

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 12bit SAR; D/A 12bit
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32tg11b540f64gm64-a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List

The EFM32TG11 highlighted features are listed below.

ARM Cortex-M0+ CPU platform

- High performance 32-bit processor @ up to 48 MHz
- Memory Protection Unit
- Wake-up Interrupt Controller
- Flexible Energy Management System
 - 37 µA/MHz in Active Mode (EM0)
 - 1.30 µA EM2 Deep Sleep current (8 kB RAM retention and RTCC running from LFRCO)
- Integrated DC-DC buck converter
- Backup Power Domain
 - RTCC and retention registers in a separate power domain, available in all energy modes
 - Operation from backup battery when main power absent/ insufficient
- Up to 128 kB flash program memory
- Up to 32 kB RAM data memory
- Communication Interfaces
 - CAN Bus Controller
 - Version 2.0A and 2.0B up to 1 Mbps
 - 4 × Universal Synchronous/Asynchronous Receiver/ Transmitter
 - UART/SPI/SmartCard (ISO 7816)/IrDA/I2S/LIN
 - Triple buffered full/half-duplex operation with flow control
 - Ultra high speed (24 MHz) operation on one instance
 - 1 × Universal Asynchronous Receiver/ Transmitter
 - 1 × Low Energy UART
 - Autonomous operation with DMA in Deep Sleep Mode
 - $2 \times I^2C$ Interface with SMBus support
 - Address recognition in EM3 Stop Mode

Up to 67 General Purpose I/O Pins

- Configurable push-pull, open-drain, pull-up/down, input filter, drive strength
- Configurable peripheral I/O locations
- · 5 V tolerance on select pins
- Asynchronous external interrupts
- Output state retention and wake-up from Shutoff Mode
- Up to 8 Channel DMA Controller
- Up to 8 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling
- Hardware Cryptography
 - AES 128/256-bit keys
 - ECC B/K163, B/K233, P192, P224, P256
 - SHA-1 and SHA-2 (SHA-224 and SHA-256)
 - True Random Number Generator (TRNG)
- Hardware CRC engine
 - Single-cycle computation with 8/16/32-bit data and 16-bit (programmable)/32-bit (fixed) polynomial
- Security Management Unit (SMU)
 - Fine-grained access control for on-chip peripherals
- Integrated Low-energy LCD Controller with up to 8 × 32 segments
 - Voltage boost, contrast and autonomous animation
 - Patented low-energy LCD driver
- Ultra Low-Power Precision Analog Peripherals
 - 12-bit 1 Msamples/s Analog to Digital Converter (ADC)
 - On-chip temperature sensor
 - 2 × 12-bit 500 ksamples/s Digital to Analog Converter (VDAC)
 - Up to 2 × Analog Comparator (ACMP)
 - Up to 4 × Operational Amplifier (OPAMP)
 - Robust current-based capacitive sensing with up to 38 inputs and wake-on-touch (CSEN)
 - Up to 62 GPIO pins are analog-capable. Flexible analog peripheral-to-pin routing via Analog Port (APORT)
 - Supply Voltage Monitor

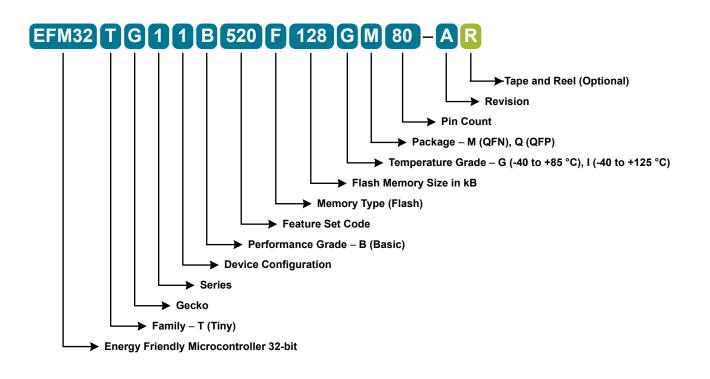


Figure 2.1. Ordering Code Key

3.5.4 Low Energy Timer (LETIMER)

The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC.

3.5.5 Ultra Low Power Wake-up Timer (CRYOTIMER)

The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation.

3.5.6 Pulse Counter (PCNT)

The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from among any of the internal oscillators, except the AUXHFRCO. The module may operate in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop.

3.5.7 Watchdog Timer (WDOG)

The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can also monitor autonomous systems driven by PRS.

3.6 Communications and Other Digital Peripherals

3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting:

- ISO7816 SmartCards
- IrDA
- I²S

3.6.2 Universal Asynchronous Receiver/Transmitter (UART)

The Universal Asynchronous Receiver/Transmitter is a subset of the USART module, supporting full duplex asynchronous UART communication with hardware flow control and RS-485.

3.6.3 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)

The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication possible with a minimum of software intervention and energy consumption.

3.6.4 Inter-Integrated Circuit Interface (I²C)

The I²C module provides an interface between the MCU and a serial I²C bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the I²C module allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_CCM_VS	19 MHz HFRCO, CPU running while loop from flash	_	81	_	µA/MHz
abled and voltage scaling enabled, DCDC in Low Noise CCM mode ¹		1 MHz HFRCO, CPU running while loop from flash	—	1147		µA/MHz
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_LPM_VS	19 MHz HFRCO, CPU running while loop from flash	_	30	_	µA/MHz
abled and voltage scaling enabled, DCDC in LP mode ³		1 MHz HFRCO, CPU running while loop from flash	_	144	_	µA/MHz
Current consumption in EM1	I _{EM1_DCM}	48 MHz crystal	_	31	_	µA/MHz
mode with all peripherals dis- abled, DCDC in Low Noise		48 MHz HFRCO	_	30	_	µA/MHz
DCM mode ²		32 MHz HFRCO	_	36	_	µA/MHz
		26 MHz HFRCO	_	41	_	µA/MHz
		16 MHz HFRCO		54	_	µA/MHz
		1 MHz HFRCO		581	_	µA/MHz
Current consumption in EM1	I _{EM1_LPM}	32 MHz HFRCO		25	_	µA/MHz
mode with all peripherals dis- abled, DCDC in Low Power		26 MHz HFRCO	_	26	_	µA/MHz
mode ³		16 MHz HFRCO	_	29	_	µA/MHz
		1 MHz HFRCO	_	153	_	µA/MHz
Current consumption in EM1	IEM1_DCM_VS	19 MHz HFRCO	_	46	_	µA/MHz
mode with all peripherals dis- abled and voltage scaling enabled, DCDC in Low Noise DCM mode ²		1 MHz HFRCO	_	573		µA/MHz
Current consumption in EM1	I _{EM1_LPM_VS}	19 MHz HFRCO	_	25	_	µA/MHz
mode with all peripherals dis- abled and voltage scaling enabled. DCDC in LP mode ³		1 MHz HFRCO	_	140	_	µA/MHz
Current consumption in EM2 mode, with voltage scaling	I _{EM2_VS}	Full 32 kB RAM retention and RTCC running from LFXO	_	1.26	_	μΑ
enabled, DCDC in LP mode ³		Full 32 kB RAM retention and RTCC running from LFRCO	_	1.54	_	μA
		8 kB (1 bank) RAM retention and RTCC running from LFRCO ⁵	—	1.30	_	μA
Current consumption in EM3 mode, with voltage scaling enabled	IEM3_VS	Full 32 kB RAM retention and CRYOTIMER running from ULFR- CO	_	0.93		μA
Current consumption in EM4H mode, with voltage	I _{EM4H_VS}	128 byte RAM retention, RTCC running from LFXO	_	0.78	_	μΑ
scaling enabled		128 byte RAM retention, CRYO- TIMER running from ULFRCO	_	0.50		μΑ
		128 byte RAM retention, no RTCC	_	0.50	_	μA
Current consumption in EM4S mode	I _{EM4S}	No RAM retention, no RTCC		0.06		μΑ

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Frequency limits	f _{HFRCO_BAND}	FREQRANGE = 0, FINETUNIN- GEN = 0	TBD	_	TBD	MHz
		FREQRANGE = 3, FINETUNIN- GEN = 0	TBD		TBD	MHz
		FREQRANGE = 6, FINETUNIN- GEN = 0	TBD	_	TBD	MHz
		FREQRANGE = 7, FINETUNIN- GEN = 0	TBD		TBD	MHz
		FREQRANGE = 8, FINETUNIN- GEN = 0	TBD		TBD	MHz
		FREQRANGE = 10, FINETUNIN- GEN = 0	TBD		TBD	MHz
		FREQRANGE = 11, FINETUNIN- GEN = 0	TBD		TBD	MHz
		FREQRANGE = 12, FINETUNIN- GEN = 0	TBD	_	TBD	MHz
		FREQRANGE = 13, FINETUNIN- GEN = 0	TBD	_	TBD	MHz

4.1.17 Operational Amplifier (OPAMP)

Unless otherwise indicated, specified conditions are: Non-inverting input configuration, VDD = 3.3 V, DRIVESTRENGTH = 2, MAIN-OUTEN = 1, C_{LOAD} = 75 pF with OUTSCALE = 0, or C_{LOAD} = 37.5 pF with OUTSCALE = 1. Unit gain buffer and 3X-gain connection as specified in table footnotes^{8 1}.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Supply voltage (from AVDD)	V _{OPA}	HCMDIS = 0, Rail-to-rail input range	2	_	3.8	V
		HCMDIS = 1	1.62		3.8	V
Input voltage	V _{IN}	HCMDIS = 0, Rail-to-rail input range	V_{VSS}	_	V _{OPA}	V
		HCMDIS = 1	V _{VSS}	_	V _{OPA} -1.2	V
Input impedance	R _{IN}		100	_	_	MΩ
Output voltage	V _{OUT}		V _{VSS}		V _{OPA}	V
Load capacitance ²	C _{LOAD}	OUTSCALE = 0	_		75	pF
		OUTSCALE = 1	_	_	37.5	pF
Output impedance	R _{OUT}	DRIVESTRENGTH = 2 or 3, 0.4 V \leq V _{OUT} \leq V _{OPA} - 0.4 V, -8 mA < I _{OUT} < 8 mA, Buffer connection, Full supply range	_	0.25	_	Ω
		DRIVESTRENGTH = 0 or 1, 0.4 V \leq V _{OUT} \leq V _{OPA} - 0.4 V, -400 µA $<$ I _{OUT} $<$ 400 µA, Buffer connection, Full supply range	_	0.6	_	Ω
		DRIVESTRENGTH = 2 or 3, 0.1 V \leq V _{OUT} \leq V _{OPA} - 0.1 V, -2 mA $<$ I _{OUT} $<$ 2 mA, Buffer connection, Full supply range	_	0.4	_	Ω
		DRIVESTRENGTH = 0 or 1, 0.1 V \leq V _{OUT} \leq V _{OPA} - 0.1 V, -100 µA $<$ I _{OUT} $<$ 100 µA, Buffer connection, Full supply range	_	1	_	Ω
Internal closed-loop gain	G _{CL}	Buffer connection	TBD	1	TBD	-
		3x Gain connection	TBD	2.99	TBD	-
		16x Gain connection	TBD	15.7	TBD	-
Active current ⁴	I _{OPA}	DRIVESTRENGTH = 3, OUT- SCALE = 0	_	580	_	μA
		DRIVESTRENGTH = 2, OUT- SCALE = 0	_	176	_	μA
		DRIVESTRENGTH = 1, OUT- SCALE = 0	_	13	_	μA
		DRIVESTRENGTH = 0, OUT- SCALE = 0	_	4.7	-	μA

Table 4.24. Operational Amplifier (OPAMP)

4.2.2 DC-DC Converter

Default test conditions: CCM mode, LDCDC = 4.7 µH, CDCDC = 4.7 µF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz

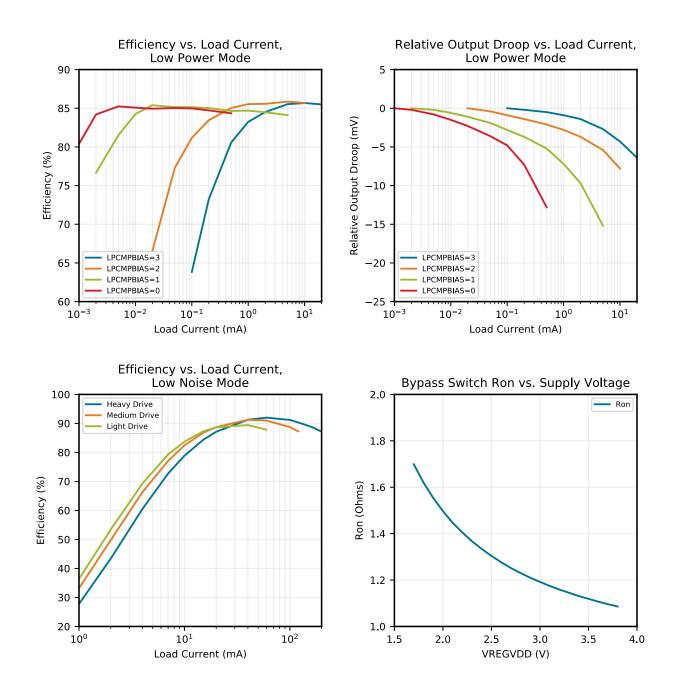
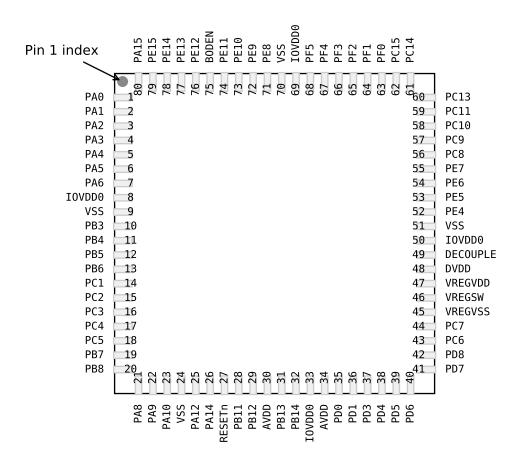



Figure 4.8. DC-DC Converter Typical Performance Characteristics

5. Pin Definitions

5.1 EFM32TG11B5xx in QFP80 Device Pinout

Figure 5.1. EFM32TG11B5xx in QFP80 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Table 5.1.	EFM32TG11B5xx in QFP80 Device Pinout

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	PA3	4	GPIO
PA4	5	GPIO	PA5	6	GPIO
PA6	7	GPIO	IOVDD0	8 33 50 69	Digital IO power supply 0.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VSS	9 24 51 70	Ground	PB3	10	GPIO
PB4	11	GPIO	PB5	12	GPIO
PB6	13	GPIO	PC1	14	GPIO (5V)
PC2	15	GPIO (5V)	PC3	16	GPIO (5V)
PC4	17	GPIO	PC5	18	GPIO
PB7	19	GPIO	PB8	20	GPIO
PA8	21	GPIO	PA9	22	GPIO
PA10	23	GPIO	PA12	25	GPIO
PA14	26	GPIO	RESETn	27	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	28	GPIO	PB12	29	GPIO
AVDD	30 34	Analog power supply.	PB13	31	GPIO
PB14	32	GPIO	PD0	35	GPIO (5V)
PD1	36	GPIO	PD3	37	GPIO
PD4	38	GPIO	PD5	39	GPIO
PD6	40	GPIO	PD7	41	GPIO
PD8	42	GPIO	PC6	43	GPIO
PC7	44	GPIO	VREGVSS	45	Voltage regulator VSS
VREGSW	46	DCDC regulator switching node	VREGVDD	47	Voltage regulator VDD input
DVDD	48	Digital power supply.	DECOUPLE	49	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
PE4	52	GPIO	PE5	53	GPIO
PE6	54	GPIO	PE7	55	GPIO
PC8	56	GPIO	PC9	57	GPIO
PC10	58	GPIO (5V)	PC11	59	GPIO (5V)
PC13	60	GPIO (5V)	PC14	61	GPIO (5V)
PC15	62	GPIO (5V)	PF0	63	GPIO (5V)
PF1	64	GPIO (5V)	PF2	65	GPIO
PF3	66	GPIO	PF4	67	GPIO
PF5	68	GPIO	PE8	71	GPIO
PE9	72	GPIO	PE10	73	GPIO
PE11	74	GPIO	BODEN	75	Brown-Out Detector Enable. This pin may be left disconnected or tied to AVDD.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PC3	12	GPIO (5V)	PC4	13	GPIO
PC5	14	GPIO	PB7	15	GPIO
PB8	16	GPIO	PA8	17	GPIO
PA9	18	GPIO	PA10	19	GPIO
RESETn	20	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	PB11	21	GPIO
PB12	22	GPIO	AVDD	23 27	Analog power supply.
PB13	24	GPIO	PB14	25	GPIO
PD0	28	GPIO (5V)	PD1	29	GPIO
PD2	30	GPIO (5V)	PD3	31	GPIO
PD4	32	GPIO	PD5	33	GPIO
PD6	34	GPIO	PD7	35	GPIO
PD8	36	GPIO	PC6	37	GPIO
PC7	38	GPIO	DVDD	39	Digital power supply.
DECOUPLE	40	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PC8	41	GPIO
PC9	42	GPIO	PC10	43	GPIO (5V)
PC11	44	GPIO (5V)	PC12	45	GPIO (5V)
PC13	46	GPIO (5V)	PC14	47	GPIO (5V)
PC15	48	GPIO (5V)	PF0	49	GPIO (5V)
PF1	50	GPIO (5V)	PF2	51	GPIO
PF3	52	GPIO	PF4	53	GPIO
PF5	54	GPIO	PE8	56	GPIO
PE9	57	GPIO	PE10	58	GPIO
PE11	59	GPIO	PE12	60	GPIO
PE13	61	GPIO	PE14	62	GPIO
PE15	63	GPIO	PA15	64	GPIO

1. GPIO with 5V tolerance are indicated by (5V).

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB7	11	GPIO	PB8	12	GPIO
PA12	13	GPIO	PA13	14	GPIO (5V)
PA14	15	GPIO	RESETn	16	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	17	GPIO	AVDD	19 23	Analog power supply.
PB13	20	GPIO	PB14	21	GPIO
PD4	24	GPIO	PD5	25	GPIO
PD6	26	GPIO	PD7	27	GPIO
DVDD	28	Digital power supply.	DECOUPLE	29	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
PE4	30	GPIO	PE5	31	GPIO
PE6	32	GPIO	PE7	33	GPIO
PC13	34	GPIO (5V)	PC14	35	GPIO (5V)
PC15	36	GPIO (5V)	PF0	37	GPIO (5V)
PF1	38	GPIO (5V)	PF2	39	GPIO
PF3	40	GPIO	PF4	41	GPIO
PF5	42	GPIO	PE10	45	GPIO
PE11	46	GPIO	PE12	47	GPIO
PE13	48	GPIO			
Note:					

1. GPIO with 5V tolerance are indicated by (5V).

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB8	8	GPIO	RESETn	9	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	10	GPIO	AVDD	11 15	Analog power supply.
PB13	12	GPIO	PB14	13	GPIO
PD4	16	GPIO	PD5	17	GPIO
PD6	18	GPIO	PD7	19	GPIO
DVDD	20	Digital power supply.	DECOUPLE	21	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
PC13	22	GPIO (5V)	PC14	23	GPIO (5V)
PC15	24	GPIO (5V)	PF0	25	GPIO (5V)
PF1	26	GPIO (5V)	PF2	27	GPIO
PE10	29	GPIO	PE11	30	GPIO
PE12	31	GPIO	PE13	32	GPIO
Note:		,			

1. GPIO with 5V tolerance are indicated by (5V).

Alternate	LOC <i>A</i> 0 - 3	ATION 4 - 7	Description
Functionality LCD_SEG22 / LCD_COM6	0 - 3 0: PB5	4 - 7	Description LCD segment line 22. This pin may also be used as LCD COM line 6
LCD_SEG23 / LCD_COM7	0: PB6		LCD segment line 23. This pin may also be used as LCD COM line 7
LCD_SEG24	0: PC4		LCD segment line 24.
LCD_SEG25	0: PC5		LCD segment line 25.
LCD_SEG26	0: PA9		LCD segment line 26.
LCD_SEG27	0: PA10		LCD segment line 27.
LCD_SEG28	0: PB11		LCD segment line 28.
LCD_SEG29	0: PB12		LCD segment line 29.
LCD_SEG30	0: PD3		LCD segment line 30.
LCD_SEG31	0: PD4		LCD segment line 31.
LCD_SEG32	0: PC6		LCD segment line 32.
LCD_SEG33	0: PC7		LCD segment line 33.
LCD_SEG34	0: PC8		LCD segment line 34.

Alternate	LOC	ATION	
Functionality	0 - 3	4 - 7	Description
LES_CH4	0: PC4		LESENSE channel 4.
LES_CH5	0: PC5		LESENSE channel 5.
LES_CH6	0: PC6		LESENSE channel 6.
LES_CH7	0: PC7		LESENSE channel 7.
LES_CH8	0: PC8		LESENSE channel 8.
LES_CH9	0: PC9		LESENSE channel 9.
LES_CH10	0: PC10		LESENSE channel 10.
LES_CH11	0: PC11		LESENSE channel 11.
LES_CH12	0: PC12		LESENSE channel 12.
LES_CH13	0: PC13		LESENSE channel 13.
LES_CH14	0: PC14		LESENSE channel 14.
LES_CH15	0: PC15		LESENSE channel 15.
LETIM0_OUT0	0: PD6 1: PB11 2: PF0 3: PC4	4: PE12 5: PC14 6: PA8	Low Energy Timer LETIM0, output channel 0.

EFM32TG11 Family Data Sheet Pin Definitions

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
	 РА1_		С О	С С	O	O	O	U U	O	U U	С С	С С	С С	С С	С С	С О	С С	С С	C	С С	С О	С С	С С	С С	ပ	С О	С С	С С	С О	ပ	C	С О	O
APORT1Y	BUSAY			PB13		PB11						PB5		PB3				PA15		PA13				PA9				PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT3Y	BUSCY											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4Y	BUSDY												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				
OF	PA1_	<u>.</u> P					1																										
APORT1X	BUSAX		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT2X	BUSBX			PB13		PB11						PB5		PB3				PA15		PA13				PA9				PA5		PA3		PA1	
APORT3X	BUSCX												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				
APORT4X	BUSDX											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
OF	A2_	N																															
APORT1Y	BUSAY			PB13		PB11						PB5		PB3				PA15		PA13				PA9				PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT3Y	BUSCY											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4Y	BUSDY												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				

9.2 QFN64 PCB Land Pattern

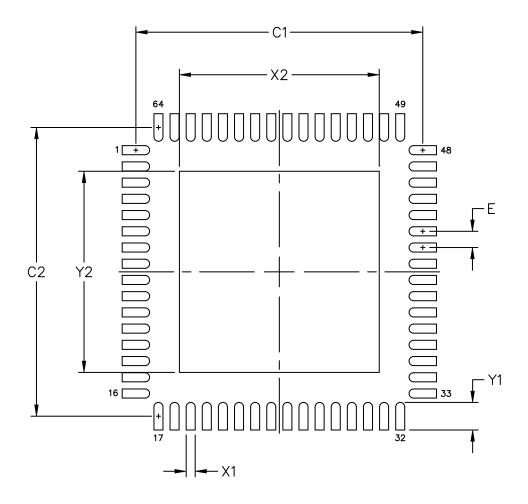


Figure 9.2. QFN64 PCB Land Pattern Drawing

Table 9.2. QFN64 PCB Land Pattern Dimensions

Dimension	Тур
C1	8.90
C2	8.90
E	0.50
X1	0.30
Y1	0.85
X2	7.30
Y2	7.30

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm.

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

6. The stencil thickness should be 0.125 mm (5 mils).

7. The ratio of stencil aperture to land pad size can be 1:1 for all pads.

8. A 3x3 array of 1.45 mm square openings on a 2.00 mm pitch can be used for the center ground pad.

9. A No-Clean, Type-3 solder paste is recommended.

10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Dimension	Min	Тур	Мах						
A		7.00 BSC							
A1	3.50 BSC								
В	7.00 BSC								
B1	3.50 BSC								
С	1.00	_	1.20						
D	0.17	—	0.27						
E	0.95	—	1.05						
F	0.17	_	0.23						
G	0.50 BSC								
Н	0.05	_	0.15						
J	0.09	—	0.20						
К	0.50	—	0.70						
L	0	_	7						
М		12 REF							
Ν	0.09	—	0.16						
Ρ		0.25 BSC							
R	0.150	—	0.250						
S		9.00 BSC							
S1	4.50 BSC								
V	9.00 BSC								
V1	4.50 BSC								
W	0.20 BSC								
AA	1.00 BSC								
Note:									

Table 10.1. TQFP48 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Table 11.2. QFN32 PCB Land Pattern Dimensions

Dimension	Тур
C1	5.00
C2	5.00
E	0.50
X1	0.30
Y1	0.80
X2	3.80
Y2	3.80

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This Land Pattern Design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.

7. A 2x2 array of 0.9 mm square openings on a 1.2 mm pitch should be used for the center ground pad.

8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

12. Revision History

Revision 0.5

February, 2018

- 4.1 Electrical Characteristics updated with latest characterization data and production test limits.
- Added 4.1.3 Thermal Characteristics.
- Added 4.2 Typical Performance Curves section.
- Corrected OPA / VDAC output connections in Figure 5.14 APORT Connection Diagram on page 119.

Revision 0.1

May 1st, 2017

Initial release.