

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	63
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 12bit SAR; D/A 12bit
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32tg11b540f64gq80-a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Timers/Counters

- 2 × 16-bit Timer/Counter
 - 3 or 4 Compare/Capture/PWM channels (4 + 4 on one timer instance)
 - Dead-Time Insertion on one timer instance
- 2 × 32-bit Timer/Counter
- 32-bit Real Time Counter and Calendar (RTCC)
- 32-bit Ultra Low Energy CRYOTIMER for periodic wakeup from any Energy Mode
- 16-bit Low Energy Timer for waveform generation
- 16-bit Pulse Counter with asynchronous operation
- Watchdog Timer with dedicated RC oscillator
- Low Energy Sensor Interface (LESENSE)
 - Autonomous sensor monitoring in Deep Sleep Mode
 - Wide range of sensors supported, including LC sensors and capacitive buttons
 - Up to 16 inputs
- Ultra efficient Power-on Reset and Brown-Out Detector
- Debug Interface
 - 2-pin Serial Wire Debug interface
 - 4-pin JTAG interface
 - Micro Trace Buffer (MTB)

Pre-Programmed UART Bootloader

Wide Operating Range

- 1.8 V to 3.8 V single power supply
- Integrated DC-DC, down to 1.8 V output with up to 200 mA load current for system
- Standard (-40 $^\circ C$ to 85 $^\circ C$ $T_A)$ and Extended (-40 $^\circ C$ to 125 $^\circ C$ $T_J)$ temperature grades available
- Packages
 - QFN32 (5x5 mm)
 - TQFP48 (7x7 mm)
 - QFN64 (9x9 mm)
 - TQFP64 (10x10 mm)
 - QFN80 (9x9 mm)
 - TQFP80 (12x12 mm)

Ordering Code	Flash (kB)	RAM (kB)	DC-DC Con- verter	LCD	GPIO	Package	Temp Range
EFM32TG11B320F128GQ48-A	128	32	No	Yes	37	QFP48	-40 to +85°C
EFM32TG11B320F128IQ48-A	128	32	No	Yes	37	QFP48	-40 to +125°C
EFM32TG11B340F64GQ48-A	64	32	No	Yes	37	QFP48	-40 to +85°C
EFM32TG11B340F64IQ48-A	64	32	No	Yes	37	QFP48	-40 to +125°C
EFM32TG11B120F128GM64-A	128	32	No	No	56	QFN64	-40 to +85°C
EFM32TG11B120F128GQ64-A	128	32	No	No	53	QFP64	-40 to +85°C
EFM32TG11B120F128IM64-A	128	32	No	No	56	QFN64	-40 to +125°C
EFM32TG11B120F128IQ64-A	128	32	No	No	53	QFP64	-40 to +125°C
EFM32TG11B140F64GM64-A	64	32	No	No	56	QFN64	-40 to +85°C
EFM32TG11B140F64GQ64-A	64	32	No	No	53	QFP64	-40 to +85°C
EFM32TG11B140F64IM64-A	64	32	No	No	56	QFN64	-40 to +125°C
EFM32TG11B140F64IQ64-A	64	32	No	No	53	QFP64	-40 to +125°C
EFM32TG11B120F128GQ48-A	128	32	No	No	37	QFP48	-40 to +85°C
EFM32TG11B120F128IQ48-A	128	32	No	No	37	QFP48	-40 to +125°C
EFM32TG11B140F64GQ48-A	64	32	No	No	37	QFP48	-40 to +85°C
EFM32TG11B140F64IQ48-A	64	32	No	No	37	QFP48	-40 to +125°C
EFM32TG11B120F128GM32-A	128	32	No	No	24	QFN32	-40 to +85°C
EFM32TG11B120F128IM32-A	128	32	No	No	24	QFN32	-40 to +125°C
EFM32TG11B140F64GM32-A	64	32	No	No	24	QFN32	-40 to +85°C
EFM32TG11B140F64IM32-A	64	32	No	No	24	QFN32	-40 to +125°C

4. Electrical Specifications

4.1 Electrical Characteristics

All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:

- Typical values are based on T_{AMB} =25 °C and V_{DD} = 3.3 V, by production test and/or technology characterization.
- Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise.

Refer to 4.1.2.1 General Operating Conditions for more details about operational supply and temperature limits.

4.1.1 Absolute Maximum Ratings

Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.

Symbol	Test Condition	Min	Тур	Мах	Unit
T _{STG}		-50	_	150	°C
V _{DDMAX}		-0.3		3.8	V
VDDRAMPMAX		_	_	1	V / µs
V _{DIGPIN}	5V tolerant GPIO pins ^{1 2 3}	-0.3	_	Min of 5.25 and IOVDD +2	V
	LCD pins ³	-0.3	_	Min of 3.8 and IOVDD +2	V
	Standard GPIO pins	-0.3		IOVDD+0.3	V
IVDDMAX	Source	—	_	200	mA
IVSSMAX	Sink	_	_	200	mA
I _{IOMAX}	Sink		_	50	mA
	Source		_	50	mA
I _{IOALLMAX}	Sink		_	200	mA
	Source	_		200	mA
TJ	-G grade devices	-40		105	°C
	Laurada da da a	-40		405	°C
	T _{STG} V _{DDMAX} V _{DDRAMPMAX} V _{DIGPIN} I _{VDDMAX} I _{VSSMAX} I _{IOMAX}	TSTGImage: style	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 4.1. Absolute Maximum Ratings

Note:

1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD.

 Valid for IOVDD in valid operating range or when IOVDD is undriven (high-Z). If IOVDD is connected to a low-impedance source below the valid operating range (e.g. IOVDD shorted to VSS), the pin voltage maximum is IOVDD + 0.3 V, to avoid exceeding the maximum IO current specifications.

3. To operate above the IOVDD supply rail, over-voltage tolerance must be enabled according to the GPIO_Px_OVTDIS register. Pins with over-voltage tolerance disabled have the same limits as Standard GPIO.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption of pe- ripheral power domain 1, with voltage scaling enabled, DCDC in LP mode ³	IPD1_VS	Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled ⁴		0.18	_	μA
Current consumption of pe- ripheral power domain 2, with voltage scaling enabled, DCDC in LP mode ³	IPD2_VS	Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled ⁴		0.18		μA

Note:

1. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD.

2. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD.

3. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIM-SEL=1, ANASW=DVDD.

4. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.3 EM2 and EM3 Power Domains for a list of the peripherals in each power domain.

5. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1

4.1.9.2 High-Frequency Crystal Oscillator (HFXO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal frequency	f _{HFXO}		4	—	48	MHz
Supported crystal equivalent	ESR _{HFXO}	48 MHz crystal	_	_	50	Ω
series resistance (ESR)		24 MHz crystal		_	150	Ω
		4 MHz crystal	_	_	180	Ω
Supported range of crystal load capacitance ¹	C _{HFXO_CL}		TBD	_	TBD	pF
Nominal on-chip tuning cap range ²	C _{HFXO_T}	On each of HFXTAL_N and HFXTAL_P pins	8.7	_	51.7	pF
On-chip tuning capacitance step	SS _{HFXO}		_	0.08	_	pF
Startup time	t _{HFXO}	48 MHz crystal, ESR = 50 Ohm, $C_L = 8 pF$	_	350	_	μs
		24 MHz crystal, ESR = 150 Ohm, C _L = 6 pF	_	700	_	μs
		4 MHz crystal, ESR = 180 Ohm, C_L = 18 pF	_	3	_	ms
Current consumption after	I _{HFXO}	48 MHz crystal	_	880	_	μA
startup		24 MHz crystal		420	_	μA
		4 MHz crystal		80	_	μA

Table 4.12. High-Frequency Crystal Oscillator (HFXO)

Note:

1. Total load capacitance as seen by the crystal.

2. The effective load capacitance seen by the crystal will be C_{HFXO_T} /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal.

4.1.11 General-Purpose I/O (GPIO)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input low voltage	V _{IL}	GPIO pins	_	_	IOVDD*0.3	V
Input high voltage	V _{IH}	GPIO pins	IOVDD*0.7	—	—	V
Output high voltage relative	V _{OH}	Sourcing 3 mA, IOVDD \ge 3 V,	IOVDD*0.8	_	_	V
to IOVDD		DRIVESTRENGTH ¹ = WEAK				
		Sourcing 1.2 mA, IOVDD \ge 1.62 V,	IOVDD*0.6	_	-	V
		DRIVESTRENGTH ¹ = WEAK				
		Sourcing 20 mA, IOVDD \ge 3 V,	IOVDD*0.8	_	_	V
		DRIVESTRENGTH ¹ = STRONG				
		Sourcing 8 mA, IOVDD ≥ 1.62 V,	IOVDD*0.6	_	_	V
		DRIVESTRENGTH ¹ = STRONG				
Output low voltage relative to IOVDD	V _{OL}	Sinking 3 mA, IOVDD ≥ 3 V,		_	IOVDD*0.2	V
10000		DRIVESTRENGTH ¹ = WEAK				
		Sinking 1.2 mA, IOVDD \ge 1.62 V,	—	—	IOVDD*0.4	V
		DRIVESTRENGTH ¹ = WEAK				
		Sinking 20 mA, IOVDD \ge 3 V,	—	—	IOVDD*0.2	V
		DRIVESTRENGTH ¹ = STRONG				
		Sinking 8 mA, IOVDD ≥ 1.62 V,	_	_	IOVDD*0.4	V
		DRIVESTRENGTH ¹ = STRONG				
Input leakage current	I _{IOLEAK}	All GPIO except LFXO pins, GPIO ≤ IOVDD, T ≤ 85 °C	—	0.1	TBD	nA
		LFXO Pins, GPIO ≤ IOVDD, T ≤ 85 °C	—	0.1	TBD	nA
		All GPIO except LFXO pins, GPIO ≤ IOVDD, T > 85 °C	—	—	TBD	nA
		LFXO Pins, GPIO ≤ IOVDD, T > 85 °C	—	—	TBD	nA
Input leakage current on 5VTOL pads above IOVDD	I _{5VTOLLEAK}	IOVDD < GPIO ≤ IOVDD + 2 V	_	3.3	TBD	μA
I/O pin pull-up/pull-down re- sistor	R _{PUD}		TBD	40	TBD	kΩ
Pulse width of pulses re- moved by the glitch suppres- sion filter	t _{IOGLITCH}		TBD	25	TBD	ns

Table 4.18. General-Purpose I/O (GPIO)

3.	uration is: INCBW = 1, HCMDIS = 1, F	RESINSEL = V	√SS, V _{INPUT} =	= 0.5 V, V _{OUTI}	
3.	uration is: INCBW = 1, HCMDIS = 1, F	RESINSEL = \	VSS, V _{INPUT} =	= 0.5 V, V _{OUT}	
xceeded, an isc					PUI - 1.0
	plation resistor is required for stability.	See AN0038	for more infor	mation.	
	dwidth is increased. This is allowed or	nly when the n	on-inverting c	lose-loop gair	n is ≥ 3,
network. The ir	nternal resistor feedback network has	total resistance	•		
_{PA} -0.2V, 10%-9	90% rising/falling range.				
ed. In sample-a	and-off mode, RC network after OPAM	IP will contrib	ute extra dela	y. Settling err	or < 1m\
•	•	x Gain connec	tion, UGF is t	he gain-band	width
Unit gain buffer	configuration is: INCBW = 0, HCMDI	S = 0, RESIN	SEL = DISABI	LE. V _{INPUT} =	0.5 V,
		4V to V _{OPA} -1∖	/, input offset	will change. F	'SRR
	network. The in en the OPAMP _{OPA} -0.2V, 10%-9 led. In sample-a GF is the gain-b 1/3 attenuation Unit gain buffer ut common mod	or is excluded. When the OPAMP is connected with a network. The internal resistor feedback network has en the OPAMP drives 1.5 V between output and grou opA-0.2V, 10%-90% rising/falling range. led. In sample-and-off mode, RC network after OPAM GF is the gain-bandwidth product of the OPAMP. In 32 I 1/3 attenuation of the feedback network. Unit gain buffer configuration is: INCBW = 0, HCMDI	or is excluded. When the OPAMP is connected with closed-loop ga network. The internal resistor feedback network has total resistance en the OPAMP drives 1.5 V between output and ground. _{OPA} -0.2V, 10%-90% rising/falling range. led. In sample-and-off mode, RC network after OPAMP will contribu- SF is the gain-bandwidth product of the OPAMP. In 3x Gain connect 1/3 attenuation of the feedback network. Unit gain buffer configuration is: INCBW = 0, HCMDIS = 0, RESIN ut common mode transitions the region from V _{OPA} -1.4V to V _{OPA} -1.	or is excluded. When the OPAMP is connected with closed-loop gain > 1, there were network. The internal resistor feedback network has total resistance of 143.5 kC en the OPAMP drives 1.5 V between output and ground. _{OPA} -0.2V, 10%-90% rising/falling range. led. In sample-and-off mode, RC network after OPAMP will contribute extra dela GF is the gain-bandwidth product of the OPAMP. In 3x Gain connection, UGF is the 1/3 attenuation of the feedback network. Unit gain buffer configuration is: INCBW = 0, HCMDIS = 0, RESINSEL = DISAB ut common mode transitions the region from V _{OPA} -1.4V to V _{OPA} -1V, input offset	or is excluded. When the OPAMP is connected with closed-loop gain > 1, there will be extra c network. The internal resistor feedback network has total resistance of 143.5 kOhm, which wi en the OPAMP drives 1.5 V between output and ground. _{OPA} -0.2V, 10%-90% rising/falling range. led. In sample-and-off mode, RC network after OPAMP will contribute extra delay. Settling err GF is the gain-bandwidth product of the OPAMP. In 3x Gain connection, UGF is the gain-band 1/3 attenuation of the feedback network. Unit gain buffer configuration is: INCBW = 0, HCMDIS = 0, RESINSEL = DISABLE. V _{INPUT} = ut common mode transitions the region from V _{OPA} -1.4V to V _{OPA} -1V, input offset will change. F

Table 4.25. LCD Driver

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Frame rate	f _{LCDFR}		TBD	—	TBD	Hz
LCD supply range ²	V _{LCDIN}		1.8	_	3.8	V
LCD output voltage range	V _{LCD}	Current source mode, No external LCD capacitor	2.0	_	V _{LCDIN} -0.4	V
		Step-down mode with external LCD capacitor	2.0		V _{LCDIN}	V
		Charge pump mode with external LCD capacitor	2.0	_	Min of 3.8 and 1.9 * V _{LCDIN}	V
Contrast control step size	STEP _{CONTRAST}	Current source mode	_	64	_	mV
		Charge pump or Step-down mode	_	43	—	mV
Contrast control step accura- cy ¹	ACC _{CONTRAST}		—	+/-4	—	%

Note:

1. Step size accuracy is measured relative to the typical step size, and typ value represents one standard deviation.

2. V_{LCDIN} is selectable between the AVDD or DVDD supply pins, depending on EMU_PWRCTRL_ANASW.

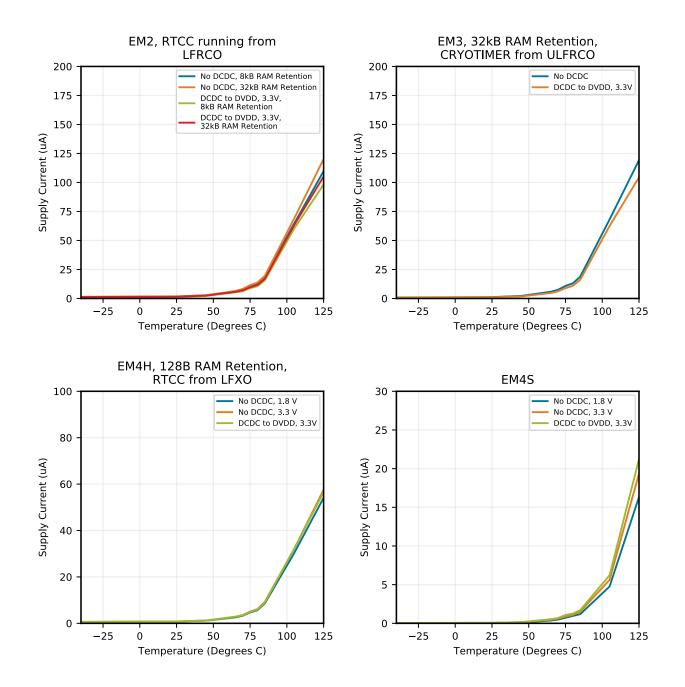
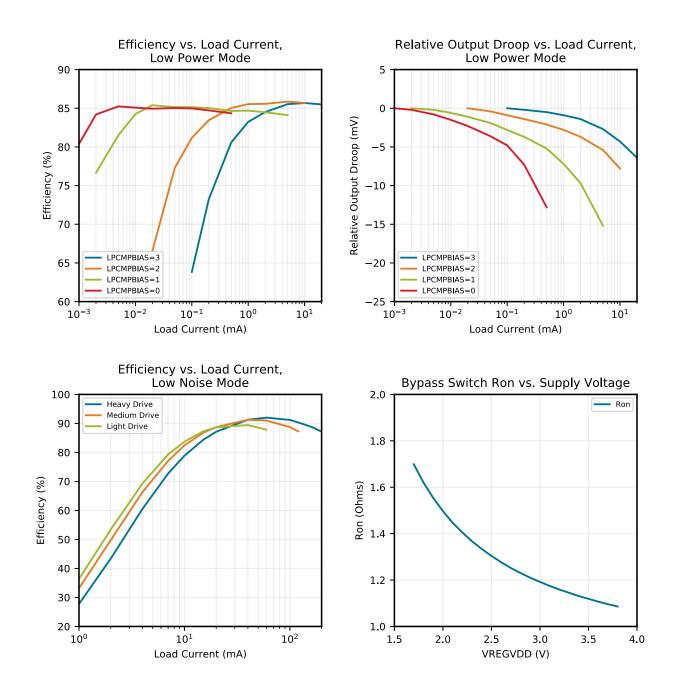
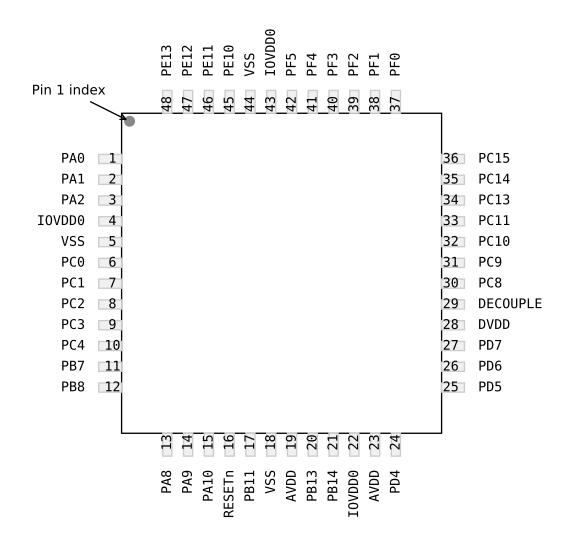


Figure 4.5. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Temperature

4.2.2 DC-DC Converter

Default test conditions: CCM mode, LDCDC = 4.7 µH, CDCDC = 4.7 µF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz




Figure 4.8. DC-DC Converter Typical Performance Characteristics

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PC4	13	GPIO	PC5	14	GPIO
PB7	15	GPIO	PB8	16	GPIO
PA12	17	GPIO	PA13	18	GPIO (5V)
PA14	19	GPIO	RESETn	20	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	21	GPIO	AVDD	23 27	Analog power supply.
PB13	24	GPIO	PB14	25	GPIO
PD0	28	GPIO (5V)	PD1	29	GPIO
PD2	30	GPIO (5V)	PD3	31	GPIO
PD4	32	GPIO	PD5	33	GPIO
PD6	34	GPIO	PD7	35	GPIO
PD8	36	GPIO	PC6	37	GPIO
PC7	38	GPIO	DVDD	39	Digital power supply.
DECOUPLE	40	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PE4	41	GPIO
PE5	42	GPIO	PE6	43	GPIO
PE7	44	GPIO	PC12	45	GPIO (5V)
PC13	46	GPIO (5V)	PC14	47	GPIO (5V)
PC15	48	GPIO (5V)	PF0	49	GPIO (5V)
PF1	50	GPIO (5V)	PF2	51	GPIO
PF3	52	GPIO	PF4	53	GPIO
PF5	54	GPIO	PE8	57	GPIO
PE9	58	GPIO	PE10	59	GPIO
PE11	60	GPIO	PE12	61	GPIO
PE13	62	GPIO	PE14	63	GPIO
PE15	64	GPIO			

1. GPIO with 5V tolerance are indicated by (5V).

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB6	12	GPIO	PC4	13	GPIO
PC5	14	GPIO	PB7	15	GPIO
PB8	16	GPIO	PA12	17	GPIO
PA13	18	GPIO (5V)	PA14	19	GPIO
RESETn	20	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	PB11	21	GPIO
PB12	22	GPIO	AVDD	23 27	Analog power supply.
PB13	24	GPIO	PB14	25	GPIO
PD0	28	GPIO (5V)	PD1	29	GPIO
PD2	30	GPIO (5V)	PD3	31	GPIO
PD4	32	GPIO	PD5	33	GPIO
PD6	34	GPIO	PD7	35	GPIO
PD8	36	GPIO	PC6	37	GPIO
PC7	38	GPIO	DVDD	39	Digital power supply.
DECOUPLE	40	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.	PE4	41	GPIO
PE5	42	GPIO	PE6	43	GPIO
PE7	44	GPIO	PC12	45	GPIO (5V)
PC13	46	GPIO (5V)	PC14	47	GPIO (5V)
PC15	48	GPIO (5V)	PF0	49	GPIO (5V)
PF1	50	GPIO (5V)	PF2	51	GPIO
PF3	52	GPIO	PF4	53	GPIO
PF5	54	GPIO	PE8	56	GPIO
PE9	57	GPIO	PE10	58	GPIO
PE11	59	GPIO	PE12	60	GPIO
PE13	61	GPIO	PE14	62	GPIO
PE15	63	GPIO	PA15	64	GPIO

1. GPIO with 5V tolerance are indicated by (5V).

Figure 5.11. EFM32TG11B1xx in QFP48 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Table 5.11. E	EFM32TG11B1xx in	QFP48	Device Pinout
---------------	------------------	-------	---------------

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA0	1	GPIO	PA1	2	GPIO
PA2	3	GPIO	IOVDD0	4 22 43	Digital IO power supply 0.
VSS	5 18 44	Ground	PC0	6	GPIO (5V)
PC1	7	GPIO (5V)	PC2	8	GPIO (5V)
PC3	9	GPIO (5V)	PC4	10	GPIO

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB8	8	GPIO	RESETn	9	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	10	GPIO	AVDD	11 15	Analog power supply.
PB13	12	GPIO	PB14	13	GPIO
PD4	16	GPIO	PD5	17	GPIO
PD6	18	GPIO	PD7	19	GPIO
DVDD	20	Digital power supply.	DECOUPLE	21	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
PC13	22	GPIO (5V)	PC14	23	GPIO (5V)
PC15	24	GPIO (5V)	PF0	25	GPIO (5V)
PF1	26	GPIO (5V)	PF2	27	GPIO
PE10	29	GPIO	PE11	30	GPIO
PE12	31	GPIO	PE13	32	GPIO
Note:		,			

1. GPIO with 5V tolerance are indicated by (5V).

GPIO Name		Pin Alternate Funct	ionality / Description	
	Analog	Timers	Communication	Other
PC4	BUSACMP0Y BU- SACMP0X OPA0_P LCD_SEG24	TIM0_CC0 #5 TIM0_CDTI2 #3 LE- TIM0_OUT0 #3	US2_CLK #0 U0_TX #4 I2C1_SDA #0	LES_CH4 GPIO_EM4WU6
PC5	BUSACMP0Y BU- SACMP0X OPA0_N LCD_SEG25	TIM0_CC1 #5 LE- TIM0_OUT1 #3	US2_CS #0 U0_RX #4 I2C1_SCL #0	LES_CH5
PB7	LFXTAL_P	TIM0_CDTI0 #4 TIM1_CC0 #3	US0_TX #4 US1_CLK #0 US3_RX #2 U0_CTS #4	
PB8	LFXTAL_N	TIM0_CDTI1 #4 TIM1_CC1 #3	US0_RX #4 US1_CS #0 U0_RTS #4	CMU_CLKI0 #2
PA8	BU_STAT	TIM0_CC0 #6 LE- TIM0_OUT0 #6	US2_RX #2	
PA9	BUSAY BUSBX LCD_SEG26	TIM0_CC1 #6 LE- TIM0_OUT1 #6	US2_CLK #2	
PA10	BUSBY BUSAX LCD_SEG27	TIM0_CC2 #6	US2_CS #2	
PA12	BU_VOUT	WTIM0_CDTI0 #2	US0_CLK #5 US2_RTS #2	CMU_CLK0 #5 ACMP1_O #3
PA13	BUSAY BUSBX	TIM0_CC2 #7 WTIM0_CDTI1 #2	US0_CS #5 US2_TX #3	
PA14	BUSBY BUSAX LCD_BEXT	WTIM0_CDTI2 #2	US1_TX #6 US2_RX #3 US3_RTS #2	ACMP1_O #4
PB11	BUSAY BUSBX VDAC0_OUT0 / OPA0_OUT LCD_SEG28	TIM0_CDTI2 #4 TIM1_CC2 #3 LE- TIM0_OUT0 #1 PCNT0_S1IN #7	US0_CTS #5 US1_CLK #5 US2_CS #3 I2C1_SDA #1	CMU_CLK1 #5 CMU_CLKI0 #7 ACMP0_O #3 GPIO_EM4WU7
PB12	BUSBY BUSAX VDAC0_OUT1 / OPA1_OUT LCD_SEG29	TIM1_CC3 #3 LE- TIM0_OUT1 #1 PCNT0_S0IN #7	US2_CTS #1 I2C1_SCL #1	
PB13	BUSAY BUSBX HFXTAL_P	WTIM1_CC0 #0	US0_CLK #4 US1_CTS #5 LEU0_TX #1	CMU_CLKI0 #3 PRS_CH7 #0
PB14	BUSBY BUSAX HFXTAL_N	WTIM1_CC1 #0	US0_CS #4 US1_RTS #5 LEU0_RX #1	PRS_CH6 #1
PD0	VDAC0_OUT0ALT / OPA0_OUTALT #4 OPA2_OUTALT BU- SADC0Y BUSADC0X	WTIM1_CC2 #0	CAN0_RX #2 US1_TX #1	
PD1	VDAC0_OUT1ALT / OPA1_OUTALT #4 BU- SADC0Y BUSADC0X OPA3_OUT	TIM0_CC0 #2 WTIM1_CC3 #0	CAN0_TX #2 US1_RX #1	
PD2	BUSADC0Y BUSADC0X	TIM0_CC1 #2 WTIM1_CC0 #1	US1_CLK #1	
PD3	BUSADC0Y BUSADC0X OPA2_N LCD_SEG30	TIM0_CC2 #2 WTIM1_CC1 #1	US1_CS #1	
PD4	BUSADC0Y BUSADC0X OPA2_P LCD_SEG31	WTIM0_CDTI0 #4 WTIM1_CC2 #1	US1_CTS #1 US3_CLK #2 LEU0_TX #0 I2C1_SDA #3	CMU_CLKI0 #0

Alternate	LOCA	TION									
Functionality	0 - 3	4 - 7	Description								
LCD_COM0	0: PE4		LCD driver common line number 0.								
LCD_COM1	0: PE5		LCD driver common line number 1.								
LCD_COM2	0: PE6		LCD driver common line number 2.								
LCD_COM3	0: PE7		LCD driver common line number 3.								
LCD_SEG0	0: PF2		LCD segment line 0.								
LCD_SEG1	0: PF3		LCD segment line 1.								
LCD_SEG2	0: PF4		LCD segment line 2.								
LCD_SEG3	0: PF5		LCD segment line 3.								
LCD_SEG4	0: PE8		LCD segment line 4.								
LCD_SEG5	0: PE9		LCD segment line 5.								
LCD_SEG6	0: PE10		LCD segment line 6.								
LCD_SEG7	0: PE11		LCD segment line 7.								
LCD_SEG8	0: PE12		LCD segment line 8.								

Alternate	LOC	ATION								
Functionality	0 - 3	4 - 7	Description							
U0_TX	2: PA3 3: PC14	4: PC4 5: PF1 6: PD7	UART0 Transmit output. Also used as receive input in half duplex communication.							
US0_CLK	0: PE12 1: PE5 2: PC9 3: PC15	4: PB13 5: PA12	USART0 clock input / output.							
US0_CS	0: PE13 1: PE4 2: PC8 3: PC14	4: PB14 5: PA13	USART0 chip select input / output.							
US0_CTS	0: PE14 2: PC7 3: PC13	4: PB6 5: PB11	USART0 Clear To Send hardware flow control input.							
US0_RTS	0: PE15 2: PC6 3: PC12	4: PB5 5: PD6	USART0 Request To Send hardware flow control output.							
US0_RX	0: PE11 1: PE6 2: PC10 3: PE12	4: PB8 5: PC1	USART0 Asynchronous Receive. USART0 Synchronous mode Master Input / Slave Output (MISO).							
US0_TX	0: PE10 1: PE7 2: PC11 3: PE13	4: PB7 5: PC0	USART0 Asynchronous Transmit. Also used as receive input in half duplex communica- tion. USART0 Synchronous mode Master Output / Slave Input (MOSI).							
US1_CLK	0: PB7 1: PD2 2: PF0 3: PC15	4: PC3 5: PB11 6: PE5	USART1 clock input / output.							
US1_CS	0: PB8 1: PD3 2: PF1 3: PC14	4: PC0 5: PE4	USART1 chip select input / output.							
US1_CTS	1: PD4 2: PF3 3: PC6	4: PC12 5: PB13	USART1 Clear To Send hardware flow control input.							
US1_RTS	1: PD5 2: PF4 3: PC7	4: PC13 5: PB14	USART1 Request To Send hardware flow control output.							
US1_RX	0: PC1 1: PD1 2: PD6	4: PC2 5: PA0 6: PA2	USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO).							
US1_TX	0: PC0 1: PD0 2: PD7	4: PC1 5: PF2 6: PA14	USART1 Asynchronous Transmit. Also used as receive input in half duplex communica- tion. USART1 Synchronous mode Master Output / Slave Input (MOSI).							

Alternate LOCA													
Functionality	0 - 3	4 - 7	4 - 7 Description										
US2_CLK	0: PC4 1: PB5 2: PA9 3: PA15	5: PF2	USART2 clock input / output.										
US2_CS	0: PC5 1: PB6 2: PA10 3: PB11	5: PF5	USART2 chip select input / output.										
US2_CTS	0: PC1 1: PB12	4: PC12 5: PD6	USART2 Clear To Send hardware flow control input.										
US2_RTS	0: PC0 2: PA12 3: PC14	4: PC13 5: PD8	USART2 Request To Send hardware flow control output.										
US2_RX	0: PC3 1: PB4 2: PA8 3: PA14	5: PF1	USART2 Asynchronous Receive. USART2 Synchronous mode Master Input / Slave Output (MISO).										
US2_TX	0: PC2 1: PB3 3: PA13	5: PF0	USART2 Asynchronous Transmit. Also used as receive input in half duplex communica- tion. USART2 Synchronous mode Master Output / Slave Input (MOSI).										
US3_CLK	0: PA2 1: PD7 2: PD4		USART3 clock input / output.										
US3_CS	0: PA3 1: PE4 2: PC14 3: PC0		USART3 chip select input / output.										
US3_CTS	0: PA4 1: PE5 2: PD6		USART3 Clear To Send hardware flow control input.										
US3_RTS	0: PA5 1: PC1 2: PA14 3: PC15		USART3 Request To Send hardware flow control output.										
US3_RX	0: PA1 1: PE7 2: PB7		USART3 Asynchronous Receive. USART3 Synchronous mode Master Input / Slave Output (MISO).										
US3_TX	0: PA0 1: PE6 2: PB3		USART3 Asynchronous Transmit. Also used as receive input in half duplex communica- tion. USART3 Synchronous mode Master Output / Slave Input (MOSI).										
VDAC0_EXT	0: PD6		Digital to analog converter VDAC0 external reference input pin.										

EFM32TG11 Family Data Sheet Pin Definitions

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	СНО
VD	VDAC0_OUT1 / OPA1_OUT																																
APORT1Y	BUSAY			PB13		PB11						PB5		PB3				PA15		PA13				PA9				PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT3Y	BUSCY											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4Y	BUSDY												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				

8. TQFP64 Package Specifications

8.1 TQFP64 Package Dimensions

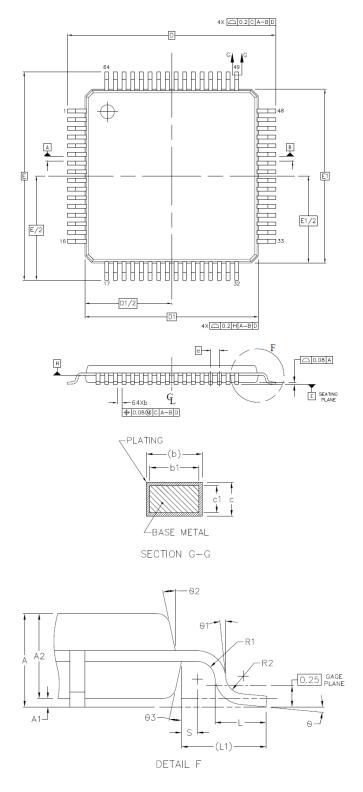


Figure 8.1. TQFP64 Package Drawing

Figure 10.3. TQFP48 Package Marking

The package marking consists of:

- PPPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.