

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Not For New Designs                                            |
|----------------------------|----------------------------------------------------------------|
| Core Processor             | 8051                                                           |
| Core Size                  | 8-Bit                                                          |
| Speed                      | 20MHz                                                          |
| Connectivity               | SMBus (2-Wire/I <sup>2</sup> C), SPI, UART/USART               |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT             |
| Number of I/O              | 32                                                             |
| Program Memory Size        | 32KB (32K x 8)                                                 |
| Program Memory Type        | FLASH                                                          |
| EEPROM Size                | -                                                              |
| RAM Size                   | 256 x 8                                                        |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 3.6V                                                    |
| Data Converters            | A/D 8x12b; D/A 2x12b                                           |
| Oscillator Type            | Internal                                                       |
| Operating Temperature      | -40°C ~ 85°C (TA)                                              |
| Mounting Type              | Surface Mount                                                  |
| Package / Case             | 64-TQFP                                                        |
| Supplier Device Package    | 64-TQFP (10x10)                                                |
| Purchase URL               | https://www.e-xfl.com/product-detail/silicon-labs/c8051f000-gq |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 4.5. LQFP-32 Pinout Diagram





| 1       |                                                                                       |            |                |                |                 | 0               | •              | •                 |              |  |  |
|---------|---------------------------------------------------------------------------------------|------------|----------------|----------------|-----------------|-----------------|----------------|-------------------|--------------|--|--|
| R/W     | <i>.</i>                                                                              | R/W        | R/W            | R/W            | R/W             | R/W             | R/W            | R/W               | Reset Value  |  |  |
| ADCI    | EN A                                                                                  | DCTM       | ADCINT         | ADBUSY         | ADSTM1          | ADSTM0          | ADWINT         | ADLJST            | 00000000     |  |  |
| Bit7    |                                                                                       | Bit6       | Bit5           | Bit4           | Bit3            | Bit2            | Bit1           | Bit0              | SFR Address: |  |  |
|         |                                                                                       |            |                |                |                 |                 |                | (bit addressable) | 0xE8         |  |  |
| Bit7:   | ADCE                                                                                  | N: ADC     | Enable Bit     |                |                 |                 |                |                   |              |  |  |
|         | 0: AD                                                                                 | C Disable  | ed. ADC is i   | n low power    | shutdown.       |                 |                |                   |              |  |  |
|         | 1: AD                                                                                 | C Enable   | d. ADC is a    | ctive and rea  | dy for data co  | onversions.     |                |                   |              |  |  |
| Bit6:   | ADCT                                                                                  | M: ADC     | Track Mode     | Bit            | 5               |                 |                |                   |              |  |  |
|         | 0: When the ADC is enabled, tracking is always done unless a conversion is in process |            |                |                |                 |                 |                |                   |              |  |  |
|         | 1: Tra                                                                                | cking De   | fined by ADS   | STM1-0 bits    | 5               |                 |                | 1                 |              |  |  |
|         |                                                                                       | ADST       | M1-0:          |                |                 |                 |                |                   |              |  |  |
|         |                                                                                       | 00: Tr     | acking starts  | with the writ  | e of 1 to AD    | BUSY and la     | sts for 3 SA   | R clocks          |              |  |  |
|         |                                                                                       | 01: Tr     | acking starte  | d by the over  | flow of Time    | er 3 and last f | or 3 SAR clo   | ocks              |              |  |  |
|         |                                                                                       | 10: AI     | DC tracks on   | ly when CNV    | STR input is    | s logic low     |                |                   |              |  |  |
|         |                                                                                       | 11: Tr     | acking started | d by the over  | flow of Time    | er 2 and last f | or 3 SAR clo   | ocks              |              |  |  |
| Bit5:   | ADCIN                                                                                 | NT: ADC    | Conversion     | Complete In    | terrupt Flag    |                 |                |                   |              |  |  |
|         | (Must l                                                                               | be cleared | d by software  | e)             |                 |                 |                |                   |              |  |  |
|         | 0: AD                                                                                 | C has not  | t completed a  | data convers   | sion since the  | alast time this | s flag was cl  | eared             |              |  |  |
|         | 1: AD                                                                                 | C has con  | mpleted a dat  | a conversion   |                 |                 |                |                   |              |  |  |
| Bit4:   | ADBU                                                                                  | SY: ADO    | C Busy Bit     |                |                 |                 |                |                   |              |  |  |
|         | Read                                                                                  |            |                |                |                 |                 |                |                   |              |  |  |
|         | 0: AD                                                                                 | C Conve    | rsion comple   | te or no valid | l data has bee  | n converted     | since a reset. | The falling       |              |  |  |
|         | edg                                                                                   | e of ADE   | BUSY genera    | tes an interru | pt when enal    | bled.           |                |                   |              |  |  |
|         | 1: AD                                                                                 | C Busy c   | onverting dat  | ta             |                 |                 |                |                   |              |  |  |
|         | Write                                                                                 |            |                |                |                 |                 |                |                   |              |  |  |
|         | 0: No                                                                                 | effect     |                |                |                 |                 |                |                   |              |  |  |
|         | 1: Star                                                                               | ts ADC (   | Conversion if  | ADSTM1-0       | 0 = 00b         |                 |                |                   |              |  |  |
| Bits3-2 | : ADSTI                                                                               | M1-0: AI   | DC Start of C  | onversion M    | ode Bits        |                 |                |                   |              |  |  |
|         | 00: AI                                                                                | DC conve   | ersion started | upon every     | write of 1 to A | ADBUSY          |                |                   |              |  |  |
|         | 01: AI                                                                                | DC conve   | ersions taken  | on every ove   | erflow of Tim   | ler 3           |                |                   |              |  |  |
|         | 10: AI                                                                                | DC conve   | ersion started | upon every i   | ising edge of   | f CNVSTR        |                |                   |              |  |  |
|         | 11: AI                                                                                | DC conve   | ersions taken  | on every ove   | erflow of Tim   | ler 2           |                |                   |              |  |  |
| Bit1:   | ADWI                                                                                  | NT: ADO    | C Window Co    | ompare Inter   | upt Flag        |                 |                |                   |              |  |  |
|         | (Must I                                                                               | be cleared | d by software  | e)             |                 |                 |                |                   |              |  |  |
|         | 0: AD                                                                                 | C Windo    | w Compariso    | on Data mate   | h has not occ   | urred           |                |                   |              |  |  |
| D'/0    | I: AD                                                                                 | C Windo    | w Compariso    | on Data mate   | h occurred      |                 |                |                   |              |  |  |
| BIIU:   |                                                                                       | ADC        | Left Justify I | Data Bit       |                 |                 |                |                   |              |  |  |
|         | U: Data                                                                               | a III ADC  |                | Registers is 1 | ignt justified  |                 |                |                   |              |  |  |
|         | 1. Dat                                                                                | a III ADC  | UT:ADCUL       | Registers is I | en justified    |                 |                |                   |              |  |  |
|         |                                                                                       |            |                |                |                 |                 |                |                   |              |  |  |

### Figure 5.7. ADC0CN: ADC Control Register (C8051F00x)



### Figure 6.5. AMX0SL: AMUX Channel Select Register (C8051F01x)

| R/W         | ŀ                         | R/W                              | R/W                                         | R/W                                          |                        | R/W                | R/W    | R/W                | ]    | R/W            |
|-------------|---------------------------|----------------------------------|---------------------------------------------|----------------------------------------------|------------------------|--------------------|--------|--------------------|------|----------------|
| -           |                           | -                                | -                                           | -                                            | AN                     | IXAD3              | AMXAD2 | AMXAD              | 1 AM | IXAD0          |
| -4:<br>-0:  | UNUSE<br>AMXAI<br>0000-11 | D. Read :<br>D3-0: AM<br>11: ADC | Bit5<br>= 0000b; V<br>UX Addre<br>Inputs se | Bit4<br>Write = dc<br>ess Bits<br>lected per | on't care<br>chart bel | low                | Bit2   | Bitl               |      | BIU            |
|             | ,                         |                                  |                                             |                                              | A                      | MXAD               | 3-0    |                    |      |                |
|             |                           | 0000                             | 0001                                        | 0010                                         | 0011                   | 0100               | 0101   | 0110               | 0111 | 1xxx           |
| A<br>M      | 0000                      | AIN0                             | AIN1                                        | AIN2                                         | AIN3                   | AIN4               | AIN5   | AIN6               | AIN7 | TEMP<br>SENSOI |
| X<br>0      | 0001                      | +(AIN0)<br>-(AIN1)               |                                             | AIN2                                         | AIN3                   | AIN4               | AIN5   | AIN6               | AIN7 | TEMP<br>SENSOI |
| C<br>F      | 0010                      | AIN0                             | AIN1                                        | +(AIN2)<br>-(AIN3)                           |                        | AIN4               | AIN5   | AIN6               | AIN7 | TEMP<br>SENSOI |
| B           | 0011                      | +(AIN0)<br>-(AIN1)               |                                             | +(AIN2)<br>-(AIN3)                           |                        | AIN4               | AIN5   | AIN6               | AIN7 | TEMP<br>SENSOI |
| I<br>T<br>S | 0100                      | AIN0                             | AIN1                                        | AIN2                                         | AIN3                   | +(AIN4)<br>-(AIN5) |        | AIN6               | AIN7 | TEMP<br>SENSOF |
| 3           | 0101                      | +(AIN0)<br>-(AIN1)               |                                             | AIN2                                         | AIN3                   | +(AIN4)<br>-(AIN5) |        | AIN6               | AIN7 | TEMP<br>SENSOF |
| -<br>0      | 0110                      | AIN0                             | AIN1                                        | +(AIN2)<br>-(AIN3)                           |                        | +(AIN4)<br>-(AIN5) |        | AIN6               | AIN7 | TEMP<br>SENSOF |
| U           | 0111                      | +(AIN0)<br>-(AIN1)               |                                             | +(AIN2)<br>-(AIN3)                           |                        | +(AIN4)<br>-(AIN5) |        | AIN6               | AIN7 | TEMP<br>SENSOF |
|             | 1000                      | AIN0                             | AIN1                                        | AIN2                                         | AIN3                   | AIN4               | AIN5   | +(AIN6)<br>-(AIN7) |      | TEMP<br>SENSOF |
|             | 1001                      | +(AIN0)<br>-(AIN1)               |                                             | AIN2                                         | AIN3                   | AIN4               | AIN5   | +(AIN6)<br>-(AIN7) |      | TEMP<br>SENSOF |
|             | 1010                      | AIN0                             | AIN1                                        | +(AIN2)<br>-(AIN3)                           |                        | AIN4               | AIN5   | +(AIN6)<br>-(AIN7) |      | TEMP<br>SENSOI |
|             | 1011                      | +(AIN0)<br>-(AIN1)               |                                             | +(AIN2)<br>-(AIN3)                           |                        | AIN4               | AIN5   | +(AIN6)<br>-(AIN7) |      | TEMP<br>SENSOF |
|             | 1100                      | AIN0                             | AIN1                                        | AIN2                                         | AIN3                   | +(AIN4)<br>-(AIN5) |        | +(AIN6)<br>-(AIN7) |      | TEMP<br>SENSOF |
|             | 1101                      | +(AIN0)<br>-(AIN1)               |                                             | AIN2                                         | AIN3                   | +(AIN4)<br>-(AIN5) |        | +(AIN6)<br>-(AIN7) |      | TEMP<br>SENSOR |
|             | 1110                      | AIN0                             | AIN1                                        | +(AIN2)<br>-(AIN3)                           |                        | +(AIN4)<br>-(AIN5) |        | +(AIN6)<br>-(AIN7) |      | TEMP<br>SENSOF |
|             | 1111                      | +(AIN0)                          |                                             | +(AIN2)                                      |                        | +(AIN4)            |        | +(AIN6)            |      | TEMP           |



| r       | 0               |                         |                |                 | 0               | \[             | /                 |              |
|---------|-----------------|-------------------------|----------------|-----------------|-----------------|----------------|-------------------|--------------|
| R/W     | V R/W           | R/W                     | R/W            | R/W             | R/W             | R/W            | R/W               | Reset Value  |
| ADC     | EN ADCTM        | ADCINT                  | ADBUSY         | ADSTM1          | ADSTM0          | ADWINT         | ADLJST            | 0000000      |
| Bit7    | 7 Bit6          | Bit5                    | Bit4           | Bit3            | Bit2            | Bit1           | Bit0              | SFR Address: |
|         |                 |                         |                |                 |                 |                | (bit addressable) | 0xE8         |
| Bit7:   | ADCEN: ADC      | Enable Bit              |                |                 |                 |                |                   |              |
|         | 0: ADC Disabl   | ed. ADC is              | in low power   | shutdown.       |                 |                |                   |              |
|         | 1: ADC Enable   | ed. ADC is a            | ctive and rea  | dy for data co  | onversions.     |                |                   |              |
| Bit6:   | ADCTM: ADC      | Track Mode              | Bit            | •               |                 |                |                   |              |
|         | 0: When the A   | DC is enable            | d, tracking is | always done     | unless a con    | version is in  | process           |              |
|         | 1: Tracking De  | fined by AD             | STM1-0 bits    |                 |                 |                |                   |              |
|         | ADST            | M1-0:                   |                |                 |                 |                |                   |              |
|         | 00: Ti          | acking starts           | with the writ  | te of 1 to AD   | BUSY and la     | asts for 3 SA  | R clocks          |              |
|         | 01: Ti          | acking starte           | d by the over  | flow of Time    | er 3 and last f | for 3 SAR clo  | ocks              |              |
|         | 10: A           | DC tracks on            | ly when CNV    | /STR input is   | s logic low     |                |                   |              |
|         | 11: Ti          | acking starte           | d by the over  | flow of Time    | er 2 and last f | for 3 SAR clo  | ocks              |              |
| Bit5:   | ADCINT: ADC     | <sup>C</sup> Conversion | Complete In    | terrupt Flag    |                 |                |                   |              |
|         | (Must be cleare | d by softwar            | e)             |                 |                 |                |                   |              |
|         | 0: ADC has no   | t completed a           | a data conver  | sion since the  | e last time thi | s flag was cl  | eared             |              |
| D:44.   | 1: ADC has co   | mpleted a da            | ta conversion  |                 |                 |                |                   |              |
| Б114:   | ADBUST: AD      | C Busy Bit              |                |                 |                 |                |                   |              |
|         | 0: ADC Convo    | rsion comple            | to or no valid | l data has has  | n convorted     | since a reset  | The felling       |              |
|         | 0. ADC Collive  | BUSV gener              | ates an interr | i uata nas bee  | bled            | since a reset. | The failing       |              |
|         | 1. ADC Busy of  | converting da           | ta             | ipt when ena    | bicu.           |                |                   |              |
|         | Write           | converting du           | itu            |                 |                 |                |                   |              |
|         | 0: No effect    |                         |                |                 |                 |                |                   |              |
|         | 1: Starts ADC   | Conversion i            | f ADSTM1-0     | 0 = 00b         |                 |                |                   |              |
| Bits3-2 | 2: ADSTM1-0: A  | DC Start of C           | Conversion M   | lode Bits       |                 |                |                   |              |
|         | 00: ADC conv    | ersion started          | l upon every   | write of 1 to 2 | ADBUSY          |                |                   |              |
|         | 01: ADC conv    | ersions taken           | on every over  | erflow of Tim   | ner 3           |                |                   |              |
|         | 10: ADC conv    | ersion started          | l upon every i | rising edge of  | f CNVSTR        |                |                   |              |
|         | 11: ADC conv    | ersions taken           | on every ove   | erflow of Tim   | ner 2           |                |                   |              |
| Bit1:   | ADWINT: AD      | C Window C              | ompare Inter   | rupt Flag       |                 |                |                   |              |
|         | (Must be cleare | d by softwar            | e)             |                 |                 |                |                   |              |
|         | 0: ADC Windo    | ow Compariso            | on Data mate   | h has not occ   | urred           |                |                   |              |
| DHO     | I: ADU Windo    | w Comparis              | on Data mate   | n occurred      |                 |                |                   |              |
| B110:   | ADLJST: ADC     | COLLADCOL               | Data Bit       |                 |                 |                |                   |              |
|         | 1. Data III ADO |                         | Registers is 1 | laft instified  | L               |                |                   |              |
|         | 1. Data ili ADC |                         | Registers is i | ien justineu    |                 |                |                   |              |
|         |                 |                         |                |                 |                 |                |                   |              |
|         |                 |                         |                |                 |                 |                |                   |              |

### Figure 6.7. ADC0CN: ADC Control Register (C8051F01x)









| R/W    | R              | R/W              | R/W           | R/W            | R/W              | R/W            | R/W     | Reset Value  |  |  |  |
|--------|----------------|------------------|---------------|----------------|------------------|----------------|---------|--------------|--|--|--|
| CP1E1  | V CPIOUT       | CP1RIF           | CP1FIF        | CP1HYP1        | CP1HYP0          | CP1HYN1        | CP1HYN0 | 00000000     |  |  |  |
| Bit7   | Bit6           | Bit5             | Bit4          | Bit3           | Bit2             | Bit1           | Bit0    | SFR Address: |  |  |  |
|        | 0x9F           |                  |               |                |                  |                |         |              |  |  |  |
| Bit7:  | CP1EN: Com     | parator 1 Ena    | ble Bit       |                |                  |                |         |              |  |  |  |
|        | 0: Comparate   | or 1 Disabled.   |               |                |                  |                |         |              |  |  |  |
|        | 1: Comparate   | or 1 Enabled.    |               |                |                  |                |         |              |  |  |  |
| Bit6:  | CP1OUT: Co     | mparator 1 O     | utput State F | lag            |                  |                |         |              |  |  |  |
|        | 0: Voltage or  | n CP1 + < CP2    | l -           |                |                  |                |         |              |  |  |  |
|        | 1: Voltage or  | CP1 + > CP1      | l -           |                |                  |                |         |              |  |  |  |
| Bit5:  | CP1RIF: Con    | parator 1 Ris    | sing-Edge Int | terrupt Flag   |                  |                |         |              |  |  |  |
|        | 0: No Compa    | rator 1 Risin    | g-Edge Inter  | rupt has occu  | rred since thi   | s flag was clo | eared   |              |  |  |  |
|        | 1: Comparate   | or 1 Rising-E    | dge Interrupt | has occurred   | l since this fla | ag was cleare  | d       |              |  |  |  |
| Bit4:  | CP1FIF: Com    | parator 1 Fal    | ling-Edge In  | terrupt Flag   |                  | -              |         |              |  |  |  |
|        | 0: No Compa    | rator 1 Fallin   | g-Edge Inter  | rupt has occu  | urred since th   | is flag was cl | eared   |              |  |  |  |
|        | 1: Comparate   | or 1 Falling-E   | dge Interrup  | t has occurred | d since this fl  | ag was cleare  | ed      |              |  |  |  |
| Bit3-2 | : CP1HYP1-0:   | Comparator       | 1 Positive Hy | steresis Con   | trol Bits        | -              |         |              |  |  |  |
|        | 00: Positive I | Hysteresis Di    | sabled        |                |                  |                |         |              |  |  |  |
|        | 01: Positive I | Hysteresis $= 2$ | 2mV           |                |                  |                |         |              |  |  |  |
|        | 10: Positive I | Hysteresis $= 4$ | ŀmV           |                |                  |                |         |              |  |  |  |
|        | 11: Positive I | Hysteresis $= 1$ | 0mV           |                |                  |                |         |              |  |  |  |
| Bit1-0 | : CP1HYN1-0:   | Comparator       | 1 Negative F  | Iysteresis Co  | ntrol Bits       |                |         |              |  |  |  |
|        | 00: Negative   | Hysteresis D     | isabled       | •              |                  |                |         |              |  |  |  |
|        | 01: Negative   | Hysteresis =     | 2mV           |                |                  |                |         |              |  |  |  |
|        | 10: Negative   | Hysteresis =     | 4mV           |                |                  |                |         |              |  |  |  |
|        | 11: Negative   | Hysteresis =     | 10mV          |                |                  |                |         |              |  |  |  |
|        | -              | -                |               |                |                  |                |         |              |  |  |  |
|        |                |                  |               |                |                  |                |         |              |  |  |  |

## Figure 8.4. CPT1CN: Comparator 1 Control Register



### Table 8.1. Comparator Electrical Characteristics

VDD = 3.0V, AV + = 3.0V,  $-40^{\circ}C$  to  $+85^{\circ}C$  unless otherwise specified.

| PARAMETER                  | CONDITIONS                             | MIN   | ТҮР   | MAX    | UNITS |
|----------------------------|----------------------------------------|-------|-------|--------|-------|
| Response Time1             | (CP+) - (CP-) = 100mV (Note 1)         |       | 4     |        | μs    |
| Response Time2             | (CP+) - (CP-) = 10mV (Note 1)          |       | 12    |        | μs    |
| Common Mode Rejection      |                                        |       | 1.5   | 4      | mV/V  |
| Ratio                      |                                        |       |       |        |       |
| Positive Hysteresis1       | CPnHYP1-0 = 00                         |       | 0     | 1      | mV    |
| Positive Hysteresis2       | CPnHYP1-0 = 01                         | 2     | 4.5   | 7      | mV    |
| Positive Hysteresis3       | CPnHYP1-0 = 10                         | 4     | 9     | 13     | mV    |
| Positive Hysteresis4       | CPnHYP1-0 = 11                         | 10    | 17    | 25     | mV    |
| Negative Hysteresis1       | CPnHYN1-0 = 00                         |       | 0     | 1      | mV    |
| Negative Hysteresis2       | CPnHYN1-0 = 01                         | 2     | 4.5   | 7      | mV    |
| Negative Hysteresis3       | CPnHYN1-0 = 10                         | 4     | 9     | 13     | mV    |
| Negative Hysteresis4       | CPnHYN1-0 = 11                         | 10    | 17    | 25     | mV    |
| Inverting or Non-inverting |                                        | -0.25 |       | (AV+)  | V     |
| Input Voltage Range        |                                        |       |       | + 0.25 |       |
| Input Capacitance          |                                        |       | 7     |        | pF    |
| Input Bias Current         |                                        | -5    | 0.001 | +5     | nA    |
| Input Offset Voltage       |                                        | -10   |       | +10    | mV    |
| POWER SUPPLY               |                                        |       |       |        |       |
| Power-up Time              | CPnEN from 0 to 1                      |       | 20    |        | μs    |
| Power Supply Rejection     |                                        |       | 0.1   | 1      | mV/V  |
| Supply Current             | Operating Mode (each comparator) at DC |       | 1.5   | 10     | μA    |

Note 1: CPnHYP1-0 = CPnHYN1-0 = 00.



| R/W    | R/W               | R/W             | R/W             | R/W            | R/W             | R/W      | R/W   | Reset Value  |
|--------|-------------------|-----------------|-----------------|----------------|-----------------|----------|-------|--------------|
| PCP1R  | PCP1F             | PCP0R           | PCP0F           | PPCA0          | PWADC0          | PSMB0    | PSPI0 | 00000000     |
| Bit7   | Bit6              | Bit5            | Bit4            | Bit3           | Bit2            | Bit1     | Bit0  | SFR Address: |
|        |                   |                 |                 |                |                 |          |       | 0xF6         |
|        |                   |                 |                 |                |                 |          |       |              |
| Bit7:  | PCP1R: Com        | parator 1 (CP   | 1) Rising Int   | errupt Priori  | ty Control.     |          |       |              |
|        | This bit sets the | ne priority of  | the CP1 inte    | rrupt.         |                 |          |       |              |
|        | 0: CP1 rising     | interrupt set   | to low priori   | ty level.      |                 |          |       |              |
|        | 1: CPI rising     | interrupt set   | to high prior   | ity level.     |                 |          |       |              |
| Dite   | DCD1E. Com        | omotom 1 (CD    | 1) Eolling Int  | amment Dui ani | tri Control     |          |       |              |
| DILO:  | This bit sets the | Darator 1 (CP   | the CP1 into    | rupt Priori    | ty Control.     |          |       |              |
|        | 0. CP1 falling    | interrupt set   | t to low prior  | ity lovel      |                 |          |       |              |
|        | 1. CP1 falling    | interrupt set   | t to high prio  | rity level     |                 |          |       |              |
|        | 1. 01 1 141111    | 5 menupt set    | t to high prio  | ing ieven.     |                 |          |       |              |
| Bit5:  | PCP0R: Com        | parator 0 (CP   | 0) Rising Int   | errupt Priori  | ty Control.     |          |       |              |
|        | This bit sets the | he priority of  | the CP0 inte    | rrupt.         | •               |          |       |              |
|        | 0: CP0 rising     | interrupt set   | to low priori   | ty level.      |                 |          |       |              |
|        | 1: CP0 rising     | interrupt set   | to high prior   | ity level.     |                 |          |       |              |
|        |                   |                 |                 |                | ~ .             |          |       |              |
| Bit4:  | PCP0F: Comp       | parator 0 (CP   | 0) Falling Int  | terrupt Priori | ty Control.     |          |       |              |
|        | This bit sets the | ne priority of  | the CP0 inte    | rrupt.         |                 |          |       |              |
|        | 0: CP0 falling    | g interrupt set | t to low prior  | ity level.     |                 |          |       |              |
|        | 1. CPO failing    | g interrupt set | t to high prio  | nty level.     |                 |          |       |              |
| Bit3:  | PPCA0: Prog       | rammable Co     | unter Array (   | (PCA0) Inter   | rupt Priority ( | Control. |       |              |
| Bitter | This bit sets th  | ne priority of  | the PCA0 in     | terrupt.       | raper noney -   | controll |       |              |
|        | 0: PCA0 inter     | rrupt set to lo | w priority le   | vel.           |                 |          |       |              |
|        | 1: PCA0 inter     | rrupt set to hi | gh priority le  | evel.          |                 |          |       |              |
|        |                   |                 |                 |                |                 |          |       |              |
| Bit2:  | PWADC0: Al        | DC0 Window      | Comparator      | Interrupt Pr   | iority Control  | •        |       |              |
|        | This bit sets th  | ne priority of  | the ADC0 W      | /indow inter   | rupt.           |          |       |              |
|        | 0: ADC0 Wit       | ndow interrup   | pt set to low j | priority level |                 |          |       |              |
|        | 1: ADC0 W1        | ndow interrup   | pt set to high  | priority leve  | 1.              |          |       |              |
| Bit1.  | PSMB0: SMF        | Rus () Interrur | nt Priority Co  | ntrol          |                 |          |       |              |
| Dit1.  | This bit sets th  | ne priority of  | the SMBus i     | nterrupt.      |                 |          |       |              |
|        | 0: SMBus int      | errupt set to l | low priority 1  | evel.          |                 |          |       |              |
|        | 1: SMBus int      | errupt set to l | high priority   | level.         |                 |          |       |              |
|        |                   | -               | •               |                |                 |          |       |              |
| Bit0:  | PSPI0: Serial     | Peripheral In   | terface 0 Inte  | errupt Priorit | y Control.      |          |       |              |
|        | This bit sets the | ne priority of  | the SPI0 inte   | errupt.        |                 |          |       |              |
|        | 0: SPI0 interr    | upt set to low  | v priority lev  | el.            |                 |          |       |              |
|        | 1: SPI0 interr    | upt set to hig  | h priority lev  | /el.           |                 |          |       |              |
|        |                   |                 |                 |                |                 |          |       |              |

### Figure 10.13. EIP1: Extended Interrupt Priority 1



If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the Stop mode. The Missing Clock Detector should be disabled if the CPU is to be put to sleep for longer than the MCD timeout of 100µsec.

### Figure 10.15. PCON: Power Control Register

| R/W                                                                                                                                                                                                                                                                | R/W                                                                                                                                                                                                                        | R/W                                                        | R/W                                             | R/W                                         | R/W                               | R/W                             | R/W                    | Reset Value  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|---------------------------------------------|-----------------------------------|---------------------------------|------------------------|--------------|--|--|
| SMOD                                                                                                                                                                                                                                                               | GF4                                                                                                                                                                                                                        | GF3                                                        | GF2                                             | GF1                                         | GF0                               | STOP                            | IDLE                   | 00000000     |  |  |
| Bit7                                                                                                                                                                                                                                                               | Bit6                                                                                                                                                                                                                       | Bit5                                                       | Bit4                                            | Bit3                                        | Bit2                              | Bit1                            | Bit0                   | SFR Address: |  |  |
| 0x87<br>Bit7: SMOD: Serial Port Baud Rate Doubler Enable.<br>0: Serial Port baud rate is that defined by Serial Port Mode in SCON.<br>1: Serial Port baud rate is double that defined by Serial Port Mode in SCON.<br>Bits6-2: GF4-GF0: General Purpose Flags 4-0. |                                                                                                                                                                                                                            |                                                            |                                                 |                                             |                                   |                                 |                        |              |  |  |
| Bits6-2: GF4-GF0: General Purpose Flags 4-0.<br>These are general purpose flags for use under software control.                                                                                                                                                    |                                                                                                                                                                                                                            |                                                            |                                                 |                                             |                                   |                                 |                        |              |  |  |
| Bit1:                                                                                                                                                                                                                                                              | <ul> <li>Bit1: STOP: Stop Mode Select.</li> <li>Setting this bit will place the CIP-51 in Stop mode. This bit will always be read as 0.</li> <li>1: Goes into power down mode. (Turns off internal oscillator).</li> </ul> |                                                            |                                                 |                                             |                                   |                                 |                        |              |  |  |
| Bit0:                                                                                                                                                                                                                                                              | IDLE: Idle Mo<br>Setting this bit<br>1: Goes into id<br>Ports, and A                                                                                                                                                       | ode Select.<br>will place the dle mode. (S<br>Analog Perip | e CIP-51 in<br>shuts off cloc<br>herals are sti | Idle mode. T<br>k to CPU, bu<br>ll active.) | This bit will a<br>It clock to Th | lways be read<br>mers, Interruj | d as 0.<br>pts, Serial |              |  |  |



### 13.1. Power-on Reset

The C8051F000 family incorporates a power supply monitor that holds the MCU in the reset state until VDD rises above the  $V_{RST}$  level during power-up. (See Figure 13.2 for timing diagram, and refer to Table 13.1 for the Electrical Characteristics of the power supply monitor circuit.) The /RST pin is asserted (low) until the end of the 100ms VDD Monitor timeout in order to allow the VDD supply to become stable.

On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. All of the other reset flags in the RSTSRC Register are indeterminate. PORSF is cleared by a reset from any other source. Since all resets cause program execution to begin at the same location (0x0000), software can read the PORSF flag to determine if a power-up was the cause of reset. The content of internal data memory should be assumed to be undefined after a power-on reset.

### **13.2.** Software Forced Reset

Writing a 1 to the PORSF bit forces a Power-On Reset as described in Section 13.1.



### Figure 13.2. VDD Monitor Timing Diagram

### 13.3. Power-fail Reset

When a power-down transition or power irregularity causes VDD to drop below  $V_{RST}$ , the power supply monitor will drive the /RST pin low and return the CIP-51 to the reset state (see Figure 13.2). When VDD returns to a level above  $V_{RST}$ , the CIP-51 will leave the reset state in the same manner as that for the power-on reset. Note that even though internal data memory contents are not altered by the power-fail reset, it is impossible to determine if VDD dropped below the level required for data retention. If the PORSF flag is set, the data may no longer be valid.



### 14.1. External Crystal Example

If a crystal or ceramic resonator were used to generate the system clock for the MCU, the circuit would be as shown in Figure 14.1, Option 1. For an ECS-110.5-20-4 crystal, the resonate frequency is 11.0592MHz, the intrinsic capacitance is 7pF, and the ESR is  $60\Omega$ . The compensation capacitors should be 33pF each, and the PWB parasitic capacitance is estimated to be 2pF. The appropriate External Oscillator Frequency Control value (XFCN) from the Crystal column in the table in Figure 14.3 (OSCXCN Register) should be 111b.

Because the oscillator detect circuitry needs time to settle after the crystal oscillator is enabled, software should wait at least 1ms between enabling the crystal oscillator and polling the XTLVLD bit. The recommend procedure is:

- 1. Enable the external oscillator
- 2. Wait at least 1 ms
- 3. Poll for XTLVLD '0' => '1'
- 4. Switch to the external oscillator

Switching to the external oscillator before the crystal oscillator has stabilized could result in unpredictable behavior.

NOTE: Crystal oscillator circuits are quite sensitive to PCB layout. The crystal should be placed as close as possible to the XTAL pins on the device, keeping the traces as short as possible and shielded with ground plane from any other traces which could introduce noise or interference.

### 14.2. External RC Example

If an external RC network were used to generate the system clock for the MCU, the circuit would be as shown in Figure 14.1, Option 2. The capacitor must be no greater than 100pF, but using a very small capacitor will increase the frequency drift due to the PWB parasitic capacitance. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired frequency of oscillation. If the frequency desired is 100kHz, let R = 246k $\Omega$  and C = 50pF:

 $f = 1.23(10^3)/RC = 1.23(10^3) / [246 * 50] = 0.1MHz = 100kHz$ 

$$\begin{split} XFCN &\geq \log_2(f/25kHz) \\ XFCN &\geq \log_2(100kHz/25kHz) = \log_2(4) \\ XFCN &\geq 2, \text{ or code } 010 \end{split}$$

#### 14.3. External Capacitor Example

If an external capacitor were used to generate the system clock for the MCU, the circuit would be as shown in Figure 14.1, Option 3. The capacitor must be no greater than 100pF, but using a very small capacitor will increase the frequency inaccuracy due to the PWB parasitic capacitance. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the capacitor to be used and find the frequency of oscillation from the equations below. Assume AV + = 3.0V and C = 50pF:

f = KF / (C \* VDD) = KF / (50 \* 3)f = KF / 150

If a frequency of roughly 90kHz is desired, select the K Factor from the table in Figure 14.3 as KF = 13:

f = 13 / 150 = 0.087 MHz, or 87 kHz

Therefore, the XFCN value to use in this example is 011.



Figure 16.2 shows a typical SMBus configuration. The SMBus interface will work at any voltage between 3.0V and 5.0V and different devices on the bus may operate at different voltage levels. The SCL (serial clock) and SDA (serial data) lines are bi-directional. They must be connected to a positive power supply voltage through a pull-up resistor or similar circuit. When the bus is free, both lines are pulled high. Every device connected to the bus must have an open-drain or open-collector output for both the SCL and SDA lines. The maximum number of devices on the bus is limited only by the requirement that the rise and fall times on the bus will not exceed 300ns and 1000ns, respectively.





#### **16.1.** Supporting Documents

It is assumed the reader is familiar with or has access to the following supporting documents:

- 1. The *I*<sup>2</sup>*C*-bus and how to use it (including specifications), Philips Semiconductor.
- 2. The I<sup>2</sup>C-Bus Specification -- Version 2.0, Philips Semiconductor.
- 3. System Management Bus Specification -- Version 1.1, SBS Implementers Forum.



| Figure 16.4 | . SMB0CN: | <b>SMBus</b> | Control | Register |
|-------------|-----------|--------------|---------|----------|
|-------------|-----------|--------------|---------|----------|

| R     | R/W               | R/W            | R/W           | R/W            | R/W             | R/W             | R/W               | Reset Value  |  |  |  |
|-------|-------------------|----------------|---------------|----------------|-----------------|-----------------|-------------------|--------------|--|--|--|
| BUSY  | ENSMB             | STA            | STO           | SI             | AA              | FTE             | TOE               | 00000000     |  |  |  |
| Bit7  | Bit6              | Bit5           | Bit4          | Bit3           | Bit2            | Bit1            | Bit0              | SFR Address: |  |  |  |
|       |                   |                |               |                |                 |                 | (bit addressable) | 0xC0         |  |  |  |
|       |                   |                |               |                |                 |                 |                   |              |  |  |  |
| Bit7: | BUSY: Busy S      | Status Flag.   |               |                |                 |                 |                   |              |  |  |  |
|       | 0: SMBus is fr    | ee             |               |                |                 |                 |                   |              |  |  |  |
|       | 1: SMBus is busy  |                |               |                |                 |                 |                   |              |  |  |  |
| Bit6: | ENSMB: SME        | Bus Enable.    |               |                |                 |                 |                   |              |  |  |  |
|       | This bit enable   | es/disables th | e SMBus ser   | ial interface. |                 |                 |                   |              |  |  |  |
|       | 0: SMBus disa     | bled.          |               |                |                 |                 |                   |              |  |  |  |
|       | 1: SMBus enal     | bled.          |               |                |                 |                 |                   |              |  |  |  |
| Bit5: | STA: SMBus        | Start Flag.    |               |                |                 |                 |                   |              |  |  |  |
|       | 0: No START       | condition is   | transmitted.  |                |                 |                 |                   |              |  |  |  |
|       | 1: When opera     | ting as a ma   | ster, a STAR  | T condition i  | s transmitted   | if the bus is   | free. (If the     |              |  |  |  |
|       | bus is not free.  | , the START    | is transmitte | d after a STO  | OP is received  | 1.) If STA is   | set after one     |              |  |  |  |
|       | or more bytes     | have been tra  | ansmitted or  | received and   | before a STC    | OP is receive   | d, a repeated     |              |  |  |  |
|       | START condit      | tion is transn | nitted. STO   | should be ext  | olicitly cleare | d before sett   | ing STA to        |              |  |  |  |
|       | logic 1.          |                |               | 1              | 5               |                 | 0                 |              |  |  |  |
| Bit4: | STO: SMBus        | Stop Flag.     |               |                |                 |                 |                   |              |  |  |  |
|       | 0: No STOP c      | ondition is tr | ansmitted.    |                |                 |                 |                   |              |  |  |  |
|       | 1: Setting STC    | ) to logic 1 c | auses a STO   | P condition to | be transmitt    | ted. When a     | STOP              |              |  |  |  |
|       | condition is re   | ceived, hard   | ware clears S | TO to logic (  | ). If both ST   | A and STO a     | re set. a         |              |  |  |  |
|       | STOP condition    | on is transmit | ted followed  | by a STAR      | condition.      | In slave mod    | e. setting the    |              |  |  |  |
|       | STO flag caus     | es SMBus to    | behave as if  | a STOP con     | dition was re   | ceived.         | .,                |              |  |  |  |
| Bit3: | SI: SMBus Se      | rial Interrupt | Flag.         |                |                 |                 |                   |              |  |  |  |
|       | This bit is set l | by hardware    | when one of   | 27 possible \$ | SMBus states    | is entered.     | Status code       |              |  |  |  |
|       | 0xF8 does not     | cause SI to l  | be set.) Whe  | n the SI inter | rupt is enable  | ed, setting thi | s bit causes      |              |  |  |  |
|       | the CPU to ve     | ctor to the SI | ABus interru  | pt service rou | tine. This bi   | it is not autor | natically         |              |  |  |  |
|       | cleared by har    | dware and m    | ust be cleare | d by software  | 2.              |                 | 5                 |              |  |  |  |
| Bit2: | AA: SMBus A       | ssert Ackno    | wledge Flag.  | 2              |                 |                 |                   |              |  |  |  |
|       | This bit define   | s the type of  | acknowledg    | e returned du  | ring the ackn   | owledge cyc     | le on the         |              |  |  |  |
|       | SCL line.         | <b>J</b>       |               |                | 8               |                 |                   |              |  |  |  |
|       | 0: A "not ackn    | owledge" (h    | igh level on  | SDA) is retur  | ned during th   | ne acknowled    | lge cycle.        |              |  |  |  |
|       | 1: An "acknow     | vledge" (low   | level on SD.  | A) is returned | l during the a  | cknowledge      | cvcle.            |              |  |  |  |
| Bit1: | FTE: SMBus I      | Free Timer E   | nable Bit     | ,              | U               | e               | 5                 |              |  |  |  |
|       | 0: No timeout     | when SCL i     | s high        |                |                 |                 |                   |              |  |  |  |
|       | 1: Timeout wl     | hen SCL hig    | h time excee  | ds limit speci | fied by the S   | MB0CR valu      | ie.               |              |  |  |  |
| Bit0: | TOE: SMBus        | Timeout Ena    | ble Bit       | 1              | 5               |                 |                   |              |  |  |  |
|       | 0: No timeout     | when SCL i     | s low.        |                |                 |                 |                   |              |  |  |  |
|       | 1: Timeout wl     | hen SCL low    | time exceed   | s limit specif | ied by Timer    | 3, if enabled   | l.                |              |  |  |  |
|       |                   |                |               |                | 2               |                 |                   |              |  |  |  |
|       |                   |                |               |                |                 |                 |                   |              |  |  |  |



### 18.1. UART Operational Modes

The UART provides four operating modes (one synchronous and three asynchronous) selected by setting configuration bits in the SCON register. These four modes offer different baud rates and communication protocols. The four modes are summarized in Table 18.1 below. Detailed descriptions follow.

| Mode | Synchronization | Baud Clock                  | Data Bits | Start/Stop Bits |
|------|-----------------|-----------------------------|-----------|-----------------|
| 0    | Synchronous     | SYSCLK/12                   | 8         | None            |
| 1    | Asynchronous    | Timer 1 or Timer 2 Overflow | 8         | 1 Start, 1 Stop |
| 2    | Asynchronous    | SYSCLK/32 or SYSCLK/64      | 9         | 1 Start, 1 Stop |
| 3    | Asynchronous    | Timer 1 or Timer 2 Overflow | 9         | 1 Start, 1 Stop |

#### Table 18.1. UART Modes

#### 18.1.1. Mode 0: Synchronous Mode

Mode 0 provides synchronous, half-duplex communication. Serial data is transmitted and received on the RX pin. The TX pin provides the shift clock for both transmit and receive. The MCU must be the master since it generates the shift clock for transmission in both directions (see the interconnect diagram in Figure 18.2).

Eight data bits are transmitted/received, LSB first (see the timing diagram in Figure 18.3). Data transmission begins when an instruction writes a data byte to the SBUF register. The TI Transmit Interrupt Flag (SCON.1) is set at the end of the eighth bit time. Data reception begins when the REN Receive Enable bit (SCON.4) is set to logic 1 and the RI Receive Interrupt Flag (SCON.0) is cleared. One cycle after the eighth bit is shifted in, the RI flag is set and reception stops until software clears the RI bit. An interrupt will occur if enabled when either TI or RI is set.

The Mode 0 baud rate is the system clock frequency divided by twelve. RX is forced to open-drain in mode 0, and an external pull-up will typically be required.





#### Figure 18.3. UART Mode 0 Timing Diagram





#### 18.1.3. Mode 2: 9-Bit UART, Fixed Baud Rate

Mode 2 provides asynchronous, full-duplex communication using a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit (see timing diagram in Figure 18.6). On transmit, the ninth data bit is determined by the value in TB8 (SCON.3). It can be assigned the value of the parity flag P in the PSW or used in multiprocessor communications. On receive, the ninth data bit goes into RB8 (SCON.2) and the stop bit is ignored.

Data transmission begins when an instruction writes a data byte to the SBUF register. The TI Transmit Interrupt Flag (SCON.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN Receive Enable bit (SCON.4) is set to logic 1. After the stop bit is received, the data byte will be loaded into the SBUF receive register if the following conditions are met: RI must be logic 0, and if SM2 is logic 1, the 9<sup>th</sup> bit must be logic 1.

If these conditions are met, the eight bits of data are stored in SBUF, the ninth bit is stored in RB8 and the RI flag is set. If these conditions are not met, SBUF and RB8 will not be loaded and the RI flag will not be set. An interrupt will occur if enabled when either TI or RI are set.

The baud rate in Mode 2 is a direct function of the system clock frequency as follows:

Mode 2 Baud Rate =  $2^{SMOD} * (SYSCLK / 64)$ .

The SMOD bit (PCON.7) selects whether to divide SYSCLK by 32 or 64. In the formula, 2 is raised to the power SMOD, resulting in a baud rate of either 1/32 or 1/64 of the system clock frequency. On reset, the SMOD bit is logic 0, thus selecting the lower speed baud rate by default.





#### 18.1.4. Mode 3: 9-Bit UART, Variable Baud Rate

Mode 3 is the same as Mode 2 in all respects except the baud rate is variable. The baud rate is determined in the same manner as for Mode 1. Mode 3 operation transmits 11 bits: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. Timer 1 or Timer 2 overflows generate the baud rate just as with Mode 1. In summary, Mode 3 transmits using the same protocol as Mode 2 but with Mode 1 baud rate generation.



### 18.2. Multiprocessor Communications

Modes 2 and 3 support multiprocessor communication between a master processor and one or more slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its ninth bit is logic 1; in a data byte, the ninth bit is always set to logic 0.

Setting the SM2 bit (SCON.5) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the ninth bit is logic one (RB8 = 1) signifying an address byte has been received. In the UART's interrupt handler, software will compare the received address with the slave's own assigned 8-bit address. If the addresses match, the slave will clear its SM2 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their SM2 bits set and do not generate interrupts on the received, the addressed slave resets its SM2 bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).



Figure 18.7. UART Multi-Processor Mode Interconnect Diagram



#### 19.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit counter/timers with automatic reload of the start value. The TL0 holds the count and TH0 holds the reload value. When the count in TL0 overflows from all ones to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is not changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, Timer 1 operates identically to Timer 0. Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0.







#### 19.2.1. Mode 0: 16-bit Counter/Timer with Capture

In this mode, Timer 2 operates as a 16-bit counter/timer with capture facility. A high-to-low transition on the T2EX input pin causes the 16-bit value in Timer 2 (TH2, TL2) to be loaded into the capture registers (RCAP2H, RCAP2L).

Timer 2 can use either SYSCLK, SYSCLK divided by 12, or high-to-low transitions on the external T2 pin as its clock source when operating in Counter/Timer with Capture mode. Clearing the C/T2 bit (T2CON.1) selects the system clock as the input for the timer (divided by one or twelve as specified by the Timer Clock Select bit T2M in CKCON). When C/T2 is set to logic 1, a high-to-low transition at the T2 input pin increments the counter/timer register. As the 16-bit counter/timer register increments and overflows from 0xFFFF to 0x0000, the TF2 timer overflow flag (T2CON.7) is set and an interrupt will occur if the interrupt is enabled.

Counter/Timer with Capture mode is selected by setting the Capture/Reload Select bit CP/RL2 (T2CON.0) and the Timer 2 Run Control bit TR2 (T2CON.2) to logic 1. The Timer 2 External Enable EXEN2 (T2CON.3) must also be set to logic 1 to enable a capture. If EXEN2 is cleared, transitions on T2EX will be ignored.



Figure 19.11. T2 Mode 0 Block Diagram



#### **19.3.** Timer 3

Timer 3 is a 16-bit timer formed by the two 8-bit SFRs, TMR3L (low byte) and TMR3H (high byte). The input for Timer 3 is the system clock (divided by either one or twelve as specified by the Timer 3 Clock Select bit T3M in the Timer 3 Control Register TMR3CN). Timer 3 is always configured as an auto-reload timer, with the reload value held in the TMR3RLL (low byte) and TMR3RLH (high byte) registers. Timer 3 can be used to start an ADC Data Conversion, for SMBus timing (see Section 16.5), or as a general-purpose timer. Timer 3 does not have a counter mode.





### Figure 19.20. TMR3CN: Timer 3 Control Register





#### 20.1.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software.





