

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f005-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE OF CONTENTS

1.	SYSTEM OVERVIEW	. 8
	Table 1.1. Product Selection Guide	8
	Figure 1.1. C8051F000/05/10/15 Block Diagram	9
	Figure 1.2. C8051F001/06/11/16 Block Diagram	
	Figure 1.3. C8051F002/07/12/17 Block Diagram	
	1.1. CIP-51 [™] CPU	
	Figure 1.4. Comparison of Peak MCU Execution Speeds	12
	Figure 1.5. On-Board Clock and Reset	13
	1.2. On-Board Memory	14
	Figure 1.6. On-Board Memory Map	14
	1.3. JTAG Debug and Boundary Scan	
	Figure 1.7. Debug Environment Diagram	
	1.4. Programmable Digital I/O and Crossbar	16
	Figure 1.8. Digital Crossbar Diagram	16
	1.5. Programmable Counter Array	17
	Figure 1.9. PCA Block Diagram	
	1.6. Serial Ports	
	1.7. Analog to Digital Converter	18
	Figure 1.10. ADC Diagram	
	1.8. Comparators and DACs	
	Figure 1.11. Comparator and DAC Diagram	
2.	ABSOLUTE MAXIMUM RATINGS*	
3.	GLOBAL DC ELECTRICAL CHARACTERISTICS	20
4.	PINOUT AND PACKAGE DEFINITIONS	
	Table 4.1. Pin Definitions	
	Figure 4.1. TQFP-64 Pinout Diagram	
	Figure 4.2. TQFP-64 Package Drawing	
	Figure 4.3. TQFP-48 Pinout Diagram	
	Figure 4.4. TQFP-48 Package Drawing	
	Figure 4.5. LQFP-32 Pinout Diagram	
	Figure 4.6. LQFP-32 Package Drawing	
5.	ADC (12-Bit, C8051F000/1/2/5/6/7 Only)	
	Figure 5.1. 12-Bit ADC Functional Block Diagram.	
	5.1. Analog Multiplexer and PGA	
	5.2. ADC Modes of Operation	
	Figure 5.2. 12-Bit ADC Track and Conversion Example Timing	
	Figure 5.3. Temperature Sensor Transfer Function	31
	Figure 5.4. AMX0CF: AMUX Configuration Register (C8051F00x)	31
	Figure 5.5. AMX0SL: AMUX Channel Select Register (C8051F00x)	32
	Figure 5.6. ADC0CF: ADC Configuration Register (C8051F00x)	33
	Figure 5.7. ADC0CN: ADC Control Register (C8051F00x)	34
	Figure 5.8. ADC0H: ADC Data Word MSB Register (C8051F00x)	
	Figure 5.9. ADC0L: ADC Data Word LSB Register (C8051F00x)	
	5.3. ADC Programmable Window Detector	
	Figure 5.10. ADC0GTH: ADC Greater-Than Data High Byte Register (C8051F00x)	
	Figure 5.11. ADC0GTL: ADC Greater-Than Data Low Byte Register (C8051F00x)	
	Figure 5.12. ADC0LTH: ADC Less-Than Data High Byte Register (C8051F00x)	
	Figure 5.13. ADC0LTL: ADC Less-Than Data Low Byte Register (C8051F00x)	
	Figure 5.14. 12-Bit ADC Window Interrupt Examples, Right Justified Data	
	Figure 5.15. 12-Bit ADC Window Interrupt Examples, Left Justified Data	
	Figure 5.15. 12-Bit ADC Window Interrupt Examples, Left Justified Data	38

	Table 18.2. Oscillator Frequencies for Standard Baud Rates	
	Figure 18.8. SBUF: Serial (UART) Data Buffer Register	
	Figure 18.9. SCON: Serial Port Control Register	
19.	TIMERS	
	19.1. Timer 0 and Timer 1	
	Figure 19.1. T0 Mode 0 Block Diagram.	
	Figure 19.2. T0 Mode 2 Block Diagram.	
	Figure 19.3. T0 Mode 3 Block Diagram.	
	Figure 19.4. TCON: Timer Control Register	
	Figure 19.5. TMOD: Timer Mode Register	
	Figure 19.6. CKCON: Clock Control Register	
	Figure 19.7. TLO: Timer 0 Low Byte	
	Figure 19.8. TL1: Timer 1 Low Byte	
	Figure 19.9. THO: Timer 0 High Byte	
	Figure 19.10. TH1: Timer 1 High Byte	
	19.2. Timer 2	
	Figure 19.11. T2 Mode 0 Block Diagram	
	Figure 19.12. T2 Mode 1 Block Diagram.	
	Figure 19.13. T2 Mode 2 Block Diagram.	
	Figure 19.14. T2CON: Timer 2 Control Register	
	Figure 19.15. RCAP2L: Timer 2 Capture Register Low Byte	
	Figure 19.16. RCAP2H: Timer 2 Capture Register High Byte	
	Figure 19.17. TL2: Timer 2 Low Byte	
	Figure 19.18. TH2: Timer 2 High Byte	
	19.3. Timer 3	
	Figure 19.19. Timer 3 Block Diagram	
	Figure 19.20. TMR3CN: Timer 3 Control Register	
	Figure 19.21. TMR3RLL: Timer 3 Reload Register Low Byte	
	Figure 19.22. TMR3RLH: Timer 3 Reload Register High Byte	
	Figure 19.22. TMR3REIT. Timer 3 Keroad Register High Byte	
	Figure 19.24. TMR3H: Timer 3 High Byte	
20	PROGRAMMABLE COUNTER ARRAY	
20.		
	Figure 20.1. PCA Block Diagram	
	20.1. Capture/Compare Modules	
	Table 20.1. PCA0CPM Register Settings for PCA Capture/Compare Modules	
	Figure 20.2. PCA Interrupt Block Diagram.	
	Figure 20.3. PCA Capture Mode Diagram	
	Figure 20.4. PCA Software Timer Mode Diagram.	
	Figure 20.5. PCA High Speed Output Mode Diagram	
	Figure 20.6. PCA PWM Mode Diagram	
	20.2. PCA Counter/Timer	
	Table 20.2. PCA Timebase Input Options. Fine 20.7 PCA Construction	
	Figure 20.7. PCA Counter/Timer Block Diagram	
	20.3. Register Descriptions for PCA	
	Figure 20.8. PCA0CN: PCA Control Register	
	Figure 20.9. PCA0MD: PCA Mode Register	
	Figure 20.10. PCA0CPMn: PCA Capture/Compare Registers	
	Figure 20.11. PCA0L: PCA Counter/Timer Low Byte	
	Figure 20.12. PCA0H: PCA Counter/Timer High Byte	
	Figure 20.13. PCA0CPLn: PCA Capture Module Low Byte	
	Figure 20.14. PCA0CPHn: PCA Capture Module High Byte	
21.	JTAG (IEEE 1149.1)	
	Figure 21.1. IR: JTAG Instruction Register	
	21.1. Boundary Scan	

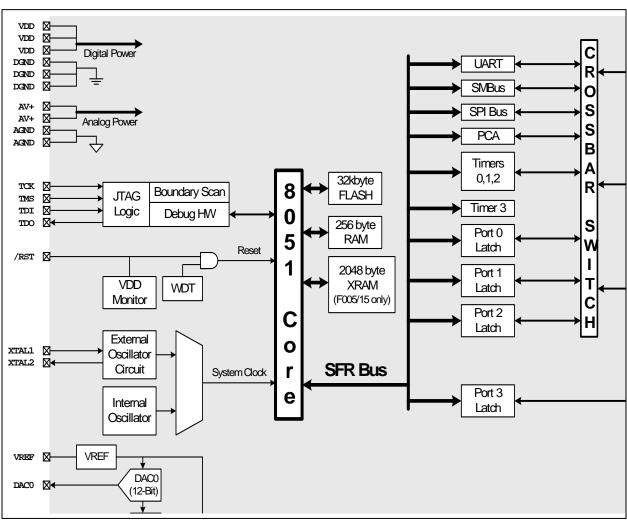
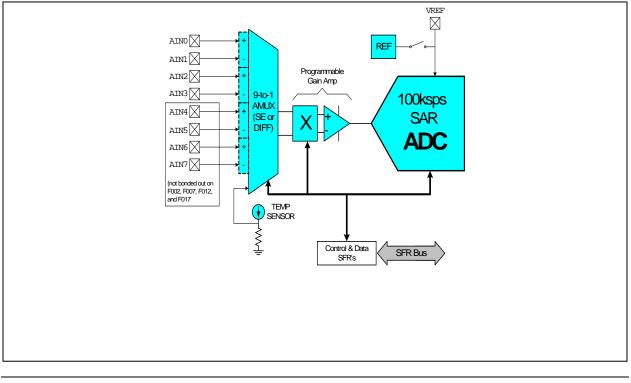


Figure 1.1. C8051F000/05/10/15 Block Diagram

1.7. Analog to Digital Converter


The C8051F000/1/2/5/6/7 has an on-chip 12-bit SAR ADC with a 9-channel input multiplexer and programmable gain amplifier. With a maximum throughput of 100ksps, the ADC offers true 12-bit accuracy with an INL of \pm 1LSB. The ADC in the C8051F010/1/2/5/6/7 is similar, but with 10-bit resolution. Each ADC has a maximum throughput of 100ksps. Each ADC has an INL of \pm 1LSB, offering true 12-bit accuracy with the C8051F00x, and true 10-bit accuracy with the C8051F01x. There is also an on-board 15ppm voltage reference, or an external reference may be used via the VREF pin.

The ADC is under full control of the CIP-51 microcontroller via the Special Function Registers. One input channel is tied to an internal temperature sensor, while the other eight channels are available externally. Each pair of the eight external input channels can be configured as either two single-ended inputs or a single differential input. The system controller can also put the ADC into shutdown to save power.

A programmable gain amplifier follows the analog multiplexer. The gain can be set in software from 0.5 to 16 in powers of 2. The gain stage can be especially useful when different ADC input channels have widely varied input voltage signals, or when it is necessary to "zoom in" on a signal with a large DC offset (in differential mode, a DAC could be used to provide the DC offset).

Conversions can be started in four ways; a software command, an overflow on Timer 2, an overflow on Timer 3, or an external signal input. This flexibility allows the start of conversion to be triggered by software events, external HW signals, or convert continuously. A completed conversion causes an interrupt, or a status bit can be polled in software to determine the end of conversion. The resulting 10 or 12-bit data word is latched into two SFRs upon completion of a conversion. The data can be right or left justified in these registers under software control.

Compare registers for the ADC data can be configured to interrupt the controller when ADC data is within a specified window. The ADC can monitor a key voltage continuously in background mode, but not interrupt the controller unless the converted data is within the specified window.

Figure 1.10. ADC Diagram

1.8. Comparators and DACs

The C8051F000 MCU Family has two 12-bit DACs and two comparators on chip (the second comparator, CP1, is not bonded out on the F002, F007, F012, and F017). The MCU data and control interface to each comparator and DAC is via the Special Function Registers. The MCU can place any DAC or comparator in low power shutdown mode.

The comparators have software programmable hysteresis. Each comparator can generate an interrupt on its rising edge, falling edge, or both. The comparators' output state can also be polled in software. These interrupts are capable of waking up the MCU from idle mode. The comparator outputs can be programmed to appear on the Port I/O pins via the Crossbar.

The DACs are voltage output mode and use the same voltage reference as the ADC. They are especially useful as references for the comparators or offsets for the differential inputs of the ADC.

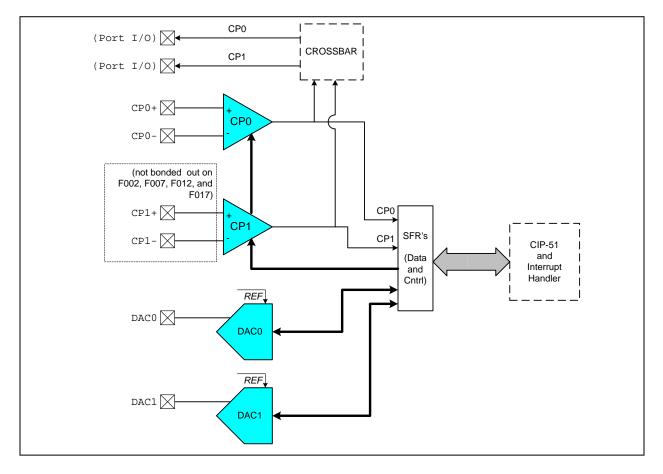
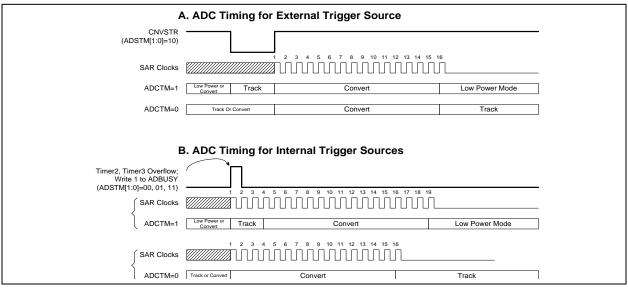


Figure 1.11. Comparator and DAC Diagram

5.2. ADC Modes of Operation

The ADC uses VREF to determine its full-scale voltage, thus the reference must be properly configured before performing a conversion (see Section 9). The ADC has a maximum conversion speed of 100ksps. The ADC conversion clock is derived from the system clock. Conversion clock speed can be reduced by a factor of 2, 4, 8 or 16 via the ADCSC bits in the ADC0CF Register. This is useful to adjust conversion speed to accommodate different system clock speeds.

A conversion can be initiated in one of four ways, depending on the programmed states of the ADC Start of Conversion Mode bits (ADSTM1, ADSTM0) in ADC0CN. Conversions may be initiated by:

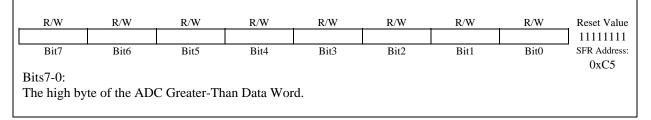

- 1. Writing a 1 to the ADBUSY bit of ADC0CN;
- 2. A Timer 3 overflow (i.e. timed continuous conversions);
- 3. A rising edge detected on the external ADC convert start signal, CNVSTR;
- 4. A Timer 2 overflow (i.e. timed continuous conversions).

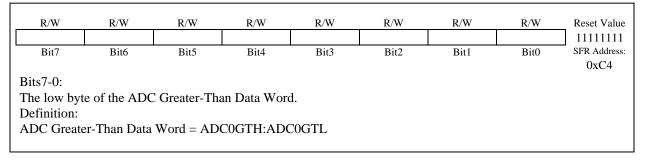
Writing a 1 to ADBUSY provides software control of the ADC whereby conversions are performed "on-demand". During conversion, the ADBUSY bit is set to 1 and restored to 0 when conversion is complete. The falling edge of ADBUSY triggers an interrupt (when enabled) and sets the ADCINT interrupt flag. Note: When conversions are performed "on-demand", the ADCINT flag, not ADBUSY, should be polled to determine when the conversion has completed. Converted data is available in the ADC data word MSB and LSB registers, ADCOH, ADCOL. Converted data can be either left or right justified in the ADCOH:ADCOL register pair (see example in Figure 5.9) depending on the programmed state of the ADLJST bit in the ADCOCN register.

The ADCTM bit in register ADC0CN controls the ADC track-and-hold mode. In its default state, the ADC input is continuously tracked, except when a conversion is in progress. Setting ADCTM to 1 allows one of four different low power track-and-hold modes to be specified by states of the ADSTM1-0 bits (also in ADC0CN):

- 1. Tracking begins with a write of 1 to ADBUSY and lasts for 3 SAR clocks;
- 2. Tracking starts with an overflow of Timer 3 and lasts for 3 SAR clocks;
- 3. Tracking is active only when the CNVSTR input is low;
- 4. Tracking starts with an overflow of Timer 2 and lasts for 3 SAR clocks.

Modes 1, 2 and 4 (above) are useful when the start of conversion is triggered with a software command or when the ADC is operated continuously. Mode 3 is used when the start of conversion is triggered by external hardware. In this case, the track-and-hold is in its low power mode at times when the CNVSTR input is high. Tracking can also be disabled (shutdown) when the entire chip is in low power standby or sleep modes.


Figure 5.2. 12-Bit ADC Track and Conversion Example Timing


5.3. ADC Programmable Window Detector

The ADC programmable window detector is very useful in many applications. It continuously compares the ADC output to user-programmed limits and notifies the system when an out-of-band condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (ADWINT in ADCOCN) can also be used in polled mode. The high and low bytes of the reference words are loaded into the ADC Greater-Than and ADC Less-Than registers (ADC0GTH, ADC0GTL, ADC0LTH, and ADC0LTL). Figure 5.14 and Figure 5.15 show example comparisons for reference. Notice that the window detector flag can be asserted when the measured data is inside or outside the user-programmed limits, depending on the programming of the ADC0GTx and ADC0LTx registers.

Figure 5.10. ADC0GTH: ADC Greater-Than Data High Byte Register (C8051F00x)

Figure 5.11. ADC0GTL: ADC Greater-Than Data Low Byte Register (C8051F00x)

Figure 5.12. ADC0LTH: ADC Less-Than Data High Byte Register (C8051F00x)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 00000000
Bit7 Bits7-0: The high by	Bit6 te of the AD	Bit5 C Less-Than	Bit4 Data Word.	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xC7

Figure 5.13. ADC0LTL: ADC Less-Than Data Low Byte Register (C8051F00x)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xC6
Definition:	re the low by Гhan Data W							

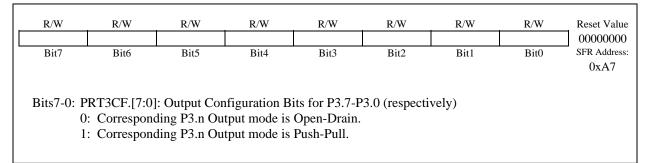
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu			
CP1EN	CP1OUT	CP1RIF	CP1FIF	CP1HYP1	CP1HYP0	CP1HYN1	CP1HYN0	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address			
								0x9F			
Bit7:	CP1EN: Com										
	0: Comparato										
	1: Comparato										
Bit6:	CP1OUT: Con			Flag							
	0: Voltage on										
	1: Voltage on										
Bit5:	CP1RIF: Com										
	0: No Comparator 1 Rising-Edge Interrupt has occurred since this flag was cleared										
	1: Comparator 1 Rising-Edge Interrupt has occurred since this flag was cleared										
Bit4:	CP1FIF: Com										
	0: No Comparator 1 Falling-Edge Interrupt has occurred since this flag was cleared										
	1: Comparato					ag was clear	ed				
Bit3-2:	CP1HYP1-0:			ysteresis Cont	rol Bits						
	00: Positive H	Iysteresis Di	sabled								
	01: Positive H	Iysteresis = 2	2mV								
	10: Positive H	Iysteresis = 4	4mV								
	11: Positive H										
Bit1-0:	CP1HYN1-0:	Comparator	1 Negative H	Iysteresis Con	ntrol Bits						
	00: Negative Hysteresis Disabled										
	01: Negative	Hysteresis =	2mV								
	10: Negative	Hysteresis =	4mV								
	11: Negative	I Internation -	10mV								

Figure 8.4. CPT1CN: Comparator 1 Control Register

Figure 10.10. IP: Interrupt Priority

- D:47		R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
D:47	-	PT2	PS	PT1	PX1	PT0	PX0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 (bit addressable)	SFR Address 0xB8
Bit5:	UNUSED. Re PT2 Timer 2 I This bit sets th 0: Timer 2 int 1: Timer 2 int	nterrupt Prio e priority of errupts set to	rity Control. the Timer 2 low priority	interrupts.				
Bit4:	PS: Serial Port This bit sets th 0: UART inte 1: UART inte	t (UART) Int e priority of rrupts set to	errupt Priori the Serial Po low priority	ty Control. ort (UART) i level.	nterrupts.			
	 PT1: Timer 1 Interrupt Priority Control. This bit sets the priority of the Timer 1 interrupts. 0: Timer 1 interrupts set to low priority level. 1: Timer 1 interrupts set to high priority level. 							
	PX1: External This bit sets th 0: External In 1: External In	e priority of terrupt 1 set	the External to low priori	Interrupt 1 i ty level.	nterrupts.			
	 PT0: Timer 0 Interrupt Priority Control. This bit sets the priority of the Timer 0 interrupts. 0: Timer 0 interrupt set to low priority level. 1: Timer 0 interrupt set to high priority level. 							
	PX0: External This bit sets th 0: External In	e priority of terrupt 0 set	the External	Interrupt 0 i ty level.	nterrupts.			

R	R/W	R/W	R/W	R	R	R/W	R	Reset Value
JTAGRS	Γ CNVRSEF	CORSEF	SWRSEF	WDTRSF	MCDRSF	PORSF	PINRSF	XXXXXXXX
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xEF
(Note:	Do not use read	-modify-wri	te operations	on this regis	ter.)			
Bit7:	JTAGRST. J7							
	0: JTAG is no		n reset state.					
	1: JTAG is in							
Bit6:	CNVRSEF: C	onvert Start	Reset Source	Enable and	Flag			
	Write							
	0: CNVSTR i							
	1: CNVSTR i	s a reset sou	rce (active lo	w)				
	Read	•						
	0: Source of p							
D'/ 5	1: Source of p							
Bit5:	CORSEF: Con	nparator 0 Re	eset Enable a	nd Flag				
	Write	. 0 :	4					
	0: Comparato							
	1: Comparato Read	r 0 is a reset	source (activ	e low)				
	Note: The valu	10 road from	CODSEE	ot defined if	Comparator	0 has not had	n anablad as	
	a reset source.		CORSEPTS	iot defined fi	Comparator	o has not bee	in enabled as	
	0: Source of p	rior reset w	as not from C	omparator 0				
	1: Source of p							
Bit4:	SWRSF: Softv							
Dit i.	Write	ware Reset I	oree and r ha	>				
	0: No Effect							
	1: Forces an in	nternal reset	. /RST pin is	not effected				
	Read		I I I					
	0: Prior reset	source was r	not from write	e to the SWR	SF bit.			
	1: Prior reset	source was f	rom write to	the SWRSF	oit.			
Bit3:	WDTRSF: Wa	atchdog Tim	er Reset Flag					
	0: Source of p	prior reset wa	as not from V	VDT timeout.				
	1: Source of p	prior reset wa	as from WDT	timeout.				
Bit2:	MCDRSF: Mi	ssing Clock	Detector Flag	g				
	0: Source of p							
	1: Source of p				tector timeou	t.		
Bit1:	PORSF: Powe	er-On Reset I	Force and Fla	ıg				
	Write							
	0: No effect							
	1: Forces a Po	ower-On Res	et. /RST is c	lriven low.				
	Read	•		0 D				
	0: Source of p							
D:40	1: Source of p							
Bit0:	PINRSF: HW		-	ост ":»				
	0: Source of p							
	1: Source of p	mor reset wa	as moin /KST	pm.				


Figure 13.4. RSTSRC: Reset Source Register

R/W P3.7	R/W P3.6	R/W P3.5	R/W P3.4	R/W P3.3	R/W P3.2	R/W P3.1	R/W P3.0	Reset Value 11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 (bit addressable)	SFR Address: 0xB0
	P3.[7:0] (Write) D: Logic Low 1: Logic High (Read) D: P3.n is logi 1: P3.n is logi	o Output (hig	h-impedance	if correspon	ding PRT3Cl	F.n bit = 0)		

Figure 15.13. P3: Port3 Register

Table 15.2. Port I/O DC Electrical Characteristics

VDD = 2.7 to 3.6V, -40°C to +85°C unless otherwise specified.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Output High Voltage	$I_{OH} = -10uA$, Port I/O push-pull	VDD –			V
		0.1			
	$I_{OH} = -3mA$, Port I/O push-pull	VDD –			
		0.7			
	I _{OH} = -10mA, Port I/O push-pull		VDD –		
			0.8		
Output Low Voltage	$I_{OL} = 10uA$			0.1	V
	$I_{OL} = 8.5 \text{mA}$			0.6	
	$I_{OL} = 25 \text{mA}$		1.0		
Input High Voltage		0.7 x			V
		VDD			
Input Low Voltage				0.3 x	V
				VDD	
Input Leakage Current	DGND < Port Pin < VDD, Pin Tri-state				μA
	Weak Pull-up Off			±1	
	Weak Pull-up On		30		
Capacitive Loading			5		pF

R/W	R/W	R/W	R/W	R	R	R/W	R/W	Reset Value		
SPIF	WCOL	MODF	RXOVRN	TXBSY	SLVSEL	MSTEN	SPIEN	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 (bit addressable)	SFR Address 0xF8		
Bit7:	SPIF: SPI Inte This bit is set setting this bit not automatica	to logic 1 by causes the (CPU to vector	to the SPI0	interrupt serv	vice routine.				
Bit6:	This bit is set	COL: Write Collision Flag. his bit is set to logic 1 by hardware (and generates a SPI interrupt) to indicate a write to sPI data register was attempted while a data transfer was in progress. It is cleared by oftware.								
Bit5:	This bit is set collision is de	MODF: Mode Fault Flag. This bit is set to logic 1 by hardware (and generates a SPI interrupt) when a master mode collision is detected (NSS is low and MSTEN = 1). This bit is not automatically cleared by hardware. It must be cleared by software.								
Bit4:	RXOVRN: Receive Overrun Flag. This bit is set to logic 1 by hardware (and generates a SPI interrupt) when the receive buffer still holds unread data from a previous transfer and the last bit of the current transfer is shifted into the SPI shift register. This bit is not automatically cleared by hardware. It must be cleared by software.									
Bit3:	TXBSY: Tran This bit is set cleared by har	to logic 1 by	hardware wh		mode transfe	r is in progre	ss. It is			
Bit2:	SLVSEL: Slave Selected Flag. This bit is set to logic 1 whenever the NSS pin is low indicating it is enabled as a slave. It is cleared to logic 0 when NSS is high (slave disabled).									
Bit1:	MSTEN: Mas 0: Disable mas 1: Enable mas	ster mode.	Operate in slav							
Bit0:	SPIEN: SPI E This bit enable 0: SPI disable	es/disables tl	he SPI.							

Mode 1 provides standard asynchronous, full duplex communication using a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop bit (see the timing diagram in Figure 18.4). Data are transmitted from the TX pin and received at the RX pin (see the interconnection diagram in Figure 18.5). On receive, the eight data bits are stored in SBUF and the stop bit goes into RB8 (SCON.2).

Data transmission begins when an instruction writes a data byte to the SBUF register. The TI Transmit Interrupt Flag (SCON.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN Receive Enable bit (SCON.4) is set to logic 1. After the stop bit is received, the data byte will be loaded into the SBUF receive register if the following conditions are met: RI must be logic 0, and if SM2 is logic 1, the stop bit must be logic 1.

If these conditions are met, the eight bits of data are stored in SBUF, the stop bit is stored in RB8, and the RI flag is set. If these conditions are not met, SBUF and RB8 will not be loaded and the RI flag will not be set. An interrupt will occur if enabled when either TI or RI is set.

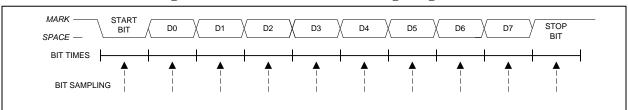


Figure 18.4. UART Mode 1 Timing Diagram

The baud rate generated in Mode 1 is a function of timer overflow. The UART can use Timer 1 operating in 8-bit *Counter/Timer with Auto-Reload Mode*, or Timer 2 operating in *Baud Rate Generator Mode* to generate the baud rate (note that the TX and RX clock sources are selected separately). On each timer overflow event (a rollover from all ones (0xFF for Timer 1, 0xFFFF for Timer 2) to zero), a clock is sent to the baud rate logic.

When Timer 1 is selected as a baud rate source, the SMOD bit (PCON.7) selects whether or not to divide the Timer 1 overflow rate by two. On reset, the SMOD bit is logic 0, thus selecting the lower speed baud rate by default. The SMOD bit affects the baud rate generated by Timer 1 as follows:

Mode 1 Baud Rate = $(1/32) * T1_OVERFLOWRATE$ (when the SMOD bit is set to logic 0). Mode 1 Baud Rate = $(1/16) * T1_OVERFLOWRATE$ (when the SMOD bit is set to logic 1).

When Timer 2 is selected as a baud rate source, the baud rate generated by Timer 2 is as follows:

Mode 1 Baud Rate = $(1 / 16) * T2_OVERFLOWRATE$.

The Timer 1 overflow rate is determined by the Timer 1 clock source (T1CLK) and reload value (TH1). The frequency of T1CLK can be selected as SYSCLK, SYSCLK/12, or an external clock source. The Timer 1 overflow rate can be calculated as follows:

$$T1_OVERFLOWRATE = T1CLK / (256 - TH1).$$

For example, assume TMOD = 0x20. If T1M (CKCON.4) is logic 1, then the above equation becomes:

 $T1_OVERFLOWRATE = (SYSCLK) / (256 - TH1).$

If T1M (CKCON.4) is logic 0, then the above equation becomes:

 $T1_OVERFLOWRATE = (SYSCLK/12) / (256 - TH1).$

18.2. Multiprocessor Communications

Modes 2 and 3 support multiprocessor communication between a master processor and one or more slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its ninth bit is logic 1; in a data byte, the ninth bit is always set to logic 0.

Setting the SM2 bit (SCON.5) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the ninth bit is logic one (RB8 = 1) signifying an address byte has been received. In the UART's interrupt handler, software will compare the received address with the slave's own assigned 8-bit address. If the addresses match, the slave will clear its SM2 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their SM2 bits set and do not generate interrupts on the received, the addressed slave resets its SM2 bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

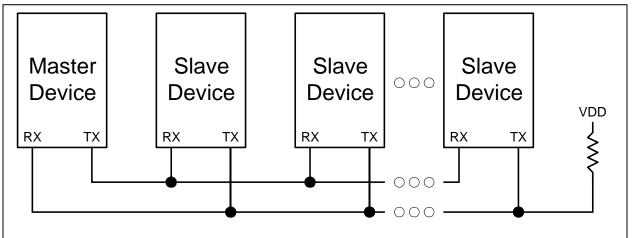


Figure 18.7. UART Multi-Processor Mode Interconnect Diagram

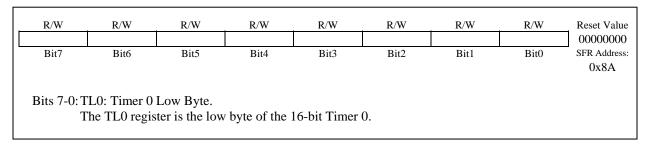


Figure 19.5.	TMOD: Timer Mode Register

0: Timer 1 e 1: Timer 1 e 1: Timer 1 e Bit6: $C/T1: Coun 0: Timer Fe 1: Counter (T1). Bits5-4: T1M1-T1M These bits s \boxed{T1M1} 0011Bit3: GATE0: Timer 0 e1: Timer 0 eBit2: C/T0: Coun0: Timer Fe1: Counter(T0).Bits1-0: T0M1-T0M$	enabled only nter/Timer 1 S Function: Tim r Function: Ti	n TR1 = 1 irres when TR1 = 1 Select. er 1 incremente mer 1 incremer	AND /INT1	= logic level	one.	T0M0 Bit0	00000000 SFR Address 0x89			
Bit7: GATE1: Tin 0: Timer 1 e 1: Timer 1 e Bit6: C/T1: Coun 0: Timer Fu 1: Counter (T1). Bits5-4: T1M1-T1M These bits s $\overline{11M1}$ 0 0 1 1 Bit3: GATE0: Tin 0: Timer 0 e 1: Timer 0 e Bit2: C/T0: Coun 0: Timer Fu 1: Counter (T0). Bits1-0: T0M1-T0M	imer 1 Gate C enabled when enabled only nter/Timer 1 S Function: Tim r Function: Tim M0: Timer 1 M	Control. TR1 = 1 irres when $TR1 = 1$ Select. er 1 incrementer mer 1 incrementer Mode Select.	pective of /IN AND /INT1 ed by clock de	T1 logic leve = logic level fined by T11	el. one.	Bit0				
0: Timer 1 e 1: Timer 1 e 1: Timer 1 e Bit6: $C/T1: Count 0: Timer Fu 1: Counter (T1). Bits5-4: T1M1-T1M These bits s \boxed{T1M1} = 0 0110011Bit3: GATE0: Timer 0 e1: Timer 0 eBit2: C/T0: Count0: Timer Fu1: Counter(T0).Bits1-0: T0M1-T0M$	enabled when enabled only nter/Timer 1 S function: Tim r Function: Ti M0: Timer 1 M	n TR1 = 1 irres when TR1 = 1 Select. er 1 incremente mer 1 incremer	AND /INT1	= logic level	one.		0.0.89			
0: Timer 1 e 1: Timer 1 e 1: Timer 1 e Bit6: $C/T1: Count 0: Timer Fu 1: Counter (T1). Bits5-4: T1M1-T1M These bits s \boxed{T1M1} = 0 0110011Bit3: GATE0: Timer 0 e1: Timer 0 eBit2: C/T0: Count0: Timer Fu1: Counter(T0).Bits1-0: T0M1-T0M$	enabled when enabled only nter/Timer 1 S function: Tim r Function: Ti M0: Timer 1 M	n TR1 = 1 irres when TR1 = 1 Select. er 1 incremente mer 1 incremer	AND /INT1	= logic level	one.					
0: Timer 1 e 1: Timer 1 e 1: Timer 1 e Bit6: $C/T1: Count 0: Timer Fu 1: Counter (T1). Bits5-4: T1M1-T1M These bits s \boxed{T1M1} = 0 0110011Bit3: GATE0: Timer 0 e1: Timer 0 eBit2: C/T0: Count0: Timer Fu1: Counter(T0).Bits1-0: T0M1-T0M$	enabled when enabled only nter/Timer 1 S function: Tim r Function: Ti M0: Timer 1 M	n TR1 = 1 irres when TR1 = 1 Select. er 1 incremente mer 1 incremer	AND /INT1	= logic level	one.					
1: Timer 1 eBit6: $C/T1: Counter$ $0: Timer Fu1: Counter(T1).Bits5-4:T1M1-T1MThese bits sBits5-4:T1M1-T1MThese bits sBit3:GATE0: Time 00: Timer 0 e1: Timer 0 eBit2:C/T0: Counter(T0).Bits1-0:T0M1-T0M$	enabled only nter/Timer 1 S Function: Tim r Function: Ti M0: Timer 1 M	when TR1 = 1 Select. er 1 incremente mer 1 incremer Aode Select.	AND /INT1	= logic level	one.					
Bit6: C/T1: Count 0: Timer Fu 1: Counter (T1). Bits5-4: T1M1-T1M These bits s T1M1 0 0 1 1 Bit3: GATE0: Tim 0: Timer 0 e 1: Timer 0 e Bit2: C/T0: Count 0: Timer Fu 1: Counter (T0). Bits1-0: T0M1-T0M	nter/Timer 1 S Function: Tim r Function: Ti M0: Timer 1 N	Select. er 1 incremente mer 1 incremer Aode Select.	ed by clock de	fined by T11						
0: Timer Fu 1: Counter (T1). Bits5-4: T1M1-T1M These bits s T1M1 0 0 1 1 1 Bit3: GATE0: Tim 0: Timer 0 e 1: Timer 0 e Bit2: C/T0: Coun 0: Timer Fu 1: Counter (T0). Bits1-0: T0M1-T0M	Function: Tim r Function: Ti 40: Timer 1 M	er 1 incremente mer 1 incremer Aode Select.			M hit (CKCO					
0: Timer Fu 1: Counter (T1). Bits5-4: T1M1-T1M These bits s T1M1 0 0 1 1 1 Bit3: GATE0: Tim 0: Timer 0 e 1: Timer 0 e Bit2: C/T0: Counter 0: Timer Fu 1: Counter (T0). Bits1-0: T0M1-T0M	Function: Tim r Function: Ti 40: Timer 1 M	er 1 incremente mer 1 incremer Aode Select.			M bit (CKCO					
1: Counter (T1). Bits5-4: T1M1-T1M These bits s T1M1 0 0 1 0 1 1 Bit3: GATE0: Timer 0 et al.: C/T0: Counter (T0). Bits1-0: T0M1-T0M	r Function: Ti 40: Timer 1 N	mer 1 incremer Aode Select.				N.4).				
(T1). Bits5-4: T1M1-T1M These bits s T1M1 0 0 1 1 Bit3: GATE0: Tit 0: Timer 0 e 1: Timer 0 e Bit2: C/T0: Coun 0: Timer Fu 1: Counter (T0). Bits1-0: T0M1-T0M	A0: Timer 1 M	Aode Select.	, ,				L			
Bits5-4: T1M1-T1M These bits s T1M1 0 0 1 1 1 Bit3: GATE0: Tit 0: Timer 0 c 1: Timer 0 c Bit2: C/T0: Coun 0: Timer Fu 1: Counter (T0). Bits1-0: T0M1-T0M						1 1				
These bits s T1M1 0 0 1 1 1 Bit3: GATE0: Tit 0: Timer 0 e 1: Timer 0 e 1: C/T0: Coun 0: Timer Fe 1: Counter (T0). Bits1-0: T0M1-T0M										
T1M1 0 0 1	select the Tin									
00111<		ner 1 operation	mode.							
00111<										
011<		ode								
111<		Mode 0: 13-bit counter/timer								
IBit3:GATE0: Tim 0: Timer 0 eBit2:C/T0: Coun 0: Timer Fu 1: Counter (T0).Bits1-0:T0M1-T0M		Mode 1: 16-bit counter/timer								
Bit3: GATE0: Tin 0: Timer 0 e 1: Timer 0 e Bit2: C/T0: Coun 0: Timer Fu 1: Counter (T0). Bits1-0: T0M1-T0M		Mode 2: 8-bit counter/timer with auto-reload Mode 3: Timer 1 Inactive/stopped								
0: Timer 0 e 1: Timer 0 e Bit2: C/T0: Coun 0: Timer Fu 1: Counter (T0). Bits1-0: T0M1-T0M	1 Me	ode 3: Timer 1	Inactive/stopp	bed						
0: Timer 0 e 1: Timer 0 e Bit2: C/T0: Coun 0: Timer Fu 1: Counter (T0). Bits1-0: T0M1-T0M		1 / 1								
1: Timer 0 e Bit2: C/T0: Coun 0: Timer Fu 1: Counter (T0). Bits1-0: T0M1-T0M	GATE0: Timer 0 Gate Control.									
Bit2: C/T0: Coun 0: Timer Fo 1: Counter (T0). Bits1-0: T0M1-T0M	0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level. 1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic level one.									
0: Timer Fu 1: Counter (T0). Bits1-0: T0M1-T0M	enabled only	when $1 \text{ K} 0 = 1$	AND/INTO	= logic level	one.					
0: Timer Fu 1: Counter (T0). Bits1-0: T0M1-T0M	nter/Timer Se	lect								
1: Counter (T0). Bits1-0: T0M1-T0M	0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3).									
(T0). Bits1-0: T0M1-T0M	1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin									
Bits1-0: T0M1-T0M						F F				
These bits s	Л0: Timer 0 М	Aode Select.								
	select the Tin	ner 0 operation	mode.							
		ode								
0		ode 0: 13-bit co								
0		ode 1: 16-bit co			-					
1	1 Me	ode 2: 8-bit cou	inter/timer wi		d					
1	1 Me 0 Me		it counter/tim	ers						

Figure 19.7. TL0: Timer 0 Low Byte

Figure 19.8. TL1: Timer 1 Low Byte

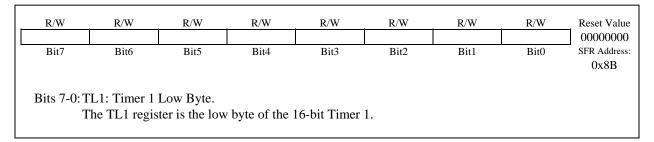
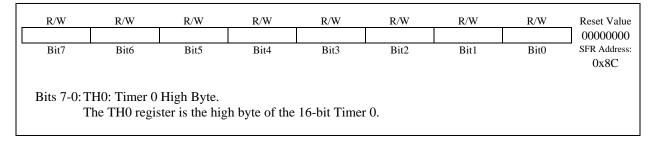
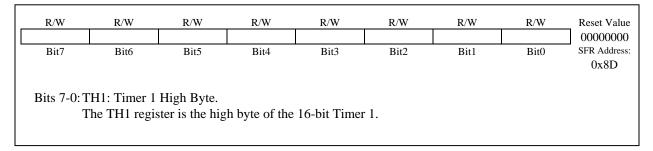




Figure 19.9. TH0: Timer 0 High Byte

Figure 19.10. TH1: Timer 1 High Byte

19.2.1. Mode 0: 16-bit Counter/Timer with Capture

In this mode, Timer 2 operates as a 16-bit counter/timer with capture facility. A high-to-low transition on the T2EX input pin causes the 16-bit value in Timer 2 (TH2, TL2) to be loaded into the capture registers (RCAP2H, RCAP2L).

Timer 2 can use either SYSCLK, SYSCLK divided by 12, or high-to-low transitions on the external T2 pin as its clock source when operating in Counter/Timer with Capture mode. Clearing the C/T2 bit (T2CON.1) selects the system clock as the input for the timer (divided by one or twelve as specified by the Timer Clock Select bit T2M in CKCON). When C/T2 is set to logic 1, a high-to-low transition at the T2 input pin increments the counter/timer register. As the 16-bit counter/timer register increments and overflows from 0xFFFF to 0x0000, the TF2 timer overflow flag (T2CON.7) is set and an interrupt will occur if the interrupt is enabled.

Counter/Timer with Capture mode is selected by setting the Capture/Reload Select bit CP/RL2 (T2CON.0) and the Timer 2 Run Control bit TR2 (T2CON.2) to logic 1. The Timer 2 External Enable EXEN2 (T2CON.3) must also be set to logic 1 to enable a capture. If EXEN2 is cleared, transitions on T2EX will be ignored.

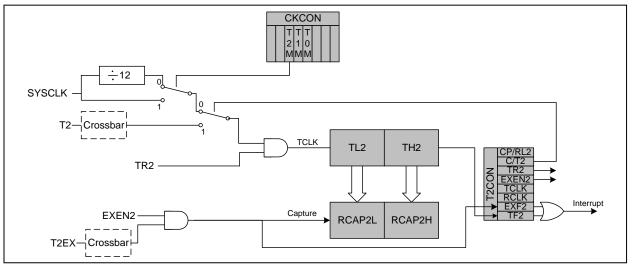


Figure 19.11. T2 Mode 0 Block Diagram

19.2.3. Mode 2: Baud Rate Generator

Timer 2 can be used as a baud rate generator for the serial port (UART) when the UART is operated in modes 1 or 3 (refer to Section 18.1 for more information on UART operational modes). In Baud Rate Generator mode, Timer 2 works similarly to the auto-reload mode. On overflow, the 16-bit value held in the two capture registers (RCAP2H, RCAP2L) is automatically loaded into the counter/timer register. However, the TF2 overflow flag is not set and no interrupt is generated. Instead, the overflow event is used as the input to the UART's shift clock. Timer 2 overflows can be used to generate baud rates for transmit and/or receive independently.

The Baud Rate Generator mode is selected by setting RCLK (T2CON.5) and/or TCLK (T2CON.4) to logic one. When RCLK or TCLK is set to logic 1, Timer 2 operates in the auto-reload mode regardless of the state of the CP/RL2 bit. The baud rate for the UART, when operating in mode 1 or 3, is determined by the Timer 2 overflow rate:

Baud Rate = Timer 2 Overflow Rate / 16.

Note, in all other modes, the timebase for the timer is the system clock divided by one or twelve as selected by the T2M bit in CKCON. However, in Baud Rate Generator mode, the timebase is the system clock divided by two. No other divisor selection is possible. If a different time base is required, setting the C/T2 bit to logic 1 will allow the timebase to be derived from the external input pin T2. In this case, the baud rate for the UART is calculated as:

Baud Rate = FCLK / [32 * (65536 – [RCAP2H:RCAP2L])]

Where FCLK is the frequency of the signal supplied to T2 and [RCAP2H:RCAP2L] is the 16-bit value held in the capture registers.

As explained above, in Baud Rate Generator mode, Timer 2 does not set the TF2 overflow flag and therefore cannot generate an interrupt. However, if EXEN2 is set to logic 1, a high-to-low transition on the T2EX input pin will set the EXF2 flag and a Timer 2 interrupt will occur if enabled. Therefore, the T2EX input may be used as an additional external interrupt source.

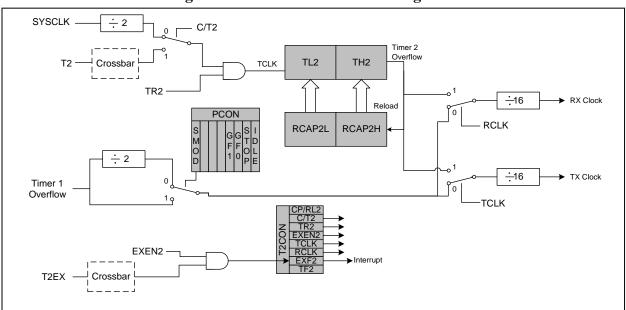
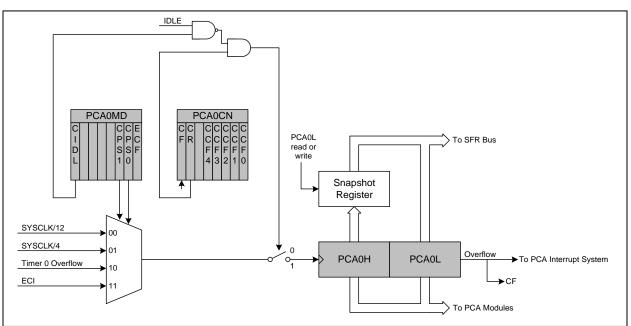


Figure 19.13. T2 Mode 2 Block Diagram


20.2. PCA Counter/Timer

The 16-bit PCA counter/timer consists of two 8-bit SFRs: PCA0L and PCA0H. PCA0H is the high byte (MSB) of the 16-bit counter/timer and PCA0L is the low byte (LSB). Reading PCA0L automatically latches the value of PCA0H at the same time. By reading the PCA0L Register first, this allows the PCA0H value to be held (at the time PCA0L was read) until the user reads the PCA0H Register. Reading PCA0H or PCA0L does not disturb the counter operation. The CPS1 and CPS0 bits in the PCA0MD register select the timebase for the counter/timer as shown in Table 20.2.

When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Overflow Flag (CF) in PCA0MD is set to logic 1 and an interrupt request is generated if CF interrupts are enabled. Setting the ECF bit in PCA0MD to logic 1 enables the CF flag to generate an interrupt request. The CF bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. (Note: PCA0 interrupts must be globally enabled before CF interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit (IE.7) and the EPCA0 bit in EIE1 to logic 1.) Clearing the CIDL bit in the PCA0MD register allows the PCA to continue normal operation while the microcontroller core is in Idle mode.

CPS1 C	PS0	Timebase
0	0	System clock divided by 12
0	1	System clock divided by 4
1	0	Timer 0 overflow
1	1	High-to-low transitions on ECI (max rate = system clock divided by 4)

 Table 20.2.
 PCA Timebase Input Options

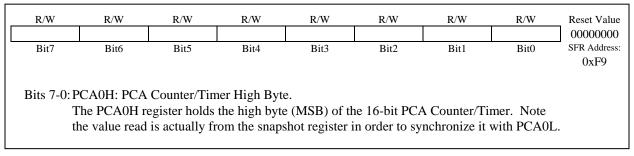
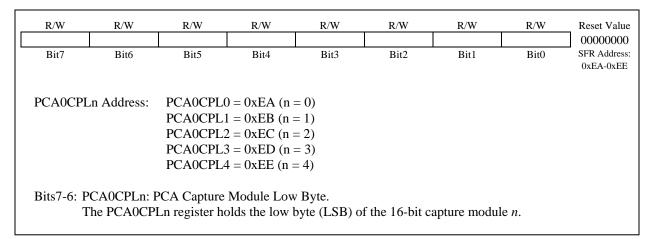


Figure 20.7. PCA Counter/Timer Block Diagram



R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 00000000		
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SI										
	Bits 7-0: PCA0L: PCA Counter/Timer Low Byte. The PCA0L register holds the low byte (LSB) of the 16-bit PCA Counter/Timer.									

Figure 20.12. PCA0H: PCA Counter/Timer High Byte

Figure 20.13. PCA0CPLn: PCA Capture Module Low Byte

Figure 20.14. PCA0CPHn: PCA Capture Module High Byte

R/W	R/W R/W R/W R/W R/W R/W R/W									
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xFA-0xFE		
PCA0CPHn Address:PCA0CPH0 = $0xFA (n = 0)$ PCA0CPH1 = $0xFB (n = 1)$ PCA0CPH2 = $0xFC (n = 2)$ PCA0CPH3 = $0xFD (n = 3)$ 										

