

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detano	
Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	50
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 12bit SAR; D/A 12bit
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TJ)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32tg11b540f64iq64-a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Note:						
		mode is calculated using R_{BYP} _min+ILOAD * R_{BYP} _max.	from the DCDC spec	cification table	e. Requiremer	nts for
2. VREGVDD must be	e tied to AVDD. Both	VREGVDD and AVDD minimum	voltages must be sa	atisfied for the	part to opera	te.
		characteristic specs of the capa oss temperature and DC bias.	citor used on DECOU	JPLE to ensu	re its capacita	ance val-
	will be dependent on	transitions occur at a rate of 10 r the value of the DECOUPLE ou				
5. When the CSEN pe	ripheral is used with	chopping enabled (CSEN_CTRI	CHOPEN = ENAB	LE), IOVDD n	nust be equal	to AVDD
cation. T _A (max) =		due to device self-heating, which x PowerDissipation). Refer to th		•	-	

4.1.3 Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Thermal resistance, QFN32	THETA _{JA_QFN32}	4-Layer PCB, Air velocity = 0 m/s	_	25.7	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	23.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	21.3	_	°C/W
Thermal resistance, TQFP48	THE-	4-Layer PCB, Air velocity = 0 m/s	_	44.1	_	°C/W
Package	TA _{JA_TQFP48}	4-Layer PCB, Air velocity = 1 m/s		43.5	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s		42.3	_	°C/W
Thermal resistance, QFN64	THETA _{JA_QFN64}	4-Layer PCB, Air velocity = 0 m/s	_	20.9	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	18.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	16.4	_	°C/W
Thermal resistance, TQFP64	THE- TA _{JA_TQFP64}	4-Layer PCB, Air velocity = 0 m/s	_	37.3	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	35.6	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	33.8	_	°C/W
Thermal resistance, QFN80	THETA _{JA_QFN80}	4-Layer PCB, Air velocity = 0 m/s		20.9	_	°C/W
Package		4-Layer PCB, Air velocity = 1 m/s	_	18.2	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	16.4	_	°C/W
Thermal resistance, TQFP80	THE-	4-Layer PCB, Air velocity = 0 m/s	_	49.3	_	°C/W
Package	TA _{JA_TQFP80}	4-Layer PCB, Air velocity = 1 m/s	_	44.5	_	°C/W
		4-Layer PCB, Air velocity = 2 m/s	_	42.6	_	°C/W

Table 4.3. Thermal Characteristics

4.1.6 Current Consumption

4.1.6.1 Current Consumption 3.3 V without DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 3.3 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.

Table 4.6. Current Consumption 3.3 V without DC-DC Converter

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM0 mode with all peripherals dis-	I _{ACTIVE}	48 MHz crystal, CPU running while loop from flash	_	45	_	µA/MHz
abled		48 MHz HFRCO, CPU running while loop from flash		44	TBD	µA/MHz
		48 MHz HFRCO, CPU running Prime from flash		57		µA/MHz
		48 MHz HFRCO, CPU running CoreMark loop from flash		71	_	µA/MHz
		32 MHz HFRCO, CPU running while loop from flash		45	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash		46	TBD	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash		50		µA/MHz
		1 MHz HFRCO, CPU running while loop from flash	—	161	TBD	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	I _{ACTIVE_VS}	19 MHz HFRCO, CPU running while loop from flash	—	41	_	µA/MHz
abled and voltage scaling enabled		1 MHz HFRCO, CPU running while loop from flash	_	145	_	µA/MHz
Current consumption in EM1	I _{EM1}	48 MHz crystal	—	34	_	µA/MHz
mode with all peripherals disabled		48 MHz HFRCO	—	33	TBD	µA/MHz
		32 MHz HFRCO	—	34		µA/MHz
		26 MHz HFRCO	—	35	TBD	µA/MHz
		16 MHz HFRCO	—	39	_	µA/MHz
		1 MHz HFRCO	—	150	TBD	µA/MHz
Current consumption in EM1	I _{EM1_VS}	19 MHz HFRCO	—	32	_	µA/MHz
mode with all peripherals dis- abled and voltage scaling enabled		1 MHz HFRCO	_	136		µA/MHz
Current consumption in EM2 mode, with voltage scaling	I _{EM2_VS}	Full 32 kB RAM retention and RTCC running from LFXO		1.48	_	μA
enabled		Full 32 kB RAM retention and RTCC running from LFRCO	_	1.86		μΑ
		8 kB (1 bank) RAM retention and RTCC running from LFRCO ²		1.59	TBD	μΑ
Current consumption in EM3 mode, with voltage scaling enabled	I _{EM3_VS}	Full 32 kB RAM retention and CRYOTIMER running from ULFR- CO		1.23	TBD	μA

4.1.6.2 Current Consumption 3.3 V using DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = 1.8 V DC-DC output. T = 25 °C. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at T = 25 °C.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_DCM	48 MHz crystal, CPU running while loop from flash	_	38	-	µA/MHz
abled, DCDC in Low Noise DCM mode ²		48 MHz HFRCO, CPU running while loop from flash	_	37	_	µA/MHz
		48 MHz HFRCO, CPU running Prime from flash	_	45	_	µA/MHz
		48 MHz HFRCO, CPU running CoreMark loop from flash	_	53	_	µA/MHz
		32 MHz HFRCO, CPU running while loop from flash	_	43	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash		47	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash		61	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash		587	_	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_CCM	48 MHz crystal, CPU running while loop from flash	_	49	_	µA/MHz
abled, DCDC in Low Noise CCM mode ¹		48 MHz HFRCO, CPU running while loop from flash		48	_	µA/MHz
		48 MHz HFRCO, CPU running Prime from flash	_	55	_	µA/MHz
		48 MHz HFRCO, CPU running CoreMark loop from flash		63	_	µA/MHz
		32 MHz HFRCO, CPU running while loop from flash		60	_	µA/MHz
		26 MHz HFRCO, CPU running while loop from flash		68	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash		96	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash		1157	_	µA/MHz
Current consumption in EM0 mode with all peripherals dis-	I _{ACTIVE_LPM}	32 MHz HFRCO, CPU running while loop from flash	_	32	_	µA/MHz
abled, DCDC in LP mode ³		26 MHz HFRCO, CPU running while loop from flash		33	_	µA/MHz
		16 MHz HFRCO, CPU running while loop from flash		36	_	µA/MHz
		1 MHz HFRCO, CPU running while loop from flash		156	_	µA/MHz

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_CCM_VS	19 MHz HFRCO, CPU running while loop from flash	_	81	_	µA/MHz
abled and voltage scaling enabled, DCDC in Low Noise CCM mode ¹		1 MHz HFRCO, CPU running while loop from flash	—	1147		µA/MHz
Current consumption in EM0 mode with all peripherals dis-	IACTIVE_LPM_VS	19 MHz HFRCO, CPU running while loop from flash	_	30	_	µA/MHz
abled and voltage scaling enabled, DCDC in LP mode ³		1 MHz HFRCO, CPU running while loop from flash	_	144	_	µA/MHz
Current consumption in EM1	I _{EM1_DCM}	48 MHz crystal	_	31	_	µA/MHz
mode with all peripherals dis- abled, DCDC in Low Noise		48 MHz HFRCO	_	30	_	µA/MHz
DCM mode ²		32 MHz HFRCO	_	36	_	µA/MHz
		26 MHz HFRCO	_	41	_	µA/MHz
		16 MHz HFRCO		54	_	µA/MHz
		1 MHz HFRCO		581	_	µA/MHz
Current consumption in EM1	I _{EM1_LPM}	32 MHz HFRCO		25	_	µA/MHz
mode with all peripherals dis- abled, DCDC in Low Power		26 MHz HFRCO	_	26	_	µA/MHz
mode ³		16 MHz HFRCO	_	29	_	µA/MHz
		1 MHz HFRCO	_	153	_	µA/MHz
Current consumption in EM1	IEM1_DCM_VS	19 MHz HFRCO	_	46	_	µA/MHz
mode with all peripherals dis- abled and voltage scaling enabled, DCDC in Low Noise DCM mode ²		1 MHz HFRCO	_	573		µA/MHz
Current consumption in EM1	I _{EM1_LPM_VS}	19 MHz HFRCO	_	25	_	µA/MHz
mode with all peripherals dis- abled and voltage scaling enabled. DCDC in LP mode ³		1 MHz HFRCO	_	140	_	µA/MHz
Current consumption in EM2 mode, with voltage scaling	I _{EM2_VS}	Full 32 kB RAM retention and RTCC running from LFXO	_	1.26	_	μΑ
enabled, DCDC in LP mode ³		Full 32 kB RAM retention and RTCC running from LFRCO	_	1.54	_	μΑ
		8 kB (1 bank) RAM retention and RTCC running from LFRCO ⁵	—	1.30	_	μA
Current consumption in EM3 mode, with voltage scaling enabled	IEM3_VS	Full 32 kB RAM retention and CRYOTIMER running from ULFR- CO	_	0.93		μA
Current consumption in EM4H mode, with voltage	I _{EM4H_VS}	128 byte RAM retention, RTCC running from LFXO	_	0.78	_	μΑ
scaling enabled		128 byte RAM retention, CRYO- TIMER running from ULFRCO	_	0.50		μΑ
		128 byte RAM retention, no RTCC	_	0.50	_	μA
Current consumption in EM4S mode	I _{EM4S}	No RAM retention, no RTCC		0.06		μΑ

4.1.8 Brown Out Detector (BOD)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
DVDD BOD threshold	V _{DVDDBOD}	DVDD rising	_	_	TBD	V
		DVDD falling (EM0/EM1)	TBD	_	_	V
		DVDD falling (EM2/EM3)	TBD	_	—	V
DVDD BOD hysteresis	V _{DVDDBOD_HYST}		_	18	_	mV
DVDD BOD response time	tDVDDBOD_DELAY	Supply drops at 0.1V/µs rate	—	2.4	_	μs
AVDD BOD threshold	V _{AVDDBOD}	AVDD rising	_		TBD	V
		AVDD falling (EM0/EM1)	TBD	_	_	V
		AVDD falling (EM2/EM3)	TBD	_	_	V
AVDD BOD hysteresis	VAVDDBOD_HYST		—	20	_	mV
AVDD BOD response time	t _{AVDDBOD_DELAY}	Supply drops at 0.1V/µs rate	—	2.4		μs
EM4 BOD threshold	V _{EM4DBOD}	AVDD rising	—	_	TBD	V
		AVDD falling	TBD		_	V
EM4 BOD hysteresis	V _{EM4BOD_HYST}		_	25	_	mV
EM4 BOD response time	t _{EM4BOD_DELAY}	Supply drops at 0.1V/µs rate	—	300		μs

Table 4.10. Brown Out Detector (BOD)

4.1.17 Operational Amplifier (OPAMP)

Unless otherwise indicated, specified conditions are: Non-inverting input configuration, VDD = 3.3 V, DRIVESTRENGTH = 2, MAIN-OUTEN = 1, C_{LOAD} = 75 pF with OUTSCALE = 0, or C_{LOAD} = 37.5 pF with OUTSCALE = 1. Unit gain buffer and 3X-gain connection as specified in table footnotes^{8 1}.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Supply voltage (from AVDD)	V _{OPA}	HCMDIS = 0, Rail-to-rail input range	2	_	3.8	V
		HCMDIS = 1	1.62		3.8	V
Input voltage	V _{IN}	HCMDIS = 0, Rail-to-rail input range	V_{VSS}	_	V _{OPA}	V
		HCMDIS = 1	V _{VSS}	_	V _{OPA} -1.2	V
Input impedance	R _{IN}		100	_	_	MΩ
Output voltage	V _{OUT}		V _{VSS}		V _{OPA}	V
Load capacitance ²	C _{LOAD}	OUTSCALE = 0	_		75	pF
		OUTSCALE = 1	_	_	37.5	pF
Output impedance	R _{OUT}	DRIVESTRENGTH = 2 or 3, 0.4 V \leq V _{OUT} \leq V _{OPA} - 0.4 V, -8 mA < I _{OUT} < 8 mA, Buffer connection, Full supply range	_	0.25	_	Ω
		DRIVESTRENGTH = 0 or 1, 0.4 V \leq V _{OUT} \leq V _{OPA} - 0.4 V, -400 µA $<$ I _{OUT} $<$ 400 µA, Buffer connection, Full supply range	_	0.6	_	Ω
		DRIVESTRENGTH = 2 or 3, 0.1 V \leq V _{OUT} \leq V _{OPA} - 0.1 V, -2 mA $<$ I _{OUT} $<$ 2 mA, Buffer connection, Full supply range	_	0.4	_	Ω
		DRIVESTRENGTH = 0 or 1, 0.1 V \leq V _{OUT} \leq V _{OPA} - 0.1 V, -100 µA $<$ I _{OUT} $<$ 100 µA, Buffer connection, Full supply range	_	1	_	Ω
Internal closed-loop gain	G _{CL}	Buffer connection	TBD	1	TBD	-
		3x Gain connection	TBD	2.99	TBD	-
		16x Gain connection	TBD	15.7	TBD	-
Active current ⁴	I _{OPA}	DRIVESTRENGTH = 3, OUT- SCALE = 0	_	580	_	μA
		DRIVESTRENGTH = 2, OUT- SCALE = 0	_	176	_	μA
		DRIVESTRENGTH = 1, OUT- SCALE = 0	_	13	_	μA
		DRIVESTRENGTH = 0, OUT- SCALE = 0	_	4.7	-	μA

Table 4.24. Operational Amplifier (OPAMP)

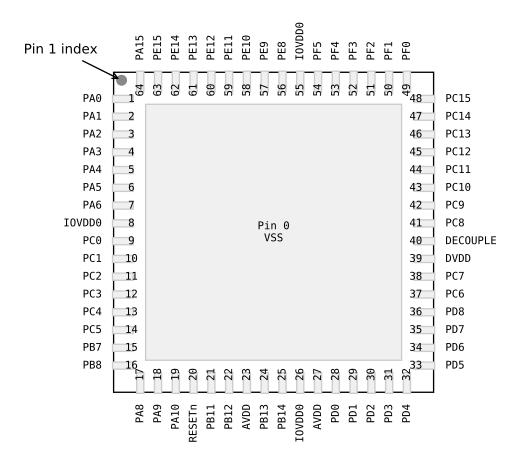
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Open-loop gain	G _{OL}	DRIVESTRENGTH = 3	_	135	_	dB
		DRIVESTRENGTH = 2	—	137	_	dB
		DRIVESTRENGTH = 1	_	121	_	dB
		DRIVESTRENGTH = 0	—	109	_	dB
Loop unit-gain frequency ⁷	UGF	DRIVESTRENGTH = 3, Buffer connection	_	3.38	_	MHz
		DRIVESTRENGTH = 2, Buffer connection	_	0.9	_	MHz
		DRIVESTRENGTH = 1, Buffer connection	_	132	_	kHz
		DRIVESTRENGTH = 0, Buffer connection	_	34		kHz
		DRIVESTRENGTH = 3, 3x Gain connection	_	2.57	_	MHz
		DRIVESTRENGTH = 2, 3x Gain connection	_	0.71	_	MHz
		DRIVESTRENGTH = 1, 3x Gain connection	_	113	_	kHz
		DRIVESTRENGTH = 0, 3x Gain connection	_	28	_	kHz
Phase margin	PM	DRIVESTRENGTH = 3, Buffer connection		67	_	0
		DRIVESTRENGTH = 2, Buffer connection	_	69	_	0
		DRIVESTRENGTH = 1, Buffer connection	_	63	_	0
		DRIVESTRENGTH = 0, Buffer connection	_	68	_	0
Output voltage noise	N _{OUT}	DRIVESTRENGTH = 3, Buffer connection, 10 Hz - 10 MHz	_	146	_	µVrms
		DRIVESTRENGTH = 2, Buffer connection, 10 Hz - 10 MHz	_	163	_	µVrms
		DRIVESTRENGTH = 1, Buffer connection, 10 Hz - 1 MHz	_	170	_	μVrms
		DRIVESTRENGTH = 0, Buffer connection, 10 Hz - 1 MHz	_	176	_	µVrms
		DRIVESTRENGTH = 3, 3x Gain connection, 10 Hz - 10 MHz	_	313	_	μVrms
		DRIVESTRENGTH = 2, 3x Gain connection, 10 Hz - 10 MHz	_	271	_	µVrms
		DRIVESTRENGTH = 1, 3x Gain connection, 10 Hz - 1 MHz	_	247	_	μVrms
		DRIVESTRENGTH = 0, 3x Gain connection, 10 Hz - 1 MHz	-	245	-	μVrms

4.1.19 Pulse Counter (PCNT)

Table 4.26. Pulse Counter (PCNT)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input frequency	F _{IN}	Asynchronous Single and Quad- rature Modes	—	_	20	MHz
		Sampled Modes with Debounce filter set to 0.			8	kHz

4.1.20 Analog Port (APORT)


Table 4.27. Analog Port (APORT)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supply current ^{2 1}	IAPORT	Operation in EM0/EM1	—	7	—	μA
		Operation in EM2/EM3		915		nA

Note:

1. Specified current is for continuous APORT operation. In applications where the APORT is not requested continuously (e.g. periodic ACMP requests from LESENSE in EM2), the average current requirements can be estimated by mutiplying the duty cycle of the requests by the specified continuous current number.

2. Supply current increase that occurs when an analog peripheral requests access to APORT. This current is not included in reported module currents. Additional peripherals requesting access to APORT do not incur further current.

Figure 5.8. EFM32TG11B1xx in QFN64 Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VREGVSS	0	Voltage regulator VSS	PA0	1	GPIO
PA1	2	GPIO	PA2	3	GPIO
PA3	4	GPIO	PA4	5	GPIO
PA5	6	GPIO	PA6	7	GPIO
IOVDD0	8 26 55	Digital IO power supply 0.	PC0	9	GPIO (5V)
PC1	10	GPIO (5V)	PC2	11	GPIO (5V)

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PA14	8	GPIO	RESETn	9	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	10	GPIO	AVDD	11	Analog power supply.
PB13	12	GPIO	PB14	13	GPIO
PD4	15	GPIO	PD5	16	GPIO
PD6	17	GPIO	PD7	18	GPIO
VREGSW	20	DCDC regulator switching node	VREGVDD	21	Voltage regulator VDD input
DVDD	22	Digital power supply.	DECOUPLE	23	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
PE4	24	GPIO	PE5	25	GPIO
PC15	26	GPIO (5V)	PF0	27	GPIO (5V)
PF1	28	GPIO (5V)	PF2	29	GPIO
PE11	31	GPIO	PE12	32	GPIO
Note: 1. GPIO with	n 5V tolera	nce are indicated by (5V).		1	

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB8	8	GPIO	RESETn	9	Reset input, active low. To apply an ex- ternal reset source to this pin, it is re- quired to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
PB11	10	GPIO	AVDD	11 15	Analog power supply.
PB13	12	GPIO	PB14	13	GPIO
PD4	16	GPIO	PD5	17	GPIO
PD6	18	GPIO	PD7	19	GPIO
DVDD	20	Digital power supply.	DECOUPLE	21	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
PC13	22	GPIO (5V)	PC14	23	GPIO (5V)
PC15	24	GPIO (5V)	PF0	25	GPIO (5V)
PF1	26	GPIO (5V)	PF2	27	GPIO
PE10	29	GPIO	PE11	30	GPIO
PE12	31	GPIO	PE13	32	GPIO
Note:		,			

1. GPIO with 5V tolerance are indicated by (5V).

Alternate	LOCA	TION	
Functionality	0 - 3	4 - 7	Description
LCD_COM0	0: PE4		LCD driver common line number 0.
LCD_COM1	0: PE5		LCD driver common line number 1.
LCD_COM2	0: PE6		LCD driver common line number 2.
LCD_COM3	0: PE7		LCD driver common line number 3.
LCD_SEG0	0: PF2		LCD segment line 0.
LCD_SEG1	0: PF3		LCD segment line 1.
LCD_SEG2	0: PF4		LCD segment line 2.
LCD_SEG3	0: PF5		LCD segment line 3.
LCD_SEG4	0: PE8		LCD segment line 4.
LCD_SEG5	0: PE9		LCD segment line 5.
LCD_SEG6	0: PE10		LCD segment line 6.
LCD_SEG7	0: PE11		LCD segment line 7.
LCD_SEG8	0: PE12		LCD segment line 8.

Alternate	LOC <i>A</i> 0 - 3	ATION 4 - 7	Description						
Functionality LCD_SEG22 / LCD_COM6	0 - 3 0: PB5	4 - 7	LCD segment line 22. This pin may also be used as LCD COM line 6						
LCD_SEG23 / LCD_COM7	0: PB6		LCD segment line 23. This pin may also be used as LCD COM line 7						
LCD_SEG24	0: PC4		LCD segment line 24.						
LCD_SEG25	0: PC5		LCD segment line 25.						
LCD_SEG26	0: PA9		LCD segment line 26.						
LCD_SEG27	0: PA10		LCD segment line 27.						
LCD_SEG28	0: PB11		LCD segment line 28.						
LCD_SEG29	0: PB12		LCD segment line 29.						
LCD_SEG30	0: PD3		LCD segment line 30.						
LCD_SEG31	0: PD4		LCD segment line 31.						
LCD_SEG32	0: PC6		LCD segment line 32.						
LCD_SEG33	0: PC7		LCD segment line 33.						
LCD_SEG34	0: PC8		LCD segment line 34.						

Alternate	LOC	ATION	
Functionality	0 - 3	4 - 7	Description
WTIM1_CC3	0: PD1 1: PD5 2: PC6	4: PE6	Wide timer 1 Capture Compare input / output channel 3.

Port	Bus	CH31	CH30	CH29	CH28	CH27	CH26	CH25	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17	CH16	CH15	CH14	CH13	CH12	CH11	CH10	СН9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	СНО
APORT0X	BUSACMP0X																									PC7	PC6	PC5	PC4	PC3	PC2	PC1	PCO
APORT0Y	BUSACMP0Y																									PC7	PC6	PC5	PC4	PC3	PC2	PC1	PCO
APORT1X	BUSAX		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT1Y	BUSAY			PB13		PB11						PB5		PB3				PA15		PA13				PA9				PA5		PA3		PA1	
APORT2X	BUSBX			PB13		PB11						PB5		PB3				PA15		PA13				PA9				PA5		PA3		PA1	
APORT2Y	BUSBY		PB14		PB12						PB6		PB4						PA14				PA10				PA6		PA4		PA2		PA0
APORT3X	BUSCX												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				
APORT3Y	BUSCY											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4X	BUSDX											PF5		PF3		PF1		PE15		PE13		PE11		PE9		PE7		PE5					
APORT4Y	BUSDY												PF4		PF2		PF0		PE14		PE12		PE10		PE8		PE6		PE4				

PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared bus used by this connection is indicated in the Bus column.

Table 5.16. ACMP0 Bus and Pin Mapping

8. TQFP64 Package Specifications

8.1 TQFP64 Package Dimensions

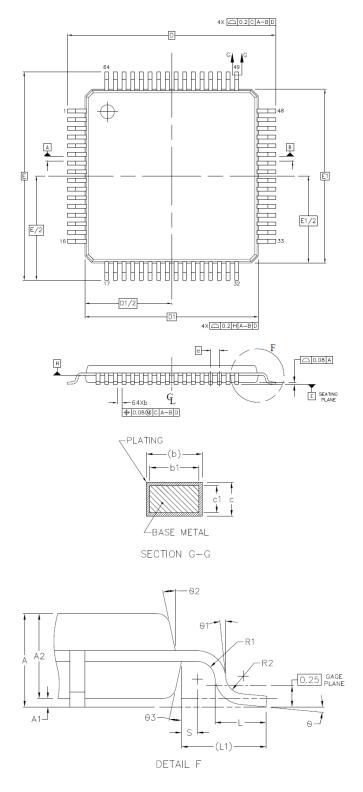


Figure 8.1. TQFP64 Package Drawing

Dimension	Min	Тур	Мах							
A	_	1.15	1.20							
A1	0.05	_	0.15							
A2	0.95	0.95 1.00 1.05								
b	0.17	0.22	0.27							
b1	0.17	0.20	0.23							
с	0.09	_	0.20							
c1	0.09	—	0.16							
D		12.00 BSC								
D1		10.00 BSC								
e		0.50 BSC								
E		12.00 BSC								
E1		10.00 BSC								
L	0.45	0.60	0.75							
L1		1.00 REF								
R1	0.08	—	—							
R2	0.08	_	0.20							
S	0.20	—	—							
θ	0	3.5	7							
θ1	0	—	0.10							
θ2	11	12	13							
θ3	11	12 13								
Note:		·								

Table 8.1. TQFP64 Package Dimensions

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

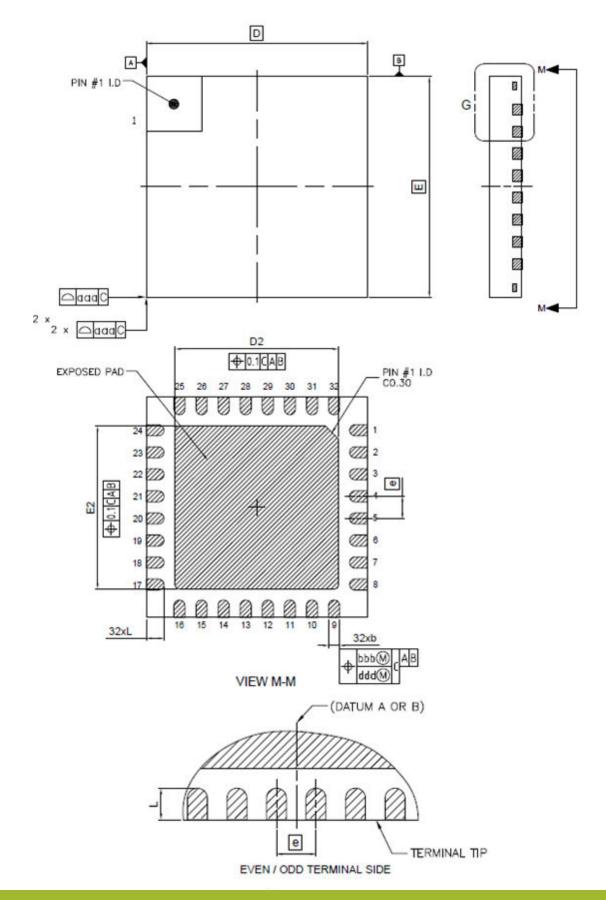
Table 8.2. TQFP64 PCB Land Pattern Dimensions

Dimension	Min	Мах					
C1	11.30	11.40					
C2	11.30	11.40					
E	0.50 BSC						
x	0.20	0.30					
Y	1.40	1.50					

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size can be 1:1 for all pads.
- 7. A No-Clean, Type-3 solder paste is recommended.
- 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8.3 TQFP64 Package Marking


Figure 8.3. TQFP64 Package Marking

The package marking consists of:

- PPPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code. The first letter is the device revision.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.

11. QFN32 Package Specifications

11.1 QFN32 Package Dimensions

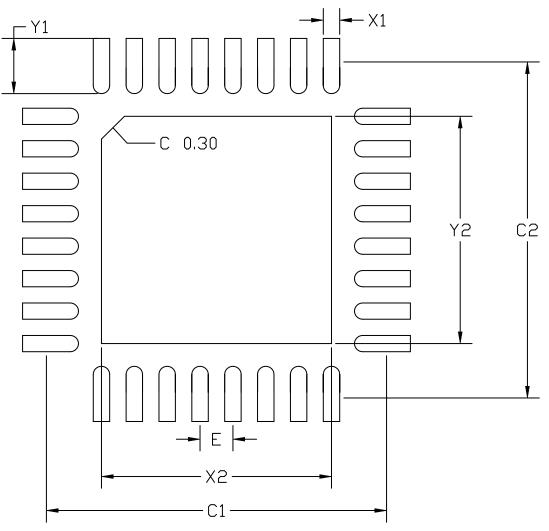


Figure 11.2. QFN32 PCB Land Pattern Drawing