E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	16
Program Memory Size	32KB (32K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f006-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Table 5.1. 12-Bit ADC Electrical Characteristics	
	Table 5.1. 12-Bit ADC Electrical Characteristics	
6	ADC $(10_{\rm B}; C8051F010/1/2/5/6/7 \Omega_{\rm D})$	40
U.	Figure 6.1 10 Bit ADC Functional Block Diagram	TU 40
	Figure 0.1. 10-Bit ADC Functional Block Diagram	40
	6.2 ADC Modes of Operation	40
	5.2. ADC Modes of Operation.	41 /1
	Figure 6.2. To-Bit ADC Track and Conversion Example Timing	41 42
	Figure 6.4. AMXOCE: AMUX Configuration Degister (C8051E01y)	42
	Figure 6.4. AMAOCF: AMOX Configuration Register (C8051F01x)	42
	Figure 6.5. AMIAUSL: AMUA Channel Select Register (C8051F01x).	43
	Figure 6.6. ADCOCH: ADC Configuration Register (CS051F01x)	44
	Figure 6.7. ADCUCN: ADC Control Register (C8051F01x)	45
	Figure 6.8. ADC0H: ADC Data Word MSB Register (C8051F01x)	46
	Figure 6.9. ADCOL: ADC Data Word LSB Register (C8051F01x)	46
	6.3. ADC Programmable Window Detector	47
	Figure 6.10. ADCOGTH: ADC Greater-Than Data High Byte Register (C8051F01x)	47
	Figure 6.11. ADC0GTL: ADC Greater-Than Data Low Byte Register (C8051F01x)	47
	Figure 6.12. ADC0LTH: ADC Less-Than Data High Byte Register (C8051F01x)	47
	Figure 6.13. ADC0LTL: ADC Less-Than Data Low Byte Register (C8051F01x)	47
	Figure 6.14. 10-Bit ADC Window Interrupt Examples, Right Justified Data	48
	Figure 6.15. 10-Bit ADC Window Interrupt Examples, Left Justified Data	48
	Figure 6.15. 10-Bit ADC Window Interrupt Examples, Left Justified Data	49
	Table 6.1. 10-Bit ADC Electrical Characteristics	49
	Table 6.1. 10-Bit ADC Electrical Characteristics	50
7.	DACs, 12 BIT VOLTAGE MODE	51
	Figure 7.1. DAC Functional Block Diagram	51
	Figure 7.2. DAC0H: DAC0 High Byte Register	52
	Figure 7.3. DAC0L: DAC0 Low Byte Register	52
	Figure 7.4. DAC0CN: DAC0 Control Register	52
	Figure 7.5. DAC1H: DAC1 High Byte Register	53
	Figure 7.6. DAC1L: DAC1 Low Byte Register	53
	Figure 7.7. DAC1CN: DAC1 Control Register	53
	Table 7.1. DAC Electrical Characteristics	54
8.	COMPARATORS	55
0.	Figure 8.1 Comparator Functional Block Diagram	55
	Figure 8.2. Comparator Hysteresis Plot	56
	Figure 8.3 CPT0CN: Comparator 0 Control Register	57
	Figure 8.4 CPT1CN: Comparator 1 Control Register	58
	Table 8.1 Comparator Electrical Characteristics	59
0	VOI TACE BEFERENCE	60
).	Figure 0.1 Voltage Deference Eurotional Plack Diagram	UU
	Figure 9.1. Voltage Reference Functional Diock Diagram	0U
	Table 0.1. Deference Electrical Characteristica	01
10	Table 9.1. Reference Electrical Characteristics	01
10.		62
	Figure 10.1. CIP-51 Block Diagram	62
	10.1. INSTRUCTION SET	63
	Table 10.1. CIP-51 Instruction Set Summary	65
	10.2. MEMORY ORGANIZATION	68
	Figure 10.2. Memory Map.	69
	10.3. SPECIAL FUNCTION REGISTERS	70
	Table 10.2. Special Function Register Memory Map	70
	Table 10.3. Special Function Registers	70
	Figure 10.3. SP: Stack Pointer	74
	Figure 10.4. DPL: Data Pointer Low Byte	74

1.1. CIP-51TM CPU

1.1.1. Fully 8051 Compatible

The C8051F000 family utilizes Silicon Laboratories' proprietary CIP-51 microcontroller core. The CIP-51 is fully compatible with the MCS-51TM instruction set. Standard 803x/805x assemblers and compilers can be used to develop software. The core has all the peripherals included with a standard 8052, including four 16-bit counter/timers, a full-duplex UART, 256 bytes of internal RAM space, 128 byte Special Function Register (SFR) address space, and four byte-wide I/O Ports.

1.1.2. Improved Throughput

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute with a maximum system clock of 12-to-24MHz. By contrast, the CIP-51 core executes 70% of its instructions in one or two system clock cycles, with only four instructions taking more than four system clock cycles.

The CIP-51 has a total of 109 instructions. The number of instructions versus the system clock cycles to execute them is as follows:

Instructions	26	50	5	14	7	3	1	2	1
Clocks to Execute	1	2	2/3	3	3/4	4	4/5	5	8

With the CIP-51's maximum system clock at 25MHz, it has a peak throughput of 25MIPS. Figure 1.4 shows a comparison of peak throughputs of various 8-bit microcontroller cores with their maximum system clocks.

Figure 1.4. Comparison of Peak MCU Execution Speeds

1.1.3. Additional Features

The C8051F000 MCU family has several key enhancements both inside and outside the CIP-51 core to improve its overall performance and ease of use in the end applications.

The extended interrupt handler provides 21 interrupt sources into the CIP-51 (as opposed to 7 for the standard 8051), allowing the numerous analog and digital peripherals to interrupt the controller. An interrupt driven system requires less intervention by the MCU, giving it more effective throughput. The extra interrupt sources are very useful when building multi-tasking, real-time systems.

There are up to seven reset sources for the MCU: an on-board VDD monitor, a Watchdog Timer, a missing clock detector, a voltage level detection from Comparator 0, a forced software reset, the CNVSTR pin, and the /RST pin. The /RST pin is bi-directional, accommodating an external reset, or allowing the internally generated POR to be output on the /RST pin. Each reset source except for the VDD monitor and Reset Input Pin may be disabled by the user in software. The WDT may be permanently enabled in software after a power-on reset during MCU initialization.

The MCU has an internal, stand alone clock generator which is used by default as the system clock after any reset. If desired, the clock source may be switched on the fly to the external oscillator, which can use a crystal, ceramic resonator, capacitor, RC, or external clock source to generate the system clock. This can be extremely useful in low power applications, allowing the MCU to run from a slow (power saving) external crystal source, while periodically switching to the fast (up to 16MHz) internal oscillator as needed.

Figure 1.5. On-Board Clock and Reset

		0						•				
R/W	<i>.</i>	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
ADCI	EN A	DCTM	ADCINT	ADBUSY	ADSTM1	ADSTM0	ADWINT	ADLJST	00000000			
Bit7		Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								(bit addressable)	0xE8			
Bit7:	ADCE	N: ADC	Enable Bit									
	0: AD	C Disable	ed. ADC is i	n low power	shutdown.							
	1: AD	C Enable	d. ADC is a	ctive and rea	dy for data co	onversions.						
Bit6:	ADCTM: ADC Track Mode Bit											
	0: Wh	en the Al	DC is enabled	l, tracking is	always done	unless a con-	version is in	process				
	1: Tra	cking De	fined by ADS	STM1-0 bits	2			1				
		ADST	M1-0:									
		00: Tr	acking starts	with the writ	e of 1 to AD	BUSY and la	sts for 3 SA	R clocks				
		01: Tr	acking starte	d by the over	flow of Time	er 3 and last f	or 3 SAR clo	ocks				
		10: AI	OC tracks on	ly when CNV	/STR input is	s logic low						
		11: Tr	acking started	d by the over	flow of Time	er 2 and last f	or 3 SAR clo	ocks				
Bit5:	ADCIN	NT: ADC	Conversion	Complete In	terrupt Flag							
	(Must l	be cleared	d by software	e)								
	0: AD	C has not	t completed a	data convers	sion since the	e last time this	s flag was cl	eared				
	1: AD	C has con	mpleted a dat	a conversion								
Bit4:	ADBU	SY: ADO	C Busy Bit									
	Read											
	0: AD	C Conve	rsion comple	te or no valid	l data has bee	en converted a	since a reset.	The falling				
	edg	e of ADE	BUSY genera	tes an interru	pt when ena	bled.						
	1: AD	C Busy c	onverting dat	ta								
	Write											
	0: No	effect										
	1: Star	ts ADC (Conversion if	ADSTM1-0	0 = 00b							
Bits3-2	: ADST	M1-0: AI	DC Start of C	onversion M	ode Bits							
	00: AI	DC conve	ersion started	upon every	write of 1 to 1	ADBUSY						
	01: AI	DC conve	ersions taken	on every ove	erflow of Tim	her 3						
	10: AI	DC conve	ersion started	upon every i	rising edge of	f CNVSTR						
	11: AI	DC conve	ersions taken	on every ove	erflow of Tim	her 2						
Bit1:	ADWI	NT: ADO	Window Co	ompare Inter	rupt Flag							
	(Must	be cleared	d by software	e)								
	0: ADC Window Comparison Data match has not occurred											
DUO	I: AD	C Windo	w Compariso	on Data mate	h occurred							
Bit0:	ADLIS	SI: ADC	Left Justify I	Data Bit								
	U: Dat	a in ADC	UH:ADCOL	Registers is i	ignt justified							
	1: Dat	a in ADC	UH:ADCOL	Registers is l	ert justified							

Figure 5.7. ADC0CN: ADC Control Register (C8051F00x)

Figure 6.4. AMX0CF: AMUX Configuration Register (C8051F01x)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-	-	AIN67IC	AIN45IC	AIN23IC	AIN01IC	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xBA
Bits7-4:	UNUSED. Rea	d = 0000b; V	Vrite = don't	care				
Bit3:	AIN67IC: AIN6	5, AIN7 Inpu	t Pair Config	uration Bit				
	0: AIN6 and Al	N7 are inde	pendent singl	ed-ended inp	uts			
	1: AIN6. AIN7	are (respecti	velv) + dif	ferential inpu	t pair			
Bit2:	AIN45IC: AIN4	. AIN5 Inpu	t Pair Config	uration Bit	i pui			
2	0: AIN4 and Al	N5 are inder	pendent singl	ed-ended inp	uts			
	$1 \cdot AIN4 AIN5$	are (respecti	velv) + - dif	ferential inpu	ut nair			
Bit1.	AIN23IC · AIN2	AIN3 Inpu	t Pair Config	uration Bit	n pull			
DR1.	0: AIN2 and Al	N3 are inder	endent singl	ed-ended inn	uts			
	$1 \cdot \Delta IN2 \Delta IN3$	are (respecti	$velv) \perp - dif$	ferential inpu	ut nair			
BitO	AINOLIC: AINO) AIN1 Inpu	t Pair Config	uration Bit	n pan			
Dito.	0. AINO and Al	N1 ara inda	ondont singl	ad and ad inn	ute			
	1. AINO AINI		volv) – dif	formatical input	uis			
	1: AINO, AINT	are (respecti	very) +, - dif	ierentiai inpu	n pair			
NOTE	The ADC Dete V	Word is in ?	a aomnlaman	t format for	hannala com	figurad as dif	fformation	
NOTE:	The ADC Data	word is in 2	s complemen	it format for (channels con	ingured as dil	lierential.	

7. DACs, 12 BIT VOLTAGE MODE

The C8051F000 MCU family has two 12-bit voltage-mode Digital to Analog Converters. Each DAC has an output swing of 0V to VREF-1LSB for a corresponding input code range of 0x000 to 0xFFF. Using DAC0 as an example, the 12-bit data word is written to the low byte (DAC0L) and high byte (DAC0H) data registers. Data is latched into DAC0 after a write to the corresponding DAC0H register, **so the write sequence should be DAC0L followed by DAC0H** if the full 12-bit resolution is required. The DAC can be used in 8-bit mode by initializing DAC0L to the desired value (typically 0x00), and writing data to only DAC0H with the data shifted to the left. DAC0 Control Register (DAC0CN) provides a means to enable/disable DAC0 and to modify its input data formatting.

The DAC0 enable/disable function is controlled by the DAC0EN bit (DAC0CN.7). Writing a 1 to DAC0EN enables DAC0 while writing a 0 to DAC0EN disables DAC0. While disabled, the output of DAC0 is maintained in a high-impedance state, and the DAC0 supply current falls to 1μ A or less. Also, the Bias Enable bit (BIASE) in the REF0CN register (see Figure 9.2) must be set to 1 in order to supply bias to DAC0. The voltage reference for DAC0 must also be set properly (see Section 9).

In some instances, input data should be shifted prior to a DAC0 write operation to properly justify data within the DAC input registers. This action would typically require one or more load and shift operations, adding software overhead and slowing DAC throughput. To alleviate this problem, the data-formatting feature provides a means for the user to program the orientation of the DAC0 data word within data registers DAC0H and DAC0L. The three DAC0DF bits (DAC0CN.[2:0]) allow the user to specify one of five data word orientations as shown in the DAC0CN register definition.

DAC1 is functionally the same as DAC0 described above. The electrical specifications for both DAC0 and DAC1 are given in Table 7.1.

Figure 7.1. DAC Functional Block Diagram

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value 0000000 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address: 0xD3 Bits7-0: DAC0 Data Word Most Significant Byte.

Figure 7.2. DAC0H: DAC0 High Byte Register

Figure 7.3. DAC0L: DAC0 Low Byte Register

Figure 7.4. DAC0CN: DAC0 Control Register

R/W	7	R/W	R/W	R/W	R	W/W	R/W	R/W	R/W	Reset Value		
DACO	EN	-	-	-		-	DAC0DF2	DAC0DF1	DAC0DF0	00000000		
Bit7		Bit6	Bit5	Bit4	В	it3	Bit2	Bit1	Bit0	SFR Address:		
										0xD4		
Bit7.	D۵		⁻ 0 Enable Bit	÷								
Dit/.	0. T	ACO Disal	bled DACO	Output pin is	dicabl	ed: D4	$\Delta C0$ is in low	nower shut	lown mode			
	0. L 1. Г	ACO Enah	led DACO	Dutput pill is	active		is operation	al	iown mode.			
Bits6-3	Bits6-3: UNUSED. Read = 0000b; Write = don't care											
Bits2-0: DAC0DF2-0: DAC0 Data Format Bits												
D102 0	000:	The most	significant ny	whole of the l	DACO	Data V	Vord is in DA	AC0H[3:0]. v	while the least	significant		
	000	byte is in	DAC0L.			2		10011[010],		5-8		
		- ,	DACOH					DACOL				
			MSB					DIICOL]	LSB		
	001:	The most	significant 5	bits of the D	AC0 I	Data W	ord is in DA	C0H[4:0], wl	hile the least	significant		
		7-bits is ir	n DAC0L[7:1].								
			DAC0H					DAC0L				
			MSB						LSB			
	010:	The most	significant 6-	bits of the D	AC0 I	Data W	ord is in DA	C0H[5:0], wl	hile the least	significant		
	-	6-bits is ir	n DAC0L[7:2	2].								
			DAC0H					DAC0L				
		MSB							LSB			
	011:	The most	significant 7-	bits of the D	AC0 E	Data W	ord is in DA	C0H[6:0], wl	hile the least	significant		
	1	5-bits is in	n DAC0L[7:3].								
			DAC0H			-		DAC0L				
	1	MSB TIL			COD	4 - X V -		LSB	1			
	IXX:	in in DAC	significant by	yte of the DA	CU Da	ita wo	rd is in DAC	OH, while the	e least signifi	cant nybble		
	1S IN DACOL[7:4].											
	MCD	I I	DACOH	T T	1			DACOL				
	MSB							LSB				

Mnemonic	Description	Bytes	Clock Cycles
	ARITHMETIC OPERATIONS		
ADD A,Rn	Add register to A	1	1
ADD A, direct	Add direct byte to A	2	2
ADD A,@Ri	Add indirect RAM to A	1	2
ADD A,#data	Add immediate to A	2	2
ADDC A,Rn	Add register to A with carry	1	1
ADDC A, direct	Add direct byte to A with carry	2	2
ADDC A,@Ri	Add indirect RAM to A with carry	1	2
ADDC A,#data	Add immediate to A with carry	2	2
SUBB A,Rn	Subtract register from A with borrow	1	1
SUBB A, direct	Subtract direct byte from A with borrow	2	2
SUBB A,@Ri	Subtract indirect RAM from A with borrow	1	2
SUBB A,#data	Subtract immediate from A with borrow	2	2
INC A	Increment A	1	1
INC Rn	Increment register	1	1
INC direct	Increment direct byte	2	2
INC @Ri	Increment indirect RAM	1	2
DEC A	Decrement A	1	1
DEC Rn	Decrement register	1	1
DEC direct	Decrement direct byte	2	2
DEC @Ri	Decrement indirect RAM	1	2
INC DPTR	Increment Data Pointer	1	1
MUL AB	Multiply A and B	1	4
DIV AB	Divide A by B	1	8
DAA	Decimal Adjust A	1	1
DITI	LOGICAL OPERATIONS	1	1
ANL A Rn	AND Register to A	1	1
ANL A direct	AND direct byte to A	2	2
ANL A @Ri	AND indirect RAM to A	1	2
ANL A #data	AND immediate to A	2	2
ANL direct A	AND A to direct byte	2	2
ANI direct #data	AND immediate to direct byte	3	3
ORI A Rn	OR Register to A	1	1
ORL A direct	OR direct byte to A	2	2
ORL A @Ri	OR indirect RAM to A	1	2
ORL A #data	OR immediate to A	2	2
ORL A;rdata	OR A to direct byte	2	2
ORL direct #data	OR A to direct byte	3	3
VPL A Pn	Exclusive OP Pagister to A		1
XRL A,RII	Exclusive-OK Register to A	- 1	1
XRL A, dilect	Exclusive-OK direct byte to A		2
XRL A, @KI	Exclusive-OR indirect RAW to A	- 1	2
XRL A,#uata	Exclusive-OK initiediate to A	2	2
XRL direct,A	Exclusive-OK A to direct byte	2	2
CLD A	Clean A		<u> </u>
	Crear A	1	1
UPL A	Complement A		
KL A			
KLC A	Kotate A left through carry	1	1

Table 10.1. CIP-51 Instruction Set Summary

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
ECP1R	ECP1F	ECP0R	ECP0F	EPCA0	EWADC0	ESMB0	ESPI0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xE6
Bit7:	ECP1R: Enab	le Comparato	or 1 (CP1) Ri	sing Edge Ir	terrupt.			
	This bit sets the	ne masking o	f the CP1 int	errupt.				
	0: Disable Cl	P1 Rising Edg	ge interrupt.					
	1: Enable inte	errupt request	ts generated	by the CP1R	IF flag (CPT1	CN.5).		
D:+6.	ECD1E, Ench	la Componata		lling Edge L	townset			
DIIO.	This bit sets th	he masking o	$\Gamma = \Gamma =$	nnig Euge n	nerrupi.			
	0. Disable CI	P1 Falling Ed	ge interrunt	cirupt.				
	1. Enable inte	errunt request	ts generated l	hy the CP1F	F flag (CPT1	CN 4)		
	1. Enuoro mu	enaptiequest	is generated (oy the of m		01(1))		
Bit5:	ECP0R: Enab	le Comparato	or 0 (CP0) Ri	sing Edge Ir	terrupt.			
	This bit sets the	he masking of	f the CP0 int	errupt.	-			
	0: Disable Cl	PO Rising Edg	ge interrupt.					
	1: Enable inte	errupt request	ts generated	by the CP0R	IF flag (CPT0	CN.5).		
D : 4				11. F.I. T				
B1t4:	ECP0F: Enab	le Comparato	or 0 (CP0) Fa	lling Edge li	iterrupt.			
	I his bit sets the	ne masking of	f the CPU int	errupt.				
	1: Enable inte	PU Failing Eu	ge interrupt.	by the CDOF	E flag (CPTO	CN(4)		
	1. Enable ind	inup: request	is generated	by the CI OF	in hag (CI IO	CIN.+).		
Bit3:	EPCA0: Enab	le Programm	able Counter	Array (PCA	0) Interrupt.			
	This bit sets the	he masking of	f the PCA0 in	nterrupts.	, I			
	0: Disable all	PCA0 interr	upts.	1				
	1: Enable inte	errupt request	ts generated	by PCA0.				
Bit2:	EWADC0: Ei	hable Window	v Compariso	n ADC0 Inte	errupt.			
	I his bit sets the	ne masking of	f ADC0 Win	dow Compa	rison interrupt			
	0: Disable Al	DCU Window	Comparison	h Interrupt.	indow Compo	misons		
	1. Enable Int	errupt reques	is generated	by ADC0 W	indow Compa	uisons.		
Bit1:	ESMB0: Enal	ole SMBus 0	Interrupt.					
Ditti	This bit sets the	he masking of	f the SMBus	interrupt.				
	0: Disable all	SMBus inter	rrupts.					
	1: Enable inte	errupt request	ts generated	by the SI flag	g (SMB0CN.3	5).		
Bit0:	ESPI0: Enable	e Serial Perip	heral Interfa	ce 0 Interrup	t.			
	This bit sets the	ne masking o	f SPI0 interro	upt.				
	U: Disable all	SPI0 interru	pts.					
	1: Enable Int	errupt reques	is generated	UY SP10.				

Figure 10.11. EIE1: Extended Interrupt Enable 1

13.8.1. Watchdog Usage

The WDT consists of a 21-bit timer running from the programmed system clock. The timer measures the period between specific writes to its control register. If this period exceeds the programmed limit, a WDT reset is generated. The WDT can be enabled and disabled as needed in software, or can be permanently enabled if desired. Watchdog features are controlled via the Watchdog Timer Control Register (WDTCN) shown in Figure 13.3.

Enable/Reset WDT

The watchdog timer is both enabled and the countdown restarted by writing 0xA5 to the WDTCN register. The user's application software should include periodic writes of 0xA5 to WDTCN as needed to prevent a watchdog timer overflow. The WDT is enabled and restarted as a result of any system reset.

Disable WDT

Writing 0xDE followed by 0xAD to the WDTCN register disables the WDT. The following code segment illustrates disabling the WDT.

CLR EA ; disable all interrupts MOV WDTCN,#0DEh ; disable software MOV WDTCN,#0ADh ; watchdog timer SETB EA ; re-enable interrupts

The writes of 0xDE and 0xAD must occur within 4 clock cycles of each other, or the disable operation is ignored. Interrupts should be disabled during this procedure to avoid delay between the two writes.

Disable WDT Lockout

Writing 0xFF to WDTCN locks out the disable feature. Once locked out, the disable operation is ignored until the next system reset. Writing 0xFF does not enable or reset the watchdog timer. Applications always intending to use the watchdog should write 0xFF to WDTCN in their initialization code.

Setting WDT Interval

WDTCN.[2:0] control the watchdog timeout interval. The interval is given by the following equation:

 $4^{3+WDTCN[2:0]} \times T_{SYSCLK}$, (where T_{SYSCLK} is the system clock period).

For a 2MHz system clock, this provides an interval range of 0.032msec to 524msec. WDTCN.7 must be a 0 when setting this interval. Reading WDTCN returns the programmed interval. WDTCN.[2:0] is 111b after a system reset.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value					
								xxxxx111					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:					
								0xFF					
Bits7-0	WDT Control												
	Writing 0xA5	both enables	and reloads t	the WDT.									
	Writing 0xDE	followed with	thin 4 clocks	by 0xAD dis	ables the WI	DT.							
	Writing 0xFF locks out the disable feature.												
Bit4:	Watchdog Stat	us Bit (when	Read)										
	Reading the W	DTCN.[4] b	it indicates th	e Watchdog	Timer Status	5.							
	0: WDT is ina	ctive		C									
	1: WDT is act	ive											
Bits2-0	Watchdog Tim	eout Interva	l Bits										
D102 0	The WDTCN	[2.0] bits set	the Watchdo	g Timeout In	terval Whe	n writing the	se hits						
	WDTCN 7 mu	[2.0] one set	the wateried	g Thicout In		ii wiiting the	se ons,						
	wDICN./IIIu		•										

Figure 13.3. WDTCN: Watchdog Timer Control Register

Figure 14.3.	OSCXCN:	External	Oscillator	Control	Register
	0.0 0 0		0.0000000		

R	R/	W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
XTLVLD) XOSC	CMD2	XOSCMD1	XOSCMD0	-	XFCN2	XFCN1	XFCN0	00110000
Bit7	Bi	t6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
									0xB1
Bit7: X	XTLVLD	: Crys	tal Oscillator	Valid Flag					
(Valid on	ly who	en XOSCMI	$\mathbf{O} = 1\mathbf{x}\mathbf{x}.\mathbf{O}$					
C): Crysta	l Oscil	lator is unuse	ed or not ye	t stable				
1	l: Crysta	l Oscil	lator is runni	ng and stab	le (should rea	d 1ms after	Crystal Oscilla	ator is	
	enable	d to av	void transient	condition).					
Bits6-4: X	XOSCMI	D2-0: H	External Osci	llator Mode	Bits				
C	00x: Off.	XTA	L1 pin is gro	unded inter	nally.				
0	010: Syst	em Cl	ock from Ext	ernal CMO	S Clock on X	TAL1 pin.			
0	011: Syst	em Cl	ock from Ext	ernal CMO	S Clock on X	TAL1 pin d	ivided by 2.		
1	Ox: RC/	C Osc	illator Mode	with divide	by 2 stage.				
1	10: Crys	stal Os	cillator Mod	e 					
D:42	III: Crys	stal Os	cillator Mod	e with divid	e by 2 stage.				
Bits: h	XESERV	ED. R	ead = undefi	ned, Write	= don't care				
Bits2-0: 2	XFCN2-0	: Exte	rnal Oscillato	or Frequenc	y Control Bits	5			
U		see ta	Die Delow						
Г	VECN	Crave	tol (VOSCM	D	PC (VOSCI)	$(D - 10_{\rm w})$	C (VOSCM	$D = 10_{\rm W}$	
	AFCN	(11v)		D –	KC (AOSCIM	D = 10x	C (AOSCIMI	D = 10X	
-	000	f < 1	2.51/17		f < 25kH7		K Factor – 0	14	
_	000	$1 \ge 1$ 12.51	2.3 MIZ	21.11.7	$1 \leq 23 \text{KHZ}$	501.11-	K Factor = 1	4	
F	010	12.3	$\frac{KHZ}{S} = \frac{1}{2} \frac{S}{S}$		23 kHz $< 1 \leq$	1001-11-	K Factor = 4	.4	
-	010	30.3	5 KHZ $< 1 \le 9$	3.8KHZ	50 kHz $< 1 \le$		K Factor = 4	2	
-	100	93.8	$kHz < f \le 26$	/KHZ	$100 \text{ kHz} < f \le$	200kHz	K Factor = 1	3	
_	100	267k	$Hz < f \le 72$	2kHz	$200 \text{kHz} < f \le$	400kHz	K Factor = 3	8	
_	101	722k	$Hz < f \le 2.2$	3MHz	$400 \text{kHz} < \text{f} \le$	800kHz	K Factor = 1	00	
_	110	2.23	$MHz < f \le 6$.74MHz	$800 \text{kHz} < \text{f} \le$	1.6MHz	K Factor $= 4$	-20	
	111	f > 6	.74MHz		$1.6 MHz < f \le$	3.2MHz	K Factor $= 1$	400	
CRYSTA	L MOD	E (Cir	cuit from Fig	ure 14.1, O	ption 1; XOS	CMD = 11x)		
(Choose X	FCN v	value to mate	h the crysta	l or ceramic r	esonator fre	quency.		
DOMOD			T : 444	o o		10.)			
RC MOD	DE (Circu	it from	n Figure 14.1	, Option 2;	XOSCMD =	10x)			
(Choose os	Scillati	on frequency	range when	re:				
I	= 1.23(1	U ²) / (² U	$\mathbf{K} * \mathbf{C}$, wher	e . MII-					
I	= freque	ncy of	oscillation in	1 MHZ					
	z = capac	itor va	lue in pF						
ŀ	$\mathbf{x} = \mathbf{Pull} \cdot \mathbf{u}$	ip resi	stor value in	KQ					
	(C:	from		Intion 2. W	05010 1/)w)			
CMODE	Circuit	Foots	rigure 14.1, (\mathbf{KE}) for t^{1}	opuon 3; X	OSCIVID = I(JX) siradi			
۲ ۲	$\frac{10080 \text{ K}}{10080 \text{ K}}$	$\Gamma a C $	$I(\mathbf{K}\mathbf{\Gamma}) IOF IO(\mathbf{V})$	e oscination	inequency de	siled.			
L L	$= \mathbf{N}\mathbf{\Gamma} / ($ $= \mathbf{f}\mathbf{r}_{0}$	$\mathbf{U}^{\mathrm{T}}\mathbf{A}$	v+), where	› M比?					
I	= neque	itor ve	USCIIIATION II		ning in nE				
	$\Delta V_{\perp} = \alpha_{1}$	nor va nalog l	Dower Supply	$\mathbf{J}_{1}, \mathbf{\Lambda}_{1} \mathbf{A} \mathbf{L}_{2}$	pills III pr n volts				
F	$\mathbf{v} + - \mathbf{A}$	liaiog I	ower supply						

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
WEAKPUD	XBARE	-	-	-	-	-	CNVSTE	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
								0xE3				
Bit7:	WEAKPUD: I	Port I/O Wea	k Pull-up Di	sable Bit								
(0: Weak Pull-	ups Enabled	(except for l	Ports whose I	/O are config	gured as push	-pull)					
	1: Weak Pull-	ups Disabled	1		e		1 /					
Bit6:	XBARE: Cros	sbar Enable	Bit									
(0: Crossbar D	isabled										
	1: Crossbar E	nabled										
Bits5-1:	UNUSED. Re	ead = 00000t	, Write $=$ do	n't care.								
Bit0:	CNVSTE: AD	C Convert S	tart Input En	able Bit								
(0: CNVSTR u	inavailable a	t Port pin.									
	1: CNVSTR r	outed to Por	t Pin.									
Example	Usage of XBI	<u>R0, XBR1, X</u>	BR2:									
When sel	lected, the dig	ital resource	s fill the Po	rt I/O pins in	order (top t	to bottom as	shown in					
Table 15	.1) starting w	vith P0.0 thr	ough P0.7,	and then P1	.0 through I	P1.7, and fin	ally P2.0					
through I	P2.7. If the di	igital resourc	es are not m	apped to the	Port I/O pin	s, they defau	lt to their					
matching	internal Port	Register bits.										
Example	1: If XBR0 = 0	0x11, XBR1	= 0x00, and	XBR2 = 0x4	0:							
P0.0=SD	P0.0=SDA, P0.1=SCL, P0.2=CEX0, P0.3=CEX1, P0.4 P2.7 map to corresponding Port I/O.											
Example2	2: If XBR0 = 0	0x80, XBR1	= 0x04, and	XBR2 = 0x4	1:							
P0.0=CP0	0, P0.1=/INT0	$P_{0}, P_{0}.2 = CN^{2}$	VSTR, P0.3	P2.7 map	to correspond	ding Port I/O	•					

Figure 15.5. XBR2: Port I/O CrossBar Register 2

Figure 15.11.	P2: Port2 Register
---------------	--------------------

R/W P2.7	R/W P2.6	R/W P2.5	R/W P2.4	R/W P2.3	R/W P2.2	R/W P2.1	R/W P2.0	Reset Value 11111111
Bit7	Bit6	Bit	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
							(bit addressable)	0xA0
 Bits7-0: P2.[7:0] (Write – Output appears on I/O pins per XBR0, XBR1, and XBR2 registers) 0: Logic Low Output. 1: Logic High Output (high-impedance if corresponding PRT2CF.n bit = 0) (Read – Regardless of XBR0, XBR1, and XBR2 Register settings). 0: P2.n is logic low. 1: P2.n is logic high. 								

Figure 15.12. PRT2CF: Port2 Configuration Register

16.6.2. Clock Rate Register

Figure 16.5. SMB0CR: SMBus Clock Rate Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xCF
Bits7-0: S r J J U H	SMB0CR.[7:0 The SMB0CR node. The 8 The timer court The SMB0CR unsigned 8-bit Hz:)]: SMBus Cl Clock Rate -bit word sto nts up, and w setting shou value in reg SMB0CR SCL signal h	lock Rate Pro register com ored in the S when it rolls of ld be bound ister SMB00 . < ((288 - 0. igh and low	eset trols the frequ SMB0CR Reg over to 0x00, ed by the follo CR, and SYSC 85 * SYSCLI times are give	tency of the s gister preload the SCL logi owing equation LK is the sys ζ / 1.125E6) en by the foll	serial clock S ls a dedicated c state toggle on, where <i>SM</i> tem clock fre owing equati	CL in master d 8-bit timer es. <i>IBOCR</i> is the equency in ions:	r
		T_{LOV} $T_{HIGH} \cong$	W = (256 - M) (258 - SMB)	SMB0CR) / S	YSCLK $LK + 625 ns$			
l f	Using the sam following equa	e value of SM ation:	MB0CR from	n above, the I	Bus Free Tim	eout period i	s given in the	
		$T_{BFT} \cong l$	0 * [(256 – 2	SMBOCR) + 1] / SYSCLK			

16.6.5. Status Register

The SMB0STA Status register holds an 8-bit status code indicating the current state of the SMBus. There are 28 possible SMBus states, each with a corresponding unique status code. The five most significant bits of the status code vary while the three least-significant bits of a valid status code are fixed at zero when SI = 1. Therefore, all possible status codes are multiples of eight. This facilitates the use of status codes in software as an index used to branch to appropriate service routines (allowing 8 bytes of code to service the state or jump to a more extensive service routine).

For the purposes of user software, the contents of the SMB0STA register is only defined when the SI flag is logic 1. Software should never write to the SMB0STA register. Doing so will yield indeterminate results. The 28 SMBus states, along with their corresponding status codes, are given in Table 16.1.

R/W STA7 Bit7	R/W STA6 Bit6	R/W STA5 Bit5	R/W STA4 Bit4	R/W STA3 Bit3	R/W STA2 Bit2	R/W STA1 Bit1	R/W STA0 Bit0	Reset Value 11111000 SFR Address: 0xC1
Bits7-3: STA7-STA3: SMBus Status Code. These bits contain the SMBus Status Code. There are 28 possible status codes. Each status code corresponds to a single SMBus state. A valid status code is present in SMB0STA when the SI flag (SMB0CN.3) is set. The content of SMB0STA is not defined when the SI flag is logic 0. Writing to the SMB0STA register at any time will yield indeterminate results.								
Bits2-0: STA2-STA0: The three least significant bits of SMB0STA are always read as logic 0 when the SI flag is logic 1.								

Figure 16.8. SMB0STA: SMBus Status Register

0x00 All Bus Error (i.e. illegal START, illegal STOP,) 0x08 Master Transmitter/Receiver START condition transmitted. 0x10 Master Transmitter/Receiver Repeated START condition transmitted. 0x10 Master Transmitter Slave address + W transmitted. ACK received. 0x20 Master Transmitter Data byte transmitted. ACK received. 0x33 Master Transmitter Data byte transmitted. NACK received. 0x40 Master Transmitter Arbitration lost 0x40 Master Receiver Slave address + R transmitted. ACK received. 0x50 Master Receiver Data byte received. ACK transmitted. 0x50 Master Receiver Data byte received. ACK transmitted. 0x60 Slave Receiver Data byte received. ACK transmitted. 0x61 Slave Receiver SMB0's own slave address + W received. ACK transmitted. 0x70 Slave Receiver General call address (0x00) received. ACK transmitted. 0x78 Slave Receiver SMB0's own slave address + W received. Data byte received. 0x80 Slave Receiver SMB0's own slave address + W received. 0x80 <t< th=""><th>Status Code (SMB0STA)</th><th>Mode</th><th>SMBus State</th></t<>	Status Code (SMB0STA)	Mode	SMBus State
0x08 Master Transmitter/Receiver START condition transmitted. 0x10 Master Transmitter/Receiver Repeated START condition transmitted. 0x18 Master Transmitter Slave address + W transmitted. ACK received. 0x20 Master Transmitter Data byte transmitted. ACK received. 0x28 Master Transmitter Data byte transmitted. ACK received. 0x30 Master Transmitter Arbitration lost 0x40 Master Receiver Slave address + R transmitted. ACK received. 0x48 Master Receiver Slave address + R transmitted. ACK received. 0x50 Master Receiver Data byte received. ACK transmitted. 0x58 Master Receiver Data byte received. ACK transmitted. 0x60 Slave Receiver SMB0's own slave address + W received. ACK transmitted. 0x68 Slave Receiver General call address (0x00) received. ACK transmitted. 0x70 Slave Receiver General call address received. ACK transmitted. 0x78 Slave Receiver General call address received. ACK transmitted. 0x80 Slave Receiver General call address received. ACK transmitted. 0x80<	0x00	All	Bus Error (i.e. illegal START, illegal STOP,)
0x10 Master Transmitter/Receiver Repeated START condition transmitted. 0x18 Master Transmitter Slave address + W transmitted. ACK received. 0x20 Master Transmitter Slave address + W transmitted. ACK received. 0x30 Master Transmitter Data byte transmitted. ACK received. 0x33 Master Transmitter Data byte transmitted. ACK received. 0x40 Master Receiver Slave address + R transmitted. ACK received. 0x50 Master Receiver Data byte received. ACK transmitted. 0x60 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. 0x68 Slave Receiver General call address (0x00) received. ACK transmited. 0x78 Slave Receiver SMB0's own slave address + W received. 0x80 Slave Receiver SMB0's own slave address + W received. 0x88 Slave Receiver General call address (0x00) received. 0x90	0x08	Master Transmitter/Receiver	START condition transmitted.
0x18 Master Transmitter Slave address + W transmitted. ACK received. 0x20 Master Transmitter Slave address + W transmitted. NACK received. 0x28 Master Transmitter Data byte transmitted. ACK received. 0x30 Master Transmitter Data byte transmitted. ACK received. 0x38 Master Receiver Slave address + R transmitted. ACK received. 0x40 Master Receiver Slave address + R transmitted. ACK received. 0x48 Master Receiver Data byte received. ACK transmitted. 0x50 Master Receiver Data byte received. ACK transmitted. 0x60 Slave Receiver Data byte received. ACK transmitted. 0x61 Slave Receiver Oata byte received. NACK transmitted. 0x62 Slave Receiver Own slave address + W received. ACK transmitted. 0x70 Slave Receiver General call address (0x00) received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. 0x80 Slave Receiver General call address (0x00) received. Data byte received. 0x88 Slave Receiver SMB0's own slave address + W received.	0x10	Master Transmitter/Receiver	Repeated START condition transmitted.
0x20 Master Transmitter Slave address + W transmitted. NACK received. 0x28 Master Transmitter Data byte transmitted. ACK received. 0x30 Master Transmitter Data byte transmitted. NACK received. 0x38 Master Transmitter Arbitration lost 0x40 Master Receiver Slave address + R transmitted. NACK received. 0x48 Master Receiver Data byte received. ACK transmitted. 0x50 Master Receiver Data byte received. NACK transmitted. 0x58 Master Receiver Data byte received. NACK transmitted. 0x60 Slave Receiver Own slave address + W received. ACK transmitted. 0x68 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. 0x70 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. 0x70 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. 0x88 Slave Receiver General call address (0x00) recei	0x18	Master Transmitter	Slave address + W transmitted. ACK received.
0x28 Master Transmitter Data byte transmitted. ACK received. 0x30 Master Transmitter Data byte transmitted. NACK received. 0x38 Master Transmitter Arbitration lost 0x40 Master Receiver Slave address + R transmitted. NACK received. 0x40 Master Receiver Data byte received. ACK transmitted. 0x50 Master Receiver Data byte received. ACK transmitted. 0x58 Master Receiver Data byte received. NACK transmitted. 0x60 Slave Receiver Data byte received. NACK transmitted. 0x68 Slave Receiver General call address (0x00) received. ACK transmitted. 0x70 Slave Receiver General call address (0x00) received. ACK transmitted. 0x78 Slave Receiver SMB0's own slave address + W received. Data byte received. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. 0x88 Slave Receiver SMB0's own slave address + W received. Data byte received. 0x90 Slave Receiver General call address (0x00) received. Data byte received. 0xA0 Slave Receiver General call address (0x00) received. Data byte received. <td>0x20</td> <td>Master Transmitter</td> <td>Slave address + W transmitted. NACK received.</td>	0x20	Master Transmitter	Slave address + W transmitted. NACK received.
0x30 Master Transmitter Data byte transmitted. NACK received. 0x38 Master Transmitter Arbitration lost 0x40 Master Receiver Slave address + R transmitted. ACK received. 0x48 Master Receiver Slave address + R transmitted. NACK received 0x50 Master Receiver Data byte received. ACK transmitted. 0x58 Master Receiver Data byte received. ACK transmitted. 0x60 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. 0x68 Slave Receiver General call address (0x00) received. ACK transmitted. 0x70 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. 0x70 Slave Receiver General call address (0x00) received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. 0x80 Slave Receiver General call address (0x00) received. Data byte received. 0x90 Slave Receiver General call address (0x00) received. Data byte received. 0x90 Slave Receiver General call address (0x00) received. Data byte received. 0x88 Slave Receiver General call address (0x00) received. Data byte received.	0x28	Master Transmitter	Data byte transmitted. ACK received.
0x38 Master Transmitter Arbitration lost 0x40 Master Receiver Slave address + R transmitted. ACK received. 0x48 Master Receiver Slave address + R transmitted. NACK received 0x50 Master Receiver Data byte received. ACK transmitted. 0x58 Master Receiver Data byte received. NACK transmitted. 0x60 Slave Receiver SMB0's own slave address + W received. ACK transmitted. 0x68 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. Own slave address + W received. ACK transmitted. 0x70 Slave Receiver General call address (0x00) received. ACK returned. 0x78 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x40 Slave Receiver A STOP or repeated START received while addressed as a slave. Own slave address +	0x30	Master Transmitter	Data byte transmitted. NACK received.
0x40 Master Receiver Slave address + R transmitted. ACK received. 0x48 Master Receiver Slave address + R transmitted. NACK received 0x50 Master Receiver Data byte received. ACK transmitted. 0x58 Master Receiver Data byte received. NACK transmitted. 0x60 Slave Receiver SMB0's own slave address + W received. ACK transmitted. 0x68 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. Own slave address + W received. ACK transmitted. 0x70 Slave Receiver General call address (0x00) received. ACK transmitted. 0x78 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. General call address received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x90 Slave Receiver SMB0's own slave address + W received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. <	0x38	Master Transmitter	Arbitration lost
0x48 Master Receiver Slave address + R transmitted. NACK received 0x50 Master Receiver Data byte received. ACK transmitted. 0x58 Master Receiver Data byte received. NACK transmitted. 0x60 Slave Receiver SMB0's own slave address + W received. ACK transmitted. 0x68 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. Own slave address + W received. ACK transmitted. 0x70 Slave Receiver General call address (0x00) received. ACK transmitted. 0x78 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. General call address received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. NACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. OxA8 0xA0 Slave Transmitter SMB0's own slave address + R received. ACK transmitted.	0x40	Master Receiver	Slave address + R transmitted. ACK received.
0x50 Master Receiver Data byte received. ACK transmitted. 0x58 Master Receiver Data byte received. NACK transmitted. 0x60 Slave Receiver SMB0's own slave address + W received. ACK transmitted. 0x68 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. Own slave address (0x00) received. ACK transmitted. 0x70 Slave Receiver General call address (0x00) received. ACK transmitted. 0x78 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. General call address received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x88 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA8 Slave Transmitter A STOP or repe	0x48	Master Receiver	Slave address + R transmitted. NACK received
0x58 Master Receiver Data byte received. NACK transmitted. 0x60 Slave Receiver SMB0's own slave address + W received. ACK transmitted. 0x68 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. Own slave address + W received. ACK transmitted. 0x70 Slave Receiver General call address (0x00) received. ACK transmitted. 0x78 Slave Receiver General call address received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x40 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. NACK transmitted. 0xB0 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Data byte transmitted. ACK transmitted.	0x50	Master Receiver	Data byte received. ACK transmitted.
0x60 Slave Receiver SMB0's own slave address + W received. ACK transmitted. 0x68 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. Own slave address + W received. ACK transmitted. 0x70 Slave Receiver General call address (0x00) received. ACK transmitted. 0x78 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. General call address received. ACK transmitted. 0x80 Slave Receiver Arbitration lost in transmitting slave address + W received. Data byte received. ACK transmitted. 0x88 Slave Receiver SMB0's own slave address + W received. Data byte received. NACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. ACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. ACK transmitted. 0xA0 Slave Receiver General call address (0x00) received. Data byte received. ACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Data byte transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted.	0x58	Master Receiver	Data byte received. NACK transmitted.
0x68 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. Own slave address + W received. ACK transmitted. 0x70 Slave Receiver General call address (0x00) received. ACK returned. 0x78 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. General call address received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x88 Slave Receiver SMB0's own slave address + W received. Data byte received. NACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. ACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x40 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. Own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 <td>0x60</td> <td>Slave Receiver</td> <td>SMB0's own slave address + W received. ACK transmitted.</td>	0x60	Slave Receiver	SMB0's own slave address + W received. ACK transmitted.
Own slave address + W received. ACK transmitted. 0x70 Slave Receiver General call address (0x00) received. ACK returned. 0x78 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. General call address received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x88 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x40 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. OxA8 0xA8 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted (AA=0). ACK received.	0x68	Slave Receiver	Arbitration lost in transmitting slave address + R/W as master.
0x70 Slave Receiver General call address (0x00) received. ACK returned. 0x78 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. General call address received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x88 Slave Receiver SMB0's own slave address + W received. Data byte received. NACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x80 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x80 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x80 Slave Receiver A STOP or repeated START received while addressed as a slave. Own slave address + R received. ACK transmitted. 0x80 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received.			Own slave address + W received. ACK transmitted.
0x78 Slave Receiver Arbitration lost in transmitting slave address + R/W as master. General call address received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x88 Slave Receiver SMB0's own slave address + W received. Data byte received. NACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. ACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x40 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted (AA=0). ACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. <td>0x70</td> <td>Slave Receiver</td> <td>General call address (0x00) received. ACK returned.</td>	0x70	Slave Receiver	General call address (0x00) received. ACK returned.
General call address received. ACK transmitted. 0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x88 Slave Receiver SMB0's own slave address + W received. Data byte received. NACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. ACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xC0 Slave Transmitter Data byte transmitted. ACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xC8 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1) 0xE9 All Ide	0x78	Slave Receiver	Arbitration lost in transmitting slave address + R/W as master.
0x80 Slave Receiver SMB0's own slave address + W received. Data byte received. ACK transmitted. 0x88 Slave Receiver SMB0's own slave address + W received. Data byte received. NACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. ACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1) 0xE9 All			General call address received. ACK transmitted.
ACK transmitted. 0x88 Slave Receiver SMB0's own slave address + W received. Data byte received. NACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. ACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1)	0x80	Slave Receiver	SMB0's own slave address + W received. Data byte received.
0x88 Slave Receiver SMB0's own slave address + W received. Data byte received. NACK transmitted. 0x90 Slave Receiver General call address (0x00) received. Data byte received. ACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1) 0xE8 All Idla			ACK transmitted.
0x90 Slave Receiver General call address (0x00) received. Data byte received. ACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1)	0x88	Slave Receiver	SMB0's own slave address + W received. Data byte received.
0x90 Slave Receiver General call address (0x00) received. Data byte received. ACK transmitted. 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1)	0.00		NACK transmitted.
International construction International construction International construction 0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1)	0x90	Slave Receiver	General call address (0x00) received. Data byte received. ACK
0x98 Slave Receiver General call address (0x00) received. Data byte received. NACK transmitted. 0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1)	0.09	Class David and	transmitted.
0xA0 Slave Receiver A STOP or repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. 0xB8 Slave Transmitter Data byte transmitted. ACK transmitted. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1)	0x98	Slave Receiver	General call address (0x00) received. Data byte received.
0xA0 Slave Receiver A STOP of repeated START received while addressed as a slave. 0xA8 Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1)	0	Slave Deceiver	A STOD or repeated STADT received while addressed as a clave
OxAs Slave Transmitter SMB0's own slave address + R received. ACK transmitted. 0xB0 Slave Transmitter Arbitration lost in transmitting slave address + R/W as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1)	0xA0	Slave Receiver	SMD0's sum slave address + D received while addressed as a slave.
0xB0 Slave Transmitter Arbitration fost in transmitting slave address + R/w as master. Own slave address + R received. ACK transmitted. 0xB8 Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1)		Slave Transmitter	SWIDU'S OWII Slave address + K lecelved. ACK transmitted.
0xB8 Slave Transmitter Data byte transmitted. ACK transmitted. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1)	0XB0	Slave Transmitter	Arotitration lost in transmitting slave address $+ R/w$ as master.
OxDo Slave Transmitter Data byte transmitted. ACK received. 0xC0 Slave Transmitter Data byte transmitted. NACK received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1)	OvB8	Slave Transmitter	Data byte transmitted ACK received
OxCo Data byte transmitted OxAck received. 0xC8 Slave Transmitter Last data byte transmitted (AA=0). ACK received. 0xD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1) 0xE8 All Idla		Slave Transmitter	Data byte transmitted NACK received
OxD0 Slave Transmitter/Receiver SCL Clock High Timer per SMB0CR timed out (FTE=1) 0xE2 All Idla	0xC8	Slave Transmitter	Last data byte transmitted (AA=0) ACK received
$0_{\rm V}$ EQ All Idla		Slave Transmitter/Receiver	SCL Clock High Timer per SMB0CR timed out (FTE-1)
	0xF8		Idle

Table 16.1. SMBus Status Codes

18. UART

The UART is a serial port capable of asynchronous transmission. The UART can function in full duplex mode. In all modes, receive data is buffered in a holding register. This allows the UART to start reception of a second incoming data byte before software has finished reading the previous data byte.

The UART has an associated Serial Control Register (SCON) and a Serial Data Buffer (SBUF) in the SFRs. The single SBUF location provides access to both transmit and receive registers. Reads access the Receive register and writes access the Transmit register automatically.

The UART is capable of generating interrupts if enabled. The UART has two sources of interrupts: a Transmit Interrupt flag, TI (SCON.1) set when transmission of a data byte is complete, and a Receive Interrupt flag, RI (SCON.0) set when reception of a data byte is complete. The UART interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software. This allows software to determine the cause of the UART interrupt (transmit complete or receive complete).

The Timer 2 overflow rate, when in *Baud Rate Generator Mode* and using an internal clock source, is determined solely by the Timer 2 16-bit reload value (RCAP2H:RCAP2L). The Timer 2 clock source is fixed at SYSCLK/2. The Timer 2 overflow rate can be calculated as follows:

 $T2_OVERFLOWRATE = (SYSCLK/2) / (65536 - [RCAP2H:RCAP2L]).$

Timer 2 can be selected as the baud rate generator for RX and/or TX by setting RCLK (T2CON.5) and/or TCLK (T2CON.4), respectively. When either RCLK or TCLK is set to logic 1, Timer 2 interrupts are automatically disabled and the timer is forced into *Baud Rate Generator Mode* with SYSCLK/2 as its clock source. If a different timebase is required, setting the C/T2 bit (T2CON.1) to logic 1 will allow Timer 2 to be clocked from the external input pin T2. See the Timers section for complete timer configuration details.

20.1.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software.

