (ADC)

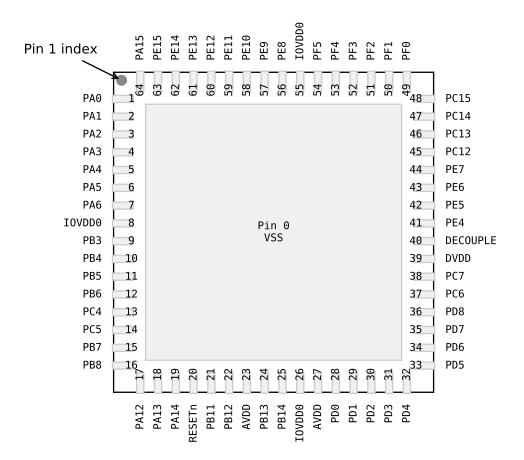

Specified at 1 Msps, ADCCLK = 16 MHz, BIASPROG = 0, GPBIASACC = 0, unless otherwise indicated.

Table 4.20. Analog to Digital Converter (ADC)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Resolution	VRESOLUTION		6	—	12	Bits
Input voltage range ⁵	V _{ADCIN}	Single ended	_	—	V _{FS}	V
		Differential	-V _{FS} /2	_	V _{FS} /2	V
Input range of external refer- ence voltage, single ended and differential	V _{ADCREFIN_P}		1	_	V _{AVDD}	V
Power supply rejection ²	PSRR _{ADC}	At DC	_	80	—	dB
Analog input common mode rejection ratio	CMRR _{ADC}	At DC	_	80	-	dB
Current from all supplies, us- ing internal reference buffer.	I _{ADC_CONTI-} NOUS_LP	1 Msps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ³	_	270	TBD	μA
Continous operation. WAR- MUPMODE ⁴ = KEEPADC- WARM		250 ksps / 4 MHz ADCCLK, BIA- SPROG = 6, GPBIASACC = 1 ³	_	125	-	μA
		62.5 ksps / 1 MHz ADCCLK, BIA- SPROG = 15, GPBIASACC = 1 ³	_	80	-	μA
Current from all supplies, us- ing internal reference buffer. Duty-cycled operation. WAR- MUPMODE ⁴ = NORMAL	I _{ADC_NORMAL_LP}	35 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ³	_	45	-	μA
		5 ksps / 16 MHz ADCCLK BIA- SPROG = 0, GPBIASACC = 1 ³	_	8	-	μA
Current from all supplies, us- ing internal reference buffer.	IADC_STAND- BY_LP	125 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ³	_	105	-	μA
Duty-cycled operation. AWARMUPMODE ⁴ = KEEP- INSTANDBY or KEEPIN- SLOWACC		35 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 1 ³	_	70	_	μA
Current from all supplies, us- ing internal reference buffer.	I _{ADC_CONTI-} NOUS_HP	1 Msps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 0 ³	_	325	-	μA
Continous operation. WAR- MUPMODE ⁴ = KEEPADC- WARM		250 ksps / 4 MHz ADCCLK, BIA- SPROG = 6, GPBIASACC = 0 ³	_	175	-	μA
		62.5 ksps / 1 MHz ADCCLK, BIA- SPROG = 15, GPBIASACC = 0 ³	_	125	-	μA
Current from all supplies, us- ing internal reference buffer.	IADC_NORMAL_HP	35 ksps / 16 MHz ADCCLK, BIA-SPROG = 0, GPBIASACC = 0 3	_	85	-	μA
Duty-cycled operation. WAR- MUPMODE ⁴ = NORMAL		5 ksps / 16 MHz ADCCLK BIA- SPROG = 0, GPBIASACC = 0 ³	_	16	-	μA
Current from all supplies, us- ing internal reference buffer.	IADC_STAND- BY_HP	125 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 0 ³	—	160	-	μA
Duty-cycled operation. AWARMUPMODE ⁴ = KEEP- INSTANDBY or KEEPIN- SLOWACC		35 ksps / 16 MHz ADCCLK, BIA- SPROG = 0, GPBIASACC = 0 ³	_	125	-	μA
Current from HFPERCLK	IADC_CLK	HFPERCLK = 16 MHz	_	166	_	μΑ

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Hysteresis (V _{CM} = 1.25 V,	V _{ACMPHYST}	HYSTSEL ⁵ = HYST0	TBD	0	TBD	mV
$BIASPROG^4 = 0x10, FULL-BIAS^4 = 1)$		HYSTSEL ⁵ = HYST1	TBD	18	TBD	mV
		HYSTSEL ⁵ = HYST2	TBD	33	TBD	mV
		HYSTSEL ⁵ = HYST3	TBD	46	TBD	mV
		HYSTSEL ⁵ = HYST4	TBD	57	TBD	mV
		HYSTSEL ⁵ = HYST5	TBD	68	TBD	mV
		HYSTSEL ⁵ = HYST6	TBD	79	TBD	mV
		HYSTSEL ⁵ = HYST7	TBD	90	TBD	mV
		HYSTSEL ⁵ = HYST8	TBD	0	TBD	mV
		HYSTSEL ⁵ = HYST9	TBD	-18	TBD	mV
		HYSTSEL ⁵ = HYST10	TBD	-33	TBD	mV
		HYSTSEL ⁵ = HYST11	TBD	-45	TBD	mV
		HYSTSEL ⁵ = HYST12	TBD	-57	TBD	mV
		HYSTSEL ⁵ = HYST13	TBD	-67	TBD	mV
		HYSTSEL ⁵ = HYST14	TBD	-78	TBD	mV
		HYSTSEL ⁵ = HYST15	TBD	-88	TBD	mV
Comparator delay ³	t _{ACMPDELAY}	$BIASPROG^4 = 1$, $FULLBIAS^4 = 0$	_	30	_	μs
		$BIASPROG^4 = 0x10, FULLBIAS^4 = 0$	_	3.7	_	μs
		BIASPROG ⁴ = 0x02, FULLBIAS ⁴ = 1		360	_	ns
		BIASPROG ⁴ = 0x20, FULLBIAS ⁴ = 1	_	35	_	ns
Offset voltage	VACMPOFFSET	BIASPROG ⁴ =0x10, FULLBIAS ⁴ = 1	TBD	_	TBD	mV
Reference voltage	V _{ACMPREF}	Internal 1.25 V reference	TBD	1.25	TBD	V
		Internal 2.5 V reference	TBD	2.5	TBD	V
Capacitive sense internal re- sistance	R _{CSRES}	CSRESSEL ⁶ = 0	—	infinite	_	kΩ
		CSRESSEL ⁶ = 1	—	15	_	kΩ
		CSRESSEL ⁶ = 2		27	_	kΩ
		CSRESSEL ⁶ = 3	—	39		kΩ
		CSRESSEL ⁶ = 4		51		kΩ
		CSRESSEL ⁶ = 5	_	100	_	kΩ
		CSRESSEL ⁶ = 6		162	_	kΩ
		CSRESSEL ⁶ = 7		235	_	kΩ

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB4	10	GPIO	PB5	11	GPIO
PB6	12	GPIO	PC0	13	GPIO (5V)
PC1	14	GPIO (5V)	PC2	15	GPIO (5V)
PC3	16	GPIO (5V)	PC4	17	GPIO
PC5	18	GPIO	PB7	19	GPIO
PB8	20	GPIO	PA8	21	GPIO
PA9	22	GPIO	PA10	23	GPIO
PA12	24	GPIO	PA13	25	GPIO (5V)
PA14	26	GPIO	RESETn	27	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	28	GPIO	PB12	29	GPIO
AVDD	30 34	Analog power supply.	PB13	31	GPIO
PB14	32	GPIO	PD0	35	GPIO (5V)
PD1	36	GPIO	PD2	37	GPIO (5V)
PD3	38	GPIO	PD4	39	GPIO
PD5	40	GPIO	PD6	41	GPIO
PD7	42	GPIO	PD8	43	GPIO
PC6	44	GPIO	PC7	45	GPIO
VREGSW	47	DCDC regulator switching node	VREGVDD	48	Voltage regulator VDD input
DVDD	49	Digital power supply.	DECOUPLE	50	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
PE4	52	GPIO	PE5	53	GPIO
PE6	54	GPIO	PE7	55	GPIO
PC8	56	GPIO	PC9	57	GPIO
PC10	58	GPIO (5V)	PC11	59	GPIO (5V)
PC12	60	GPIO (5V)	PC13	61	GPIO (5V)
PC14	62	GPIO (5V)	PC15	63	GPIO (5V)
PF0	64	GPIO (5V)	PF1	65	GPIO (5V)
PF2	66	GPIO	PF3	67	GPIO
PF4	68	GPIO	PF5	69	GPIO
PE8	71	GPIO	PE9	72	GPIO
PE10	73	GPIO	PE11	74	GPIO
BODEN	75	Brown-Out Detector Enable. This pin may be left disconnected or tied to AVDD.	PE12	76	GPIO
PE13	77	GPIO	PE14	78	GPIO

Figure 5.7. EFM32TG11B3xx in QFN64 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VREGVSS	0	Voltage regulator VSS	PA0	1	GPIO
PA1	2	GPIO	PA2	3	GPIO
PA3	4	GPIO	PA4	5	GPIO
PA5	6	GPIO	PA6	7	GPIO
IOVDD0	8 26 55	Digital IO power supply 0.	PB3	9	GPIO
PB4	10	GPIO	PB5	11	GPIO

GPIO Name	Pin Alternate Functionality / Description			
	Analog	Timers	Communication	Other
PC4	BUSACMP0Y BU- SACMP0X OPA0_P LCD_SEG24	TIM0_CC0 #5 TIM0_CDTI2 #3 LE- TIM0_OUT0 #3	US2_CLK #0 U0_TX #4 I2C1_SDA #0	LES_CH4 GPIO_EM4WU6
PC5	BUSACMP0Y BU- SACMP0X OPA0_N LCD_SEG25	TIM0_CC1 #5 LE- TIM0_OUT1 #3	US2_CS #0 U0_RX #4 I2C1_SCL #0	LES_CH5
PB7	LFXTAL_P	TIM0_CDTI0 #4 TIM1_CC0 #3	US0_TX #4 US1_CLK #0 US3_RX #2 U0_CTS #4	
PB8	LFXTAL_N	TIM0_CDTI1 #4 TIM1_CC1 #3	US0_RX #4 US1_CS #0 U0_RTS #4	CMU_CLKI0 #2
PA8	BU_STAT	TIM0_CC0 #6 LE- TIM0_OUT0 #6	US2_RX #2	
PA9	BUSAY BUSBX LCD_SEG26	TIM0_CC1 #6 LE- TIM0_OUT1 #6	US2_CLK #2	
PA10	BUSBY BUSAX LCD_SEG27	TIM0_CC2 #6	US2_CS #2	
PA12	BU_VOUT	WTIM0_CDTI0 #2	US0_CLK #5 US2_RTS #2	CMU_CLK0 #5 ACMP1_O #3
PA13	BUSAY BUSBX	TIM0_CC2 #7 WTIM0_CDTI1 #2	US0_CS #5 US2_TX #3	
PA14	BUSBY BUSAX LCD_BEXT	WTIM0_CDTI2 #2	US1_TX #6 US2_RX #3 US3_RTS #2	ACMP1_O #4
PB11	BUSAY BUSBX VDAC0_OUT0 / OPA0_OUT LCD_SEG28	TIM0_CDTI2 #4 TIM1_CC2 #3 LE- TIM0_OUT0 #1 PCNT0_S1IN #7	US0_CTS #5 US1_CLK #5 US2_CS #3 I2C1_SDA #1	CMU_CLK1 #5 CMU_CLKI0 #7 ACMP0_O #3 GPIO_EM4WU7
PB12	BUSBY BUSAX VDAC0_OUT1 / OPA1_OUT LCD_SEG29	TIM1_CC3 #3 LE- TIM0_OUT1 #1 PCNT0_S0IN #7	US2_CTS #1 I2C1_SCL #1	
PB13	BUSAY BUSBX HFXTAL_P	WTIM1_CC0 #0	US0_CLK #4 US1_CTS #5 LEU0_TX #1	CMU_CLKI0 #3 PRS_CH7 #0
PB14	BUSBY BUSAX HFXTAL_N	WTIM1_CC1 #0	US0_CS #4 US1_RTS #5 LEU0_RX #1	PRS_CH6 #1
PD0	VDAC0_OUT0ALT / OPA0_OUTALT #4 OPA2_OUTALT BU- SADC0Y BUSADC0X	WTIM1_CC2 #0	CAN0_RX #2 US1_TX #1	
PD1	VDAC0_OUT1ALT / OPA1_OUTALT #4 BU- SADC0Y BUSADC0X OPA3_OUT	TIM0_CC0 #2 WTIM1_CC3 #0	CAN0_TX #2 US1_RX #1	
PD2	BUSADC0Y BUSADC0X	TIM0_CC1 #2 WTIM1_CC0 #1	US1_CLK #1	
PD3	BUSADC0Y BUSADC0X OPA2_N LCD_SEG30	TIM0_CC2 #2 WTIM1_CC1 #1	US1_CS #1	
PD4	BUSADC0Y BUSADC0X OPA2_P LCD_SEG31	WTIM0_CDTI0 #4 WTIM1_CC2 #1	US1_CTS #1 US3_CLK #2 LEU0_TX #0 I2C1_SDA #3	CMU_CLKI0 #0

5.15 Alternate Functionality Overview

A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings and the associated GPIO pin. Refer to 5.14 GPIO Functionality Table for a list of functions available on each GPIO pin.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Alternate	LOC	ATION	
Functionality	0 - 3	4 - 7	Description
	0: PE13	4: PA6	
ACMP0_O	2: PD6 3: PB11	7: PB3	Analog comparator ACMP0, digital output.
	0: PF2	4: PA14	
ACMP1_O	2: PD7 3: PA12	7: PA5	Analog comparator ACMP1, digital output.
	0: PD7		
ADC0_EXTN			Analog to digital converter ADC0 external reference input negative pin.
	0: PD6		
ADC0_EXTP			Analog to digital converter ADC0 external reference input positive pin.
	0: PF1		
BOOT_RX			Bootloader RX.
	0: PF0		
BOOT_TX			Bootloader TX.
	0: PA8		
BU_STAT			Backup Power Domain status, whether or not the system is in backup mode.
	0: PD8		
BU_VIN			Battery input for Backup Power Domain.
	0: PA12		
BU_VOUT			Power output for Backup Power Domain.
	0: PC0 1: PF0		
CAN0_RX	2: PD0		CAN0 RX.

Table 5.15. Alternate Functionality Overview

Alternate	LOC	ATION	
Functionality	0 - 3	4 - 7	Description
GPIO_EM4WU4	0: PF2		Pin can be used to wake the system up from EM4
GPIO_EM4WU5	0: PE13		Pin can be used to wake the system up from EM4
GPIO_EM4WU6	0: PC4		Pin can be used to wake the system up from EM4
GPIO_EM4WU7	0: PB11		Pin can be used to wake the system up from EM4
GPIO_EM4WU9	0: PE10		Pin can be used to wake the system up from EM4
HFXTAL_N	0: PB14		High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	0: PB13		High Frequency Crystal positive pin.
I2C0_SCL	0: PA1 1: PD7 2: PC7	4: PC1 5: PF1 6: PE13 7: PE5	I2C0 Serial Clock Line input / output.
I2C0_SDA	0: PA0 1: PD6 2: PC6	4: PC0 5: PF0 6: PE12 7: PE4	I2C0 Serial Data input / output.
I2C1_SCL	0: PC5 1: PB12 3: PD5	4: PF2	I2C1 Serial Clock Line input / output.
I2C1_SDA	0: PC4 1: PB11 3: PD4	4: PC11	I2C1 Serial Data input / output.
	0: PA14		LCD external supply bypass in step down or charge pump mode. If using the LCD in step-down or charge pump mode, a 1 uF (minimum) capacitor between this pin and VSS is required.
LCD_BEXT			To reduce supply ripple, a larger capcitor of approximately 1000 times the total LCD segment capacitance may be used. If using the LCD with the internal supply source, this pin may be left unconnected or used as a GPIO.

Table 11.2. QFN32 PCB Land Pattern Dimensions

Dimension	Тур
C1	5.00
C2	5.00
E	0.50
X1	0.30
Y1	0.80
X2	3.80
Y2	3.80

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.

7. A 2x2 array of 0.9 mm square openings on a 1.2 mm pitch should be used for the center ground pad.

8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 11.3. QFN32 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

12. Revision History

Revision 0.5

February, 2018

- 4.1 Electrical Characteristics updated with latest characterization data and production test limits.
- Added 4.1.3 Thermal Characteristics.
- Added 4.2 Typical Performance Curves section.
- Corrected OPA / VDAC output connections in Figure 5.14 APORT Connection Diagram on page 119.

Revision 0.1

May 1st, 2017

Initial release.